Under review as a conference paper at ICLR 2020

SCALABLE GENERATIVE MODELS FOR GRAPHS WITH
GRAPH ATTENTION MECHANISM

Anonymous authors
Paper under double-blind review

ABSTRACT

Graphs are ubiquitous real-world data structures, and generative models that ap-
proximate distributions over graphs and derive new samples from them have sig-
nificant importance. Among the known challenges in graph generation tasks, scal-
ability handling of large graphs and datasets is one of the most important for prac-
tical applications. Recently, an increasing number of graph generative models
have been proposed and have demonstrated impressive results. However, scal-
ability is still an unresolved problem due to the complex generation process or
difficulty in training parallelization. In this paper, we first define scalability from
three different perspectives: number of nodes, data, and node/edge labels. Then,
we propose GRAM, a generative model for graphs that is scalable in all three con-
texts, especially in training. We aim to achieve scalability by employing a novel
graph attention mechanism, formulating the likelihood of graphs in a simple and
general manner. Also, we apply two techniques to reduce computational com-
plexity. Furthermore, we construct a unified and non-domain-specific evaluation
metric in node/edge-labeled graph generation tasks by combining a graph kernel
and Maximum Mean Discrepancy. Our experiments on synthetic and real-world
graphs demonstrated the scalability of our models and their superior performance
compared with baseline methods.

1 INTRODUCTION

Graphs are ubiquitous and fundamental data structures in the real world, appearing in various fields,
such as social science, chemistry, and biology. Moreover, in applications such as drug discovery
and network simulation, graph generative models that can approximate distributions over graphs on
a specific domain and derive new samples from them are very important. Compared with generation
tasks for images or natural language, graph generation tasks are significantly more difficult; this is
due to the necessity of modeling complex local/global dependencies among nodes and edges as well
as the intractable properties of graphs themselves, such as discreteness, variable number of nodes
and edges, and uncertainty of node ordering.

Among the several challenges involved in graph generation tasks described above, scalability is one
of the most important for applications in a wide range of real-world domains. In this paper, we
define scalability from three perspectives: graph scalability, data scalability, and label scalability.
Graph scalability denotes scalability to large graphs with many nodes within the limit of practical
time/space complexity, especially in training. Data scalability denotes scalability to large datasets
containing many data. Label scalability denotes scalability to graphs with many node/edge labels.
Besides these, it is possible to consider other viewpoints, such as edge number, graph diameter, and
the total number of nodes in a dataset. However, because these are closely related to the above three
defined perspectives, we consider them as a mutually exclusive and collectively exhaustive division.

In recent years, an increasing number of graph generative models based on machine learning have
been proposed. They have demonstrated great performances in several tasks, such as link pre-
diction, molecular property optimization, and network structure optimization (L1 et al.| 2018} |[You
et al., 2018bj |Grover et al.,2018; Luo et al., 2018 |You et al.,[2018aj Liu et al., [2018;|Simonovsky &
Komodakis} [2018;|Wang et al., 2017 Li et al.,[2018). However, to the best of our knowledge, no pro-
posed model is scalable in all three contexts. For example, DeepGMG (Li et al.|[2018) can generate
only small graphs, and GraphRNN (You et al., 2018b) cannot consider node/edge labels. Besides,

Under review as a conference paper at ICLR 2020

both models have weak compatibility with parallel training, which is key to efficient training on a
large dataset.

In this work, we propose the Graph Generative Model with Graph Attention Mechanism (GRAM)
for generating graphs that is scalable in all three contexts, especially during training. Given a set of
graphs, our model approximates their distribution in an unsupervised manner. To achieve graph scal-
ability, we employ an autoregressive sequential generation process that is flexible to variable nodes
and edges, and formulate the likelihood of graphs in a simple manner to simplify the generation
process. Besides, we apply two techniques to reduce computational cost: breadth-first search (BFS)
and zeroing attention weights in edge estimation. Regarding data scalability, we apply a novel graph
attention mechanism that simply extends the attention mechanism used in natural language process-
ing (Vaswani et al.,[2017) to graphs. This graph attention mechanism does not include sequentially
dependent hidden states as the recurrent neural network (RNN) does, which improves the paralleliz-
ability of training significantly. Compared with other graph attention mechanisms (Velickovic et al.,
2018} |Abu-El-Haija et al., 2018; [Ishiguro et al., 2019), ours is architecturally simple, computation-
ally lightweight, and general, i.e., its applicability is not limited to generation tasks. Finally, for
label scalability, we formulate the likelihood of graphs assuming multiple node/edge labels. Also,
we use graph convolution/attention layers, whose numbers of parameters do not depend directly on
the number of labels.

