
Mo′ States Mo′ Problems:
Emergency Stop Mechanisms from Observation

Samuel Ainsworth Matt Barnes Siddhartha Srinivasa

School of Computer Science and Engineering
University of Washington

{skainswo,mbarnes,siddh}@cs.washington.edu

Abstract

In many environments, only a relatively small subset of the complete state space is
necessary in order to accomplish a given task. We develop a simple technique using
emergency stops (e-stops) to exploit this phenomenon. Using e-stops significantly
improves sample complexity by reducing the amount of required exploration, while
retaining a performance bound that efficiently trades off the rate of convergence
with a small asymptotic sub-optimality gap. We analyze the regret behavior of
e-stops and present empirical results in discrete and continuous settings demon-
strating that our reset mechanism can provide order-of-magnitude speedups on top
of existing reinforcement learning methods.

1 Introduction

In this paper, we consider the problem of determining when along a training roll-out feedback
from the environment is no longer beneficial, and an intervention such as resetting the agent to
the initial state distribution is warranted. We show that such interventions can naturally trade off
a small sub-optimality gap for a dramatic decrease in sample complexity. In particular, we focus
on the reinforcement learning setting in which the agent has access to a reward signal in addition to
either (a) an expert supervisor triggering the e-stop mechanism in real-time or (b) expert state-only
demonstrations used to “learn” an automatic e-stop trigger.

Evidence already suggests that using simple, manually-designed heuristic resets can dramatically
improve training time. For example, the classic pole-balancing problem originally introduced in
Widrow and Smith [25] prematurely terminates an episode and resets to an initial distribution
whenever the pole exceeds some fixed angle off-vertical. More subtly, these manually designed reset
rules are hard-coded into many popular OpenAI gym environments [7].

Some recent approaches have demonstrated empirical success learning when to intervene, either in
the form of resetting, collecting expert feedback, or falling back to a safe policy [8, 16, 19, 14]. We
specifically study reset mechanisms which are more natural for human operators to provide – in the
form of large red buttons, for example – and thus perhaps less noisy than action or value feedback [5].
Further, we show how to build automatic reset mechanisms from state-only observations which are
often widely available, e.g. in the form of videos [24].

In the classic imitation learning (IL) setting, the agent attempts to imitate another policy without
being given access to a reward signal. This typically requires action observations [13] or expert
feedback [20], although recent work has studied more relaxed settings [24]. Existing approaches to
bootstrapping typically require state-action observations, whereas our approach is agnostic to the
reinforcement learning algorithm applied and relies only on state observations.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



E-stop

Learner π
Expert πe

Support set Ŝ

Figure 1: A robot is tasked with reaching a goal in a cluttered environment. Our method allows
incorporating e-stop interventions into any reinforcement learning algorithm. The grey support set
may either be implicit (from a supervisor) or, if available, explicitly constructed from demonstrations.

The key idea of our method is to build a support set related to the expert’s state-visitation probabilities,
and to terminate the episode with a large penalty when the agent leaves this set, visualized in Fig. 1.
This support set can either be defined implicitly via an expert supervisor triggering e-stops in real-time
or constructed a priori based on observation-only roll-outs from an expert policy. As we will show,
using a support set explicitly restricts exploration to a smaller state space while maintaining guarantees
on the learner’s performance. We emphasize that our technique for incorporating observations applies
to any reinforcement learning algorithm in either continuous or discrete domains.

The contributions and organization of the remainder of the paper is as follows.

• We provide a general framework for incorporating arbitrary emergency stop (e-stop) inter-
ventions from a supervisor into any reinforcement learning algorithm using the notion of
support sets in Section 4.

• We present methods and analysis for building support sets from observations in Section 5,
allowing for the creation of automatic e-stop devices.

• In Section 6 we empirically demonstrate on benchmark discrete and continuous domains
that our reset mechanism allows us to naturally trade off a small asymptotic sub-optimality
gap for significantly improved convergence rates with any reinforcement learning method.

• Finally, in Section 7, we generalize the concept of support sets to a spectrum of set types
and discuss their respective tradeoffs.

2 Related Work

The problem of learning when to intervene has been studied in several contexts and generally falls
under the framework of safe reinforcement learning [10] or reducing expert feedback [16]. Richter
and Roy [19] use an auto-encoder as an anomaly detector to determine when a high dimensional
state is anomalous, and revert to a safe policy. Laskey et al. [16] use a one-class SVM as an
anomaly detector, but instead for the purposes of reducing the amount of imitation learning feedback
during DAGGERtraining [20]. Garcia and Fernández [9] perturb a baseline policy and request action
feedback if the current state exceeds a minimum distance from any demonstration. Geramifard et al.
[11] assume access to a function which indicates whether a state is safe, and determines the risk
of the current state by Monte Carlo roll-outs. Similarly, “shielding” [3] uses a manually specified
safety constraint and a coarse, conservative abstraction of the dynamics to prevent an agent from
violating the safety constraint. Eysenbach et al. [8] learn a second “soft reset” policy (in addition to
the standard “hard” reset) which prevents the agent from entering nearly non-reversible states and
returns the agent to an initial state. Hard resets are required whenever the soft reset policy fails to
terminate in a manually defined set of safe states Sreset. Our method can be seen as learning Sreset
from observation. Their method trades off hard resets for soft resets, whereas ours learns when to
perform the hard resets.

The general problem of Learning from Demonstration (LfD) has been studied in a variety of contexts.
In inverse reinforcement learning, Abbeel and Ng [1] assume access to state-only trajectory demon-
strations and attempt to learn an unknown reward function. In imitation learning, Ross et al. [20] study
the distribution mismatch problem of behavior cloning and propose DAGGER, which collects action

2



feedback at states visited by the current policy. GAIL addresses the problem of imitating a set of fixed
trajectories by minimizing the Jensen-Shannon divergence between the policies’ average-state-action
distributions [13]. This reduces to optimizing a GAN-style minimax objective with a reinforcement
learning update (the generator) and a divergence estimator (the discriminator).

The setting most similar to ours is Reinforcement Learning with Expert Demonstrations (RLED),
where we observe both the expert’s states and actions in addition to a reward function. Abbeel
and Ng [2] use state-action trajectory demonstrations to initialize a model-based RL algorithm,
which eliminates the need for explicit exploration and can avoid visiting all of the state-action space.
Smart and Kaelbling [22] bootstrap Q-values from expert state-action demonstrations. Maire and
Bulitko [17] initialize any value-function based RL algorithm by using the shortest observed path
from each state to the goal and generalize these results to unvisited states via a graph Laplacian.
Nagabandi et al. [18] learn a model from state-action demonstrations and use model-predictive
control to initialize a model-free RL agent via behavior cloning. It is possible to extend our method
to RLED by constructing a support superset based on state-action pairs, as described in Section 7.
Thus, our method and many RLED methods are complimentary. For example, DQfD [12] would
allow pre-training the policy from the state-action demonstrations, whereas ours reduces exploration
during the on-policy learning phase.

Most existing techniques for bootstrapping RL are not applicable to our setting because they require
either (a) state-action observations, (b) online expert feedback, (c) solving a reinforcement learning
problem in the original state space, incurring the same complexity as simply solving the original
RL problem, or (d) provide no guarantees, even for the tabular setting. Further, since our method is
equivalent to a one-time modification of the underlying MDP, it can be used to improve any existing
reinforcement learning algorithm and may be combined with other bootstrapping methods.

3 Problem setup

Let M = 〈S,A, P,R,H, ρ0〉 be a finite horizon, episodic Markov decision process (MDP) defined
by the tuple M , where S is a set of states, A is a set of actions, P : S ×A → ∆(S) is the transition
probability distribution and ∆(S) is a S-dimension probability simplex, R : S2 ×A → [0, 1] is the
reward function, H is the time horizon and ρ0 ∈ ∆(S) is the distribution of the initial state s0. Let
π ∈ Π : N1:H × S → ∆(A) be our learner’s policy and πe be the potentially sub-optimal expert
policy (for now assume the realizability setting, πe ∈ Π).

The state distribution of policy π at time t is defined recursively as

ρt+1
π (s) =

∑
st,at

ρtπ(st)π(at|st, t)P (st, at, s) ρ0
π(s) ≡ ρ0(s). (1)

The expected sum of rewards over a single episode is defined as
J(π) = Es∼ρπ,a∼π(s),s′∼P (s,a)R(s, a, s′) (2)

where ρπ denotes the average state distribution, ρπ = 1
H

∑H−1
t=0 ρtπ .

Our objective is to learn a policy π which minimizes the notion of external regret over K episodes.
Let T = KH denote the total number of time steps elapsed, (r1, . . . , rT ) be the sequence of rewards
generated by running algorithm A in M and RT =

∑T
t=1 rt be the cumulative reward. Then the

T -step expected regret of A in M compared to the expert is defined as
RegretAM (T ) := EπeM [RT ]− EA

M [RT ] . (3)
Typical regret bounds in the discrete setting are some polynomial of the relevant quantities |S|, |A|,
T , and H . We assume we are given such an RL algorithm. Later, we assume access to either a
supervisor who can provide e-stop feedback or a set of demonstration roll-outs D =

{
τ (1), . . . , τ (n)

}
of an expert policy πe in M , and show how these can affect the regret bounds. In particular, we are
interested in using D to decrease the effective size of the state space S , thereby reducing the amount
of required exploration when learning in M .

4 Incorporating e-stop interventions

In the simplest setting, we have access to an external supervisor who provides minimal online
feedback in the form of an e-stop device triggered whenever the agent visits states outside of some

3



to-be-determined set Ŝ ⊆ S . For example, if a mobile robot is navigating across a cluttered room as
in Fig. 1, a reasonable policy will rarely collide into objects or navigate into other rooms which are
unrelated to the current task, and the supervisor may trigger the e-stop device if the robot exhibits
either of those behaviors. The analysis for other support types (e.g. state-action, time-dependent,
visitation count) are similar, and their trade-offs are discussed in Section 7.

4.1 The sample complexity and asymptotic sub-optimality trade-off

We argue that for many practical MDPs, ρπe is near-zero in much of the state space, and constructing
an appropriate Ŝ enables efficiently trading off asymptotic sub-optimality for potentially significantly
improved convergence rate. Given some reinforcement learning algorithm A, we proceed by running
A on a newly constructed “e-stop” MDP M̂ = (Ŝ,A, PŜ , RŜ , H, ρ0). Intuitively, whenever the
current policy leaves Ŝ , the e-stop prematurely terminates the current episode with no further reward
(the maximum penalty). These new transition and reward functions are defined as

PŜ(st, at, st+1) =


P (st, at, st+1), if s′ ∈ Ŝ∑
s′ 6∈Ŝ P (st, at, s

′), st+1 = sterm

0, else

RŜ(st, at, st+1) =

{
R(st, at, st+1), if st+1 ∈ Ŝ
0, else

(4)

where sterm is an absorbing state with no reward. A similar idea was discussed for the imitation
learning problem in [21].