Moreover, we introduce a unified non-domain-specific evaluation metric for generation tasks of
node/edge-labeled graphs. Because such a method does not currently exist, prior works relied on
domain-specific metrics or visual inspection, which made unified and objective evaluations difficult.
Thus, we construct a unified evaluation metric that dispenses with domain-specific knowledge and
considers not only the topology but also node/edge labels by combining a graph kernel and Maxi-
mum Mean Discrepancy (MMD) (Gretton et al., 2012). Although a similar statistical test based on
MMD via a graph kernel was used for schema matching of protein graphs in|Kriegel et al.|(2006), to
the best of our knowledge, this work is the first to use as an evaluation metric for graph generation
tasks.

Our experiments on synthetic and real-world graphs demonstrated that our models can scale up to
handle large graphs and datasets that previous methods had difficulty with; our models demonstrated
superior results to those of baseline methods.

To summarize, the contributions of this work are as follows:

e We propose GRAM, a graph generative model that is scalable, especially in training.

e We propose a novel graph attention mechanism that is general and architecturally simple
as a key portion of the generative model.

e We define scalability in graph generation from three perspectives: number of nodes, data,
and labels.

e We construct a unified non-domain-specific evaluation metric for node/edge-labeled graph
generation tasks by combining a graph kernel and MMD.

2 RELATED WORK

Although there are several traditional graph generative models (Erdos & Rényi, [1959; |Albert &
Barabasi, [2002; [Leskovec et al., 2010; [Robins et al., 2007} [Airoldi et al., [2009), we focus here on
recent machine learning-based models, which have outperformed traditional models in various tasks.

In terms of their generation process, existing graph generative models can be classified into at least
two types: tensor generation models and sequential generation models. Tensor generation models
(Simonovsky & Komodakis| 2018 [De Cao & Kipf, 2018} |Grover et al.| [2018]) generate a graph by
outputting tensors that correspond to the graph. These models are architecturally simple and easy
to optimize for small graphs. However, they face difficulty in generating large graphs owing to the
non-unique correspondence between a graph and tensors, limitations in the pre-defined maximum
number of nodes, and the increasing number of parameters depending on the maximum graph size.
In contrast, sequential generation models, such as DeepGMG (Li et al. |2018)), GraphRNN(You
et al., 2018b), generate graphs by adding nodes and edges one-by-one, which alleviates the above
problems and generates larger graphs. To achieve graph scalability, we employ the latter. However,

Under review as a conference paper at ICLR 2020

to generate a graph with n nodes and m edges, DeepGMG requires at least O(mn?) operations be-
cause of its complex generation process. GraphRNN reduces this time complexity to O(nM) with
a dataset-specific value M by utilizing the BFS. However, it cannot handle node/edge labels, mainly
because it omits the feature extraction process, and relies mainly on the information in the hidden
states of the RNN. Moreover, these models include sequentially dependent hidden states, which
make training parallelization difficult. In contrast, our model employs a graph attention mechanism
without sequentially dependent hidden states. This improves the parallelizability of training sig-
nificantly. Also, by applying two approximation methods, we reduce the complexity to almost a
linear order of n while conducting a rich feature extraction. A comparison of our models’ and the
baselines’ complexities is given in Table[2]in Section[A.T]

As another division, there are unsupervised learning approaches and reinforcement learning ap-
proaches. Given samples of graphs, unsupervised learning models (Li et al.| | 2018 |You et al., 2018b;
Simonovsky & Komodakis| 2018} |Grover et al.l [2018) approximate the distribution of them in an
unsupervised manner. Reinforcement learning models (Luo et al., 2018} [You et al., [2018a; |De Cao
& Kipf, 2018 ILiu et al.| 2018 |[Li et al.| |2018) learn to generate graphs to maximize a given return,
such as QED (Bickerton et al.l |[2012). Although reinforcement learning approaches have demon-
strated promising results on several tasks, such as molecular generation and network architecture
optimization, we employ an unsupervised approach; this is because it is considered to be more ad-
vantageous when new samples that share certain properties with training samples are required or
when the reward functions cannot be designed (e.g., a family of pharmaceutical molecules against a
certain disease is known, but the mechanism by which they work is not entirely known).