The key trade-off we attempt to balance is between the asymptotic sub-optimality and reinforcement
learning regret,

Regret(T ) ≤
⌈
T
H

⌉
[J(π∗)− J(π̂∗)]︸ ︷︷ ︸

Asymptotic sub-optimality

+Eπ̂
∗

M̂
[RT ]− EA

M̂
[RT ] .︸ ︷︷ ︸

Learning regret

(5)

where π∗ and π̂∗ are the optimal policies in M and M̂ , respectively (proof in Appendix A). The first
term is due to the approximation error introduced when constructing M̂ , and depends entirely on
our choice of Ŝ. The second term is the familiar reinforcement learning regret, e.g. Azar et al. [4]
recently proved an upper regret bound of

√
H|S||A|T +H2|S|2|A|. We refer the reader to Kakade

et al. [15] for an overview of state-of-the-art regret bounds in episodic MDPs.

Our focus is primarily on the first term, which in turn decreases the learning regret of the second
term via |Ŝ| (typically quadratically). This forms the basis for the key performance trade-off. We
introduce bounds for the first term in various conditions, which inform our proposed methods. By
intelligently modifying M through e-stop interventions, we can decrease the required exploration and
allow for the early termination of uninformative, low-reward trajectories. Note that the reinforcement
learning complexity of A is now independent of S , and instead dependent on Ŝ according to the same
polynomial factors. Depending on the MDP and expert policy, this set may be significantly smaller
than the full set. In return, we pay a worst case asymptotic sub-optimality penalty.

4.2 Perfect e-stops

To begin, consider an idealized setting, Ŝ = {s|h(s) > 0} (or some superset thereof) where h(s) is
the probability πe visits state s at any point during an episode. Then the modified MDP M̂ has an
optimal policy which achieves at least the same reward as πe on the true MDP M .

Theorem 4.1. Suppose M̂ is an e-stop variant ofM such that Ŝ = {s|h(s) > 0} where h(s) denotes
the probability of hitting state s in a roll-out of πe. Let π̂∗ = arg maxπ∈Π JM̂ (π) be the optimal
policy in M̂ . Then J(π̂∗) ≥ J(πe).

In other words, and not surprisingly, if the expert policy never visits a state, then we pay no penalty for
removing it. (Note that we could have equivalently selected Ŝ = {s|ρπe(s) > 0} since ρπe(s) > 0 if
and only h(s) > 0.)

4



Algorithm 1 Resetting based on demonstrator trajectories
1: procedure LEARNEDESTOP(M,A, πe, n, ξ)
2: Rollout multiple trajectories from πe: D ← [s

(1)
1 , . . . , s

(1)
H ], . . . , [s

(n)
1 , . . . , s

(n)
H ]

3: Estimate the hitting probabilities: ĥ(s) = 1
n

∑
i I{s ∈ τ (i)}. (Or ρ̂ in continuous settings.)

4: Construct the smallest Ŝ allowed by the
∑
s∈S\Ŝ ĥ(s) ≤ ξ constraint.

5: Add e-stops, resulting in a modified MDP, M̂ , where PŜ(s, a, s′), RŜ(s, a, s′)← Eq. (4)
6: return A(M̂)

4.3 Imperfect e-stops

In a more realistic setting, consider what happens when we “remove” (i.e. s 6∈ Ŝ) states as e-stops
that have low but non-zero probability of visitation under πe. This can happen by “accident” if the
supervisor interventions are noisy or we incorrectly estimate the visitation probability to be zero.
Alternatively, this can be done intentionally to trade off asymptotic performance for better sample
complexity, in which case we remove states with known low but non-zero visitation probability.

Theorem 4.2. Consider M̂ , an e-stop variation on MDP M with state spaces Ŝ and S , respectively.
Given an expert policy, πe, let h(s) denote the probability of visiting state s at least once in an
episode roll-out of policy πe in M . Then

J(πe)− J(π̂∗) ≤ H
∑
s∈S\Ŝ

h(s) (6)

where π̂∗ is the optimal policy in M̂ . Naturally if we satisfy some “allowance,” ξ, such that∑
s∈S\Ŝ h(s) ≤ ξ then J(πe)− J(π̂∗) ≤ ξH .

Corollary 4.2.1. Recall that ρπe(s) denotes the average state distribution following actions from πe,
ρπe(s) = 1

H

∑H−1
t=0 ρtπe(s). Then

J(πe)− J(π̂∗) ≤ ρπe(S \ Ŝ)H2 (7)

In other words, removing states with non-zero hitting probability introduces error into the policy π̂∗
according to the visitation probabilities h.
Remark. The primary slack in these bounds is due to upper bounding the expected cumulative
reward for a given state trajectory by H . Although this bound is necessary in the worst case, it’s
worth noting that performance is much stronger in practice. In non-adverserial settings the expected
cumulative reward of a state sequence, τ , is correlated with the visitation probabilities of the states
along its path: very low reward trajectories tend to have low visitation probabilities, assuming sensible
expert policies. We opted against making any assumptions about the correlation between h(s) and
the value function, V (s), so this remains an interesting option for future work.

5 Learning from observation

In the previous section, we considered how to incorporate general e-stop interventions – which could
take the form of an expert supervisor or some other learned e-stop device. Here, we propose and
analyze a method for building such a learned e-stop trigger using state observations from an expert
demonstrator. This is especially relevant for domains where action observations are unavailable (e.g.
videos).

Consider the setting where we observe n roll-outs τ (1), . . . , τ (n) of a demonstrator policy πe in
M . We can estimate the hitting probability h(s) empirically as ĥ(s) = 1

n

∑
i I{s ∈ τ (i)}. Next,

Theorem 4.2 suggests constructing Ŝ by removing states from S with the lowest ĥ(s) values as
long as is allowed by the

∑
s∈S\Ŝ ĥ(s) ≤ ξ constraint. In other words, we should attempt to

remove as many states as possible while considering our “budget” ξ. The algorithm is summarized
in Algorithm 1. In practice, implementing Algorithm 1 is actually even simpler: pick Ŝ, take any
off-the-shelf implementation and simply end training roll-outs whenever the state leaves Ŝ .

5



0 1000 2000 3000 4000 5000
FLOPs (thousands)

0.0

0.1

0.2

0.3

0.4

Cu
m

ul
at

iv
e 

po
lic

y 
re

wa
rd

0

10

20

30

40

50

60

70

E-stop states (%
)

0 100 200 300 400 500
Timesteps (thousands)

0.0

0.1

0.2

0.3

0.4

Cu
m

ul
at

iv
e 

po
lic

y 
re

wa
rd

Full env. Q-learning
E-stop Q-learning
Optimal policy

0 1000 2000 3000 4000 5000
Timesteps (thousands)

0.0

0.1

0.2

0.3

0.4

Cu
m

ul
at

iv
e 

po
lic

y 
re

wa
rd

Full env. Actor-Critic
E-stop Actor-Critic
Optimal policy

Figure 2: Left: Value iteration results with varying portions of the state space replaced with e-stops.
Color denotes the portion of states that have been replaced. Note that significant performance
improvements may be realized before the optimal policy reward is meaningfully affected. Middle:
Q-learning results with and without the e-stop mechanism. Right: Actor-critic results with and
without the e-stop mechanism. Both plots show results across 100 trials. We observe that e-stopping
produces drastic improvements in sample efficiency while introducing only a small sub-optimality
gap.

Theorem 5.1. The e-stop MDP M̂ with states Ŝ in Algorithm 1 has asymptotic sub-optimality

J(πe)− J(π̂∗) ≤ (ξ + ε)H (8)

with probability at least 1 − |S|e−2ε2n/|S|2 , for any ε > 0. Here ξ denotes our approximate
state removal “allowance”, where we satisfy

∑
s∈S\Ŝ ĥ(s) ≤ ξ in our construction of M̂ as in

Theorem 4.2.

As expected, there exists a tradeoff between the number of trajectories collected, n, the state removal
allowance, ξ, and the asymptotic sub-optimality gap, J(πe)−J(π̂∗). In practice we find performance
to be fairly robust to n, as well as the quality of the expert policy. See Section 6.1 for experimental
results measuring the impact of each of these variables.

Note that although this analysis only applies to the discrete setting, the same method can be extended
to the continuous case by estimating and thresholding on ρπe(s) in place of h(s), as implied by
Corollary 4.2.1. In Section 6.2 we provide empirical results in continuous domains.

6 Empirical study

6.1 Discrete environments

We evaluate LEARNEDESTOP on a modified FrozenLake-v0 environment from the OpenAI gym.
This environment is highly stochastic: for example, taking a left action can move the character either
up, left, or down each with probability 1/3. To illustrate our ability to evade states that are low-value
but non-terminating, we additionally allow the agent to “escape” the holes in the map and follow the
usual dynamics with probability 0.01. As in the original problem, the goal state is terminal and the
agent receives a reward of 1 upon reaching the goal and 0 elsewhere. To encourage the agent to reach
the goal quickly, we use a discount factor of γ = 0.99.

Across all of our experiments, we observe that algorithms modified with our e-stop mechanism are
far more sample efficient thanks to our ability to abandon episodes that do not match the behavior of
the expert. We witnessed these benefits across both planning and reinforcement learning algorithms,
and with both tabular and policy gradient-based techniques.

Although replacing states with e-stops introduces a small sub-optimality gap, practical users need not
despair: any policy trained in a constrained e-stop environment is portable to the full environment.
Therefore using e-stops to warm-start learning on the full environment would provide a “best of both
worlds” scenario. Annealing this process would also have a comparable effect.

Value iteration. To elucidate the relationship between the size of the support set, Ŝ, and the sub-
optimality gap, J(πe) − J(π̂∗), we run value iteration on e-stop environments with progressively
more e-stop states. First, the optimal policy with respect to the full environment is computed and
treated as the expert policy, πe. Next, we calculate ρπe(s) for all states. By progressively thresholding

6



0.0 0.1 0.2 0.3 0.4
Expert policy cumulative reward

0.0

0.1

0.2

0.3

0.4

E-
st

op
 p

ol
icy

 c
um

ul
at

iv
e 

re
wa

rd

2 4 6 8
Expert trajectories observed

0.15

0.20

0.25

0.30

0.35

0.40

E-
st

op
 c

um
ul

at
iv

e 
po

lic
y 

re
wa

rd

Optimal e-stop MDP

Figure 3: Left: E-stop results based on sub-optimal expert policies. Right: The number of expert
trajectories used to construct Ŝ vs the final performance in the e-stop environment. E-stop results
seem to be quite robust to poor experts and limited demonstrations.

on ρπe(s) we produce sparser and sparser e-stop variants of the original environment. The results of
value iteration run on each of these variants is shown in Fig. 2 (left). Lines are colored according to
the portion of states removed from the original environment, darker lines indicating more aggressive
pruning. As expected we observe a tradeoff: decreasing the size of Ŝ introduces sub-optimality but
speeds up convergence. Once pruning becomes too aggressive we see that it begins to remove states
crucial to reaching the goal and J(πe)− J(π̂∗) is more severely impacted as a result.

RL results. To evaluate the potential of e-stops for accelerating reinforcement learning methods we
ran LEARNEDESTOP from Algorithm 1 with the optimal policy as πe. Half of the states with the
lowest hitting probabilities were replaced with e-stops. Finally, we ran classic RL algorithms on the
resulting e-stop MDP. Fig. 2 (middle) presents our Q-learning results, demonstrating removing half of
the states has a minor effect on asymptotic performance but dramatically improves the convergence
rate. We also found the e-stop technique to be an effective means of accelerating policy gradient
methods. Fig. 2 (right) presents results using one-step actor-critic with a tabular, value function critic
[23]. In both cases, we witnessed drastic speedups with the use of e-stops relative to running on the
full environment.