3 PROPOSED METHOD

An outline of this section is as follows: In Section [B.1] we first describe notations and define the
considered graph generation task. In Section [3.2] we formulate the likelihood of graphs. In Section
we present our proposed graph attention mechanism, which is the key portion of our model
and is used in feature extraction and edge estimation. In Section [3.4] we present our scalable graph
generative model, GRAM. We describe two techniques to reduce the computational cost of edge
estimation: BFS in Section and zeroing attention weights in Section In Section [3.6] we
describe the training and propose an evaluation metric.

3.1 NOTATIONS AND PROBLEM DEFINITION

In this work, we define a graph G = (V, E) as a data structure that consists of a node set V' =
{vi,...,v,} and an edge set £ = {¢; ;|i,j € {1,...,n}}. For simplicity, we focus on undirected
graphs. We assume nodes and edges are associated with node/edge labels and denote the number
of them as a and b, respectively. For graph representation, we employ a tensor representation.
Specifically, given node ordering 7, we represent a pair of a graph and node ordering (G,) as a
pair of tensors (X™, A™). Note that we assume the existence of node ordering in graphs, and 7
is a permutation function over {1,...,n}. X™ € {0,1}"*®, whose i-th row is a one-hot vector
corresponding to the label of v (;), stores information about nodes. A™ € {0, 1}”X"Xb, whose
(i, 7)-th element is a one-hot vector corresponding to the label of €x(i),n(j)» Stores information about
edges. If no edge exists between v (;) and vy (5, we replace it with a zero vector. An example is
illustrated in Figure3]in Section[A.2] Note that (G, 7) and (X™, A™) are in unique correspondence.
Finally, for simplicity, we do not consider self-looping or multiple edges. A possible extension to
self-looping edges would involve adding a step to estimate them. For multiple or directed edges,
we can prepare additional labels that correspond to them. In the remainder of this paper, for clear
notation, we assume 7 (i) = ¢ and omit the superscript 7.

The target graph generation task is as follows: given samples from a distribution of graphs p(G),
approximate the distribution (p /2 p) such that we can derive new samples from it (G ~ p(G)).

3.2 LIKELIHOOD FORMULATION OF GRAPHS

To approximate distributions over graphs in an autoregressive manner, we formulate the likelihood
of a pair of a graph and node ordering (G, 7) and decompose it into a product of conditional proba-
bilities. Because (G,) uniquely defines (X, A) and vice versa, we have p(G, 7) = p(X, A), which

Under review as a conference paper at ICLR 2020

is decomposed into a product of conditional probabilities as

P(X7 A) = P(Xl, Al,l) H::Q p(Xs|X<s» A<s,<s) 1—[:;11 p(At,s|A<t,sa Xsa X<sv A<s,<s) (1
where A< <5 € Rs—1Xs=1xb represents a partial tensor A;j (1 <4,j < s), and other notations
follow this. For simplicity, we omit the slice notation for the last dimension of each tensor. In
addition, (X<, A<s <s) uniquely defines a subgraph of G, which we denote as G« ;. With this for-
mulation, the likelihood of a graph G is defined as marginal, p(G) = >__p(G,7) = > _p(X, A).
Also, we represent (X <5, A< <s) as G in the following equations.

During training, given samples from p(G), our model approximates the joint probability p(X, A).
More precisely, it approximates p(X, A) by approximating the conditional probabilities p(X ;|G <)
and p(A; s|Act s, X5, Ges). As for p(X7, Ay,1), we use a sampling distribution from the training
data. Although the choice of 7 provides room for discussion, we adopt the BFS used in[You et al.
(2018b).

On inference, we sequentially sample X, and A; s(s = 2,...,n,t = 1,...,s — 1) from the approx-
imated distribution, and we get (X, A) when the EOS is output. This can be viewed as sampling
from the approximated distribution (G,) ~ p(G, 7). In particular, by focusing only on GG, we can
view it as sampling from the marginal G ~ p(G).