Expert sub-optimality. The bounds presented Section 4.3 are all in terms of J(πe) − J(π̂∗),
prompting the question: To what extent is e-stop performance dependent on the quality of the expert,
J(πe)? Is it possible to exceed the performance of πe as in Theorem 4.1, even with "imperfect"
e-stops? To address these questions we artificially created sub-optimal policies by adding noise to the
optimal policy’s Q-function. Next, we used these sub-optimal policies to construct e-stop MDPs, and
calculated J(π̂∗). As shown in Fig. 3 (left), e-stop performance is quite robust to the expert quality.
Ultimately we only need to take care of capturing a “good enough” set of states in order for the e-stop
policy to succeed.

Estimation error. The sole source of error in Algorithm 1 comes from the estimation of hitting
probabilities via a finite set of n expert roll-outs. Theorem 5.1 suggests that the probability of failure
in empirically building an e-stop MDP decays exponentially in terms of the number of roll-outs, n.
We test the relationship between n and J(π̂∗) experimentally in Fig. 3 (right) and find that in this
particular case it’s possible to construct very good e-stop MDPs with as few as 10 expert roll-outs.

6.2 Continuous environments

To experimentally evaluate the power of e-stops in continuous domains we took two classic continuous
control problems: inverted pendulum control and the HalfCheetah-v3 environment from the OpenAI
gym [7], and evaluated the performance of a deep reinforcement learning algorithm in the original
environments as well as in modified versions of the environments with e-stops.

Although e-stops are more amenable to analysis in discrete MDPs, nothing fundamentally limits
them from being applied to continuous environments in a principled fashion. The notion of state-
hitting probabilities, h(s), is meaningless in continuous spaces but the stationary (infinite-horizon),
or average state (finite-horizon) distribution, ρπe(s) is well-defined and many techniques exist for

7



0 5 10 15 20 25
Timesteps (thousands)

100

200

300

400

500

600

Cu
m

ul
at

iv
e 

po
lic

y 
re

wa
rd

Full env. DDPG
E-stop DDPG

0 2000 4000 6000 8000 10000
Timesteps (thousands)

0

2000

4000

6000

8000

Cu
m

ul
at

iv
e 

po
lic

y 
re

wa
rd

Full env. DDPG
E-stop DDPG

Figure 4: Left: DDPG results on the pendulum environment. Right: Results on the HalfCheetah-v3
environment from the OpenAI gym. All experiments were repeated with 48 different random seeds.
Note that in both cases e-stop agents converged much more quickly and with lower variance than
their full environment counterparts.

density estimation in continuous spaces. Applying these techniques along with Corollary 4.2.1
provides fairly solid theoretical grounds for using e-stops in continuous problems.

For the sake of simplicity we implemented e-stops as min/max bounds on state values. For each
environment we trained a number of policies in the full environments, measured their performance,
and calculated e-stop min/max bounds based on roll-outs of the resulting best policy. We found
that even an approach as simple as this can be surprisingly effective in terms of improving sample
complexity and stabilizing the learning process.

Inverted pendulum. In this environment the agent is tasked with balancing an inverted pendulum
from a random starting position and velocity. The agent can apply rotational torque to the pendulum
to control its movement. We found that without any intervention the agent would initially just spin the
pendulum as quickly as possible and would only eventually learn to actually balance the pendulum
appropriately. However, the e-stop version of the problem was not tempted with this strange behavior
since the agent would quickly learn to keep the rotational velocity to reasonable levels and therefore
converged far, far faster and more reliably as shown in Fig. 4 (left).

Half cheetah. Fig. 4 (right) shows results on the HalfCheetah-v3 environment. In this environment,
the agent is tasked with controling a 2-dimensional cheetah model to run as quickly as possible.
Again, we see that the e-stop agents converged much more quickly and reliably to solutions that were
meaningfully superior to DDPG policies trained on the full environment. We found that many policies
without e-stop interventions ended up trapped in local minima, e.g. flipping the cheetah over and
scooting instead of running. Because e-stops were able to eliminate these states altogether, policies
trained in the e-stop regime consistently outperformed policies trained in the standard environment.

Broadly, we found training with e-stops to be far faster and more robust than without. In our
experiments, we considered support sets Ŝ to be axis-aligned boxes in the state space. It stands to
reason that further gains could be squeezed out of this framework by estimating ρπe(s) more prudently
and triggering e-stops whenever our estimation, ρ̂πe(s), falls below some threshold. In general, results
will certainly be dependent on the structure of the support set used and the parameterization of state
space, but our results suggest that there is promise in the tasteful application of e-stops to continuous
RL problems.

7 Types of support sets and their tradeoffs

In the previous sections, we proposed reset mechanisms based on a continuous or discrete state
support set Ŝ. In this section, we describe alternative support set constructions and their respective
trade-offs.

At the most basic level, consider the sequence of sets S1
πe , . . . ,S

H
πe , defined by Stπe = {s|ρtπe > ε}

for some small ε. Note that the single set Ŝ we considered in Section 4.2 is the union of these sets

8



when ε = 0. The advantage of using a sequence of time-dependent support sets is that Sπe may
significantly over-support the expert’s state distribution at any time and not reset when it is desirable
to do so, i.e. st ∈ Sπe but st 6∈ Stπe for some t > 0. The downside of using time-dependent sets is
that it increases the memory complexity from O(|S|) to O(|S|H). Further, if the state distributions
ρ1
πe , . . . , ρ

H
πe are similar, then using their union effectively increases the number of demonstrations

by a factor of H .