3.3 GRAPH ATTENTION MECHANISM

The aim of employing a graph attention mechanism is to efficiently take in the information of distant
nodes by attention. Our graph attention mechanism extends the attention mechanism used in natural
language processing (Vaswani et al., 2017) to graphs. However, one of the significant differences
between graphs and sentences is that we cannot define absolute coordinates in a graph, which makes
it difficult to embed positional information in nodes as in |[Vaswani et al.| (2017). To alleviate this
problem, we focus on multi-head attention as in|Vaswani et al.[(2017), and we use relative positional
information between nodes: we introduce bias terms in projection to subspaces, which are functions
of the shortest path length between two nodes. The operation of graph attention is illustrated in

Figures [5)and[6]in Section[A.4]

Following Vaswani et al.|(2017), we denote matrices into which n query, key, and value vectors are
stacked as Q = (q1, ..., qn)" (€ R"*9Q) K = (ki,...,k,)" (€ R), and V = (v1,...,v,)T (€
R"Xd‘/), respectively. Note that we use V' to represent the value matrix, not node set. Also, we
assume that the i-th row of each matrix corresponds to the feature vector of node v;. Note that the
operation of graph attention is permutation invariant. Denoting the dimensions of the output vector
and the subspace as dp and dg, respectively, the graph attention mechanism is defined as

GMultiHead(Q, K, V) = Concat(heady, ..., heady)W? (€ R"*40) 2)

where head;, = GAttention(Q, K,V) (e R"™d4s) (h=1,..,H)
where H represents the number of projections to dg-dimensional subspaces. The operation of
GAttention(-, -, -) is defined as
GAttention(Q, K, V) = (01, ...,0,)" (e R™*ds) 3)
where 0; = Y7 (¢:);(WVv; +bY (vi,v;)) (€ R?) (i=1,..,n)
Each attention weight vector c¢; is calculated as
¢; = softmax(s;) (eR™) (i=1,..,n) 4

where (Si)j = dKié(Wqu‘ + bQ(Uz‘,’Uj»T(WKkj + bK(’Ui,U]‘)) (E R) (] = 1, ceny n)

The parameters to be learned are four weight matrices — W@ (€ Rés*da) WK (e Rdsxdr) WV (¢
Rds*dv) 1170 (e RHdsxdo) _ and three bias terms — b9, b%,b" (€ R?s). We used different pa-
rameters for each head.

To consider the geometric relation between two nodes, we used functions of the shortest path length
between v; and v; as b (v;,v;),b% (v;,v;), and bY (v, v;). Furthermore, because path length is
discrete, we used different weight parameters for each path length. Examples of other possible
approaches include using network flow or functional approximation. Specifically, setting b9 =
bE=b" =0 yields the original multi-head attention. As in|Vaswani et al.|(2017), we added a two-
layer feedforward neural network (FNN), which is applied after the above operations. We denote
these operations, including the FNN, as the graph attention mechanism in the following sections.

Under review as a conference paper at ICLR 2020

Feature Extractor Node Estimator Edge Estimator

[A
A
— e_I
[TTTT]

2unjead

[Graph Conv] [Graph Attention]

4 4
T

(11
oI Ry

uonuany ydein

m
2
=3
o
23
o
S
o
o
8
{

Figure 2: [-th feature ex-
Figure 1: s-th step of the generation process. traction block.

3.4 GRAM: SCALABLE GENERATIVE MODELS FOR GRAPHS

GRAM approximates a distribution over graphs in an autoregressive manner. It utilizes the graph
attention mechanism to improve the parallelizability of training. The s-th step of the generation
process is illustrated in Figure [T} a larger and more detailed version is given in Figure []in Section
A detailed analysis of computational complexity is included in Section

3.4.1 MODEL OVERVIEW

In the following sections, we focus on the s-th step, i.e., the generation of v, and {e1 s, ..., €515}
The architecture of GRAM consists of three networks: feature extractor, node estimator, and edge
estimator. The feature extractor calculates node feature vectors and a graph feature vector by sum-
ming them. The node estimator predicts the label of the new node v,. The edge estimator predicts
the labels of new edges {e s, ..., es_1,s } between previously generated nodes {v1, ..., vs_1 } and the
new node v,. In other words, the node estimator approximates p(X|G«;), and the edge estimator
approximates p(Ay s| A<t s, X5, G<) in Equation|I]}

3.4.2 FEATURE EXTRACTOR

Given a pair (X<, Acs <s), the feature extractor calculates s — 1 node feature vectors HV =
(hY,...,h?_)T and a graph feature vector h” of the corresponding subgraph G . Here, hY de-

notes the feature vector of node v;, and we use h;’(l) to represent the output vector of the [-th block.
This consists of L feature extraction blocks and a graph pooling layer. In this work, we used L = 3.