To illustrate a practical scenario where it is advantageous to use time-dependent sets, we revisit the
example in Fig. 1, where an agent navigates from a start state s0 to some goal state sg . Sπe does not
prevent π from remaining at s0 for the duration of the episode, as πe is initialized at this state and
thus s0 ∈ Sπe . Clearly, this type of behavior is undesirable, as it does not move the agent towards sg .
However, the time-dependent sets would trigger an intervention after only a couple time steps, since
s0 ∈ S0

πe but s0 ∈ Stπe for some t > 0.

Finally, we propose an alternative support set based on visitation counts, which balances the trade-offs
of the two previous constructions Sπe and {S1

πe , . . . ,S
H
πe}. Let sf ∈ N|S|0 be an auxiliary state, which

denotes the number of visits to each state. Let f(s) =
∑H
t=1 I{s ∈ Stπe} be the visitation count to

state s by the demonstrator. The modified MDP in this setting is defined by

PSπe (s, sf , a, s
′, s′f ) =


P (s, a, s′), if sf ≤ f(s), s′f = sf + es
1, if sf > f(s), s′ = sterm, s

′
f = sf + es

0 else

RSπe (s, sf , a, s
′) =

{
R(s, a, s′), if sf ≤ f(s)

0, else

(9)

where es is the one-hot vector for state s. In other words, we terminate the episode with no further
reward whenever the agent visits a state more than the demonstrator. The mechanism in Eq. (9) has
memory requirements independent ofH yet fixes some of the over-support issues in Sπe . The optimal
policy in this MDP achieves at least as much cumulative reward as πe (by extending Theorem 4.1)
and can be extend to the imperfect e-stop setting in Section 4.3.

We leave exploration of these and other potential e-stop constructions to future work.

8 Conclusions

We introduced a general framework for incorporating e-stop interventions into any reinforcement
learning algorithm, and proposed a method for learning such e-stop triggers from state-only observa-
tions. Our key insight is that only a small support set of states may be necessary to operate effectively
towards some goal, and we contribute a set of bounds that relate the performance of an agent trained
in this smaller support set to the performance of the expert policy. Tuning the size of the support
set allows us to efficiently trade off an asymptotic sub-optimality gap for significantly lower sample
complexity.

Empirical results on discrete and continuous environments demonstrate significantly faster conver-
gence on a variety of problems and only a small asymptotic sub-optimality gap, if any at all. We argue
this trade-off is beneficial in problems where environment interactions are expensive, and we are
less concerned with achieving no-regret guarantees as we are with small, finite sample performance.
Further, such a trade-off may be beneficial during initial experimentation and for bootstrapping
policies in larger state spaces. For example, we are particularly excited about graduated learning
processes that could increase the size of the support set over time.

In larger, high dimensional state spaces, it would be interesting and relatively straightforward to
apply anomaly detectors such as one-class SVMs [16] or auto-encoders [19] within our framework to
implicitly construct the support set.

9 Acknowledgements

The authors would like to thank The Notorious B.I.G. and Justin Fu for their contributions to
music, pop culture, and our implementation of DDPG. This work was (partially) funded by the

9



National Science Foundation TRIPODS+X:RES (#A135918), National Institute of Health R01
(#R01EB019335), National Science Foundation CPS (#1544797), National Science Foundation NRI
(#1637748), the Office of Naval Research, the RCTA, Amazon, and Honda Research Institute USA.

In memory of Christopher George Latore Wallace.

References
[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning.

Proceedings of the 21st International Conference on Machine Learning, 2004.

[2] Pieter Abbeel and Andrew Y Ng. Exploration and apprenticeship learning in reinforcement
learning. In Proceedings of the 22nd International Conference on Machine Learning, 2005.

[3] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott Niekum,
and Ufuk Topcu. Safe reinforcement learning via shielding. In Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

[4] Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for
reinforcement learning. In Proceedings of the 34th International Conference on Machine
Learning, 2017.

[5] J Andrew Bagnell. An invitation to imitation. Technical report, Carnegie Mellon University,
2015.

[6] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, and Skye Wanderman-Milne. JAX: composable transformations of Python+NumPy
programs, 2018. URL http://github.com/google/jax.

[7] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. OpenAI Gym, 2016.

[8] Benjamin Eysenbach, Shixiang Gu, Julian Ibarz, and Sergey Levine. Leave no trace: learning
to reset for safe and autonomous reinforcement learning, 2018.

[9] Javier Garcia and Fernando Fernández. Safe exploration of state and action spaces in reinforce-
ment learning. Journal of Artificial Intelligence Research, 45:515–564, 2012.

[10] Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437–1480, 2015.

[11] Alborz Geramifard, Joshua Redding, Nicholas Roy, and Jonathan P How. UAV cooperative
control with stochastic risk models. In Proceedings of the 2011 American Control Conference,
pages 3393–3398. IEEE, 2011.

[12] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
John Quan, Andrew Sendonaris, and Ian Osband. Deep Q-learning from demonstrations. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[13] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in
Neural Information Processing Systems, 2016.

[14] Gregory Kahn, Adam Villaflor, Vitchyr Pong, Pieter Abbeel, and Sergey Levine. Uncertainty-
aware reinforcement learning for collision avoidance. arXiv: preprint, 2017.

[15] Sham Kakade, Mengdi Wang, and Lin F Yang. Variance reduction methods for sublinear
reinforcement learning. arXiv:1802.09184, 2018.

[16] Michael Laskey, Sam Staszak, Wesley Yu-Shu Hsieh, Jeffrey Mahler, Florian T Pokorny, Anca D
Dragan, and Ken Goldberg. SHIV: Reducing supervisor burden in DAgger using support vectors
for efficient learning from demonstrations in high dimensional state spaces. In International
Conference on Robotics and Automation, 2016.

10

http://github.com/google/jax


[17] Frederic Maire and Vadim Bulitko. Apprenticeship learning for initial value functions in
reinforcement learning. In IJCAI Workshop on Planning and Learning in A Priori Unknown or
Dynamic Domains, 2005.

[18] Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine. Neural network
dynamics for model-based deep reinforcement learning with model-free fine-tuning. In Interna-
tional Conference on Robotics and Automation, 2018.

[19] Charles Richter and Nicholas Roy. Safe visual navigation via deep learning and novelty
detection. In Robotics: Science and Systems, 2017.

[20] Stephane Ross, Geoffrey J Gordon, and J Andrew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. 14th International Conference on Artificial
Intelligence and Statistics, 2011.

[21] Stéphane Ross, Narek Melik-Barkhudarov, Kumar Shaurya Shankar, Andreas Wendel, De-
badeepta Dey, J Andrew Bagnell, and Martial Hebert. Learning monocular reactive UAV
control in cluttered natural environments. In IEEE International Conference on Robotics and
Automation, 2013.

[22] William D Smart and Leslie Pack Kaelbling. Practical reinforcement learning in continuous
spaces. In Proceedings of the 17th International Conference on Machine Learning, 2000.

[23] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT
Press, 2018.

[24] Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observa-
tion. arXiv:1807.06158, 2018.

[25] Bernard Widrow and Fred W Smith. Pattern-recognizing control systems. Computer and
Information Sciences, pages 288–317, 1964.

11



Appendix for “Mo′ States Mo′ Problems:
Emergency Stop Mechanisms from Observation”

A Proof of Eq. (5)

Lemma. Let M = 〈S,A, P,R,H, ρ0〉 be a finite horizon, episodic Markov decision process, and
M̂ = (Ŝ,A, PŜ , RŜ , H, ρ0) be a corresponding e-stop version ofM . Given a reinforcement learning
algorithm A, the regret in M after running A for T timesteps in M̂ is bounded by

Regret(T ) ≤
⌈
T
H

⌉
[J(π∗)− J(π̂∗)] + Eπ̂

∗

M̂
[RT ]− EA

M̂
[RT ] (10)

where π∗ and π̂∗ are the optimal policies in M and M̂ , respectively

Proof. Let π̂∗ = arg maxπ∈Π JM̂ (π). Then beginning with the external regret definition,

RegretAM (T ) = EπeM [RT ]− EA
M [RT ] (11)

=
[
EπeM [RT ]− Eπ̂

∗

M̂
[RT ]

]
+
[
Eπ̂
∗

M̂
[RT ]− EA

M̂
[RT ]

]
+
[
EA
M̂

[RT ]− EA
M [RT ]

]
(12)

≤
[
EπeM [RT ]− Eπ̂

∗

M̂
[RT ]

]
+
[
Eπ̂
∗

M̂
[RT ]− EA

M̂
[RT ]

]
(13)

≤
[
EπeM [RT ]− Eπ̂

∗

S [RT ]
]

+
[
Eπ̂
∗

M̂
[RT ]− EA

M̂
[RT ]

]
(14)

≤
⌈
T

H

⌉
[J(π∗)− J(π̂∗)] +

[
Eπ̂
∗

M̂
[RT ]− EA

M̂
[RT ]

]
(15)

(16)

Eq. (13) follows by the definition of M̂ .

B Proof of Theorem 4.1

Theorem. Suppose M̂ is an e-stop variant of M such that Ŝ = {s|h(s) > 0} where h(s) denotes
the probability of hitting state s in a roll-out of πe. Let π̂∗ = arg maxπ∈Π JM̂ (π) be the optimal
policy in M̂ . Then J(π̂∗) ≥ J(πe).

Proof. Let J
M̂

(π) denote the value of executing policy π in MŜ . By the definition of MŜ ,

J(π) ≥ J
M̂

(π) ∀π (17)

J
M̂

(πe) = J(πe) (18)

because πe never leaves Sπe (and thus never leaves Ŝ). Finally, by the definition of π̂∗ and the
realizability of πe,

J
M̂

(π̂∗) ≥ J
M̂

(πe) (19)
Combining Eqs. (17) to (19) implies J(π̂∗) > J(πe).

C Proof of Theorem 4.2

Theorem. Consider M̂ , an e-stop variation on MDP M with state spaces Ŝ and S, respectively.
Given an expert policy, πe, let h(s) denote the probability of visiting state s at least once in an
episode roll-out of policy πe in M . Then

J(πe)− J(π̂∗) ≤ H
∑
s∈S\Ŝ

h(s) (20)

where π̂∗ is the optimal policy in M̂ . Naturally if we satisfy some “allowance,” ξ, such that∑
s∈S\Ŝ h(s) ≤ ξ then J(πe)− J(π̂∗) ≤ ξH .

12



Proof. We proceed by analyzing the probabilities and expected rewards of entire trajectories τ =

(τ1, . . . , τH), in M and M̂ . Let

µ(τ) =

H−1∑
t=1

E [R(τt, At, τt+1)|τ, πe] (21)

be the expected reward of a trajectory τ and let pM (τ) denote the probability of trajectory τ when
following policy πe in MDP M . Note that

h(s) =
∑
τ

pS(τ)I{s ∈ τ} (22)

Now,

J(πe)− J(π̂∗) ≤ JM (πe)− JM̂ (π̂∗) (23)

≤ JM (πe)− JM̂ (πe) (24)

=
∑
τ

pS(τ)µ(τ)−
∑
τ

pŜ(τ)µ(τ) (25)

≤
∑
τ

pS(τ)µ(τ)I{τ leaves Ŝ} (26)

≤ H
∑
τ

pS(τ)I{τ leaves Ŝ} (27)

≤ H
∑
τ

pS(τ)
∑
s∈S\Ŝ

I{s ∈ τ} (28)

= H
∑
s∈S\Ŝ

∑
τ

pS(τ)I{s ∈ τ} (29)

= H
∑
s∈S\Ŝ

h(s) (30)

as desired.

D Proof of Corollary 4.2.1

Corollary. Recall that ρπe(s) denotes the average state distribution following actions from πe,
ρπe(s) = 1

H

∑H−1
t=0 ρtπe(s). Then

J(πe)− J(π̂∗) ≤ ρπe(S \ Ŝ)H2 (31)

Proof. Note that

h(s) = P

(
H−1⋃
t=0

(st = s)

)
≤
H−1∑
t=0

ρtπe(s) = Hρπe(s) (32)

where the inequality follows from a union bound over time steps. Then

J(πe)− J(π̂∗) ≤ ρπe(S \ Ŝ)H2 (33)

as a consequence of Theorem 4.2.

E Proof of Theorem 5.1

Theorem. The e-stop MDP M̂ with states Ŝ in Algorithm 1 has asymptotic sub-optimality

J(πe)− J(π̂∗) ≤ (ξ + ε)H (34)

with probability at least 1 − |S|e−2ε2n/|S|2 , for any ε > 0. Here ξ denotes our approximate
state removal “allowance”, where we satisfy

∑
s∈S\Ŝ ĥ(s) ≤ ξ in our construction of M̂ as in

Theorem 4.2.

13



Proof. With Hoeffding’s inequality and a union bound,

P(∀s, ĥ(s) > h(s)− ε/|S|) = 1− P(∃s, ĥ(s) ≤ h(s)− ε/|S|) (35)

≥ 1− |S|e−2ε2n/|S|2 (36)

Note that the ĥ(s) values are not independent yet the union bound still allows us to bound the
probability that any of them deviate meaningfully from h(s). Now if ĥ(s) > h(s)− ε/|S| for all s, it
follows that

ξ ≥
∑
s∈S\Ŝ

h(s)− ε

|S|
(|S| − |Ŝ|) ≥

∑
s∈S\Ŝ

h(s)− ε (37)

and so
∑
s∈S\Ŝ h(s) ≤ ξ + ε. By Theorem 4.2 we have that

JS(πe)− JŜ(π̂∗) ≤ (ξ + ε)H (38)

completing the proof.

F Experimental details

All experiments were implemented with Numpy and JAX [6]. NuvemFS (https://nuvemfs.com)
was used to manage code and experimental results. Experiments were run on AWS.

Our code and results are available on GitHub at https://github.com/samuela/e-stops.

S

H

H

H

H H H

H H H

H G

Figure 5: Our FrozenLake-v0 environment. The agent starts in the upper left square and attempts to
reach the goal in the lower right square. Tiles marked with “H” are holes in the lake which the agent
can fall in and recover with only probability 0.01. The optimal state-value function is overlaid.

F.1 Value iteration

We ran value iteration on the full environment to convergence (tolerance 1e−6) to establish the optimal
policy. We calculated the state hitting probabilities of this policy exactly through an interpretation
of expert policy roll-outs as absorbing Markov chains. These hitting probabilities were then ranked
and states were removed in order of their rank until there was no longer a feasible path to the goal
(J(π) = 0). The number of floating point operations (FLOPs) used was calculated based on 4 |S|2|A|
FLOPs per value iteration update:

1. For each state s and each action a, calculating the expected value of the next state. (|S||A|
dot products of |S|-vectors.)

2. Multiplying those values by γ.

3. Adding in the expected rewards for every state-action-state transition.

4. Calculating the maximum for each state s and each action a over |S| possible next state
outcomes.

14

https://nuvemfs.com
https://github.com/samuela/e-stops


F.2 Policy gradient methods

We ran value iteration on the full environment to convergence (tolerance 1e − 6) to establish the
optimal policy. We estimated the state hitting probabilities of this policy with 1,000 roll-outs in
the environment. Based on this estimate of ρπe(s) we replaced the least-visited 50% of states with
e-stops.

We ran both Q-learning and Actor-Critic across 96 trials (random seeds 0-95) and plot the median
performance per states seen. Error bars denote one standard deviation around the mean and are
clipped to the maximum/minimum values. We ran iterative policy evaluation to convergence on the
current policy every 10 episodes in order to calculate the cumulative policy reward as plotted.

In order to accommodate the fact that two trials may not have x-coordinates that align (episodes may
not be the same length), we linearly interpolated values and plot every 1,000 states seen.

F.3 DDPG

Continuous results were trained with DDPG with γ = 0.99, τ = 0.0001, Adam with learning rate
0.001, batch size 128, and action noise that was normally distributed with mean zero and standard
deviation 0.1. The replay buffer had length 220 = 1, 048, 576. The actor network had structure

• Dense(64)
• ReLU
• Dense(64)
• ReLU
• Dense(action_shape)
• Tanh

and the critic network had structure

• Dense(64)
• ReLU
• Dense(64)
• ReLU
• Dense(64)
• ReLU
• Dense(1)

We periodically paused training to run policy evaluation on the current policy (without any action
noise).

Plotting and error bars are the same as in the deterministic experiments.

15


	Introduction
	Related Work
	Problem setup
	Incorporating e-stop interventions
	The sample complexity and asymptotic sub-optimality trade-off
	Perfect e-stops
	Imperfect e-stops

	Learning from observation
	Empirical study
	Discrete environments
	Continuous environments

	Types of support sets and their tradeoffs
	Conclusions
	Acknowledgements
	Proof of eq:tradeoff
	Proof of thm:perfect
	Proof of thm:imperfect
	Proof of cor:stationary
	Proof of thm:empirical-epsilon-estop
	Experimental details
	Value iteration
	Policy gradient methods
	DDPG