A feature extraction block is composed of a graph convolution layer and a graph attention layer
stacked in parallel, as illustrated in Figure 2] We aim to extract local information by graph convo-
lution layers and global information by graph attention layers. Although there are various types of
graph convolutions, we employed the one used in Johnson et al.| (2018). []_-] Roughly speaking, this
convolutes the features of neighboring nodes and edges into each node and edge in a graph. A graph
attention layer operates self-attention, where query/key/value vectors are all node feature vectors.
To reduce computational cost, we restricted the range of attention to path length r. Also, to exploit
low-level features, we stacked degree and clustering coefficients, which are non-domain-specific
statistics in graphs, into each input node vector. Calculation of these graph statistics and BFS is
required only once before training and is relatively fast compared with training time.

The graph pooling layer computes a graph feature vector h® by summing all node feature vectors
in the subgraph. To improve its expressive power in aggregation, we used a gating network as in |L1
et al.|(2018). Specifically, the operation in the graph pooling layer is defined as

he = 32721 0(gpoot (RY)) R)
where g0 1 a two-layer FNN, and o is a sigmoid function.

3.4.3 NODE ESTIMATOR

The node estimator predicts the label of new node v,. More specifically, it predicts X, from h” as
X, = softmax(gng(h%)) (€ RHh) (6)

where gy g is a three-layer FNN, and the output dimension, including the EOS, is a + 1. We
terminate the generation process when the EOS is output.

'Because Johnson et al.| (2018) assume directed graphs as input, we ignore g, in Figure 3 of that paper.

Under review as a conference paper at ICLR 2020

3.4.4 EDGE ESTIMATOR

The edge estimator predicts the labels of the new edges {e1 s, ..., €s—1,s } between previously gen-
erated nodes {v1, ..., vs_1 } and the new node vs. More precisely, it predicts A; s (t =1,...,s — 1)
from hY, h¥, h? and previously predicted edge labels in this step as

A o = softmax(gpp(h!, R hY,h%,)) (€RYTY) (t=1,...,s—1) (7)

where h is the embedded vector of the predicted label of vy, i.e., X,. The vector h, is calculated
by a source-target attention in which the query vector is Concat(hy, h?) and the key/value vectors
are {Concat(h?, hy,hS J)|7 = 1,...,t — 1}, where h{ _ is an embedded vector of the predicted
label of e, g, i.e., A; 5. Thereby, we aim to express the dependency on A, in Equation E} The
operation is illustrated in Figure [6] in Section [A.4] We use a three-layer FNN as gpp, where the
output dimension is b + 1, including the “no edge” label. When the “no edge” label is output, we do
not add an edge and we set A; ; = 0.

3.5 REDUCING COMPUTATIONAL COMPLEXITY IN EDGE ESTIMATION

To generate a graph with n nodes, the edge estimation process requires O(n) operations for one
edge, resulting in O(n?) operations for one step and O(n?) operations in total. This is a significant
obstacle to achieving graph scalability. Here, we present two methods to reduce complexity in edge
estimation: BFS and zeroing attention weights; these can be combined independently.

3.5.1 COMPLEXITY REDUCTION VIA BREADTH FRIST SEARCH

As in [You et al| (2018b), we utilize the BFS node ordering, but our implementation gives
a stricter upper bound. More precisely, when estimating new edge e; s (t = 1,...,s — 1),
nodes that can be connected to the new node vy are restricted to “frontier nodes” Vy =
{v;| min({i|v; is connected to vs_1}) < 7 < s — 1} under # = BFS . With this property, we
need only consider V; instead of the whole {v1,...,vs—1} when estimating et,s. This reduces the
complexity of edge estimation to O(n/3?), where 3 = |V¢|. A proof and example are included in
Section[A.3] Finally, we denote this variant as GRAM-B.

3.5.2 COMPLEXITY REDUCTION VIA ATTENTION WEIGHTS ZEROING

As another method, we use an approximation inspired by empirical observation. Specifically, our
inspection of each attention weight during estimation of new edge e; s (t = 1, ..., s—1) revealed that
the nodes predicted to have no connection to v, (i.€., Vioedge = {v-|A;s=0,7=1,...,t—1}) have
near-zero weights, while the nodes predicted to have connection (i.e., Vhaveedge = {¥r|Ar s # 0,7 =
1,...,t —1}) have larger weights. This suggests that among {v1, ..., v+—1}, Vhaveedge are important to
predict the new edge ¢; s, while Vigeqee are not. Hence, we deterministically set the weights of the
latter to zero, which means we do not consider them in graph attention. With this approximation, the
complexity is reduced to O(n?«a), where & = |Vhaveedge|- In addition, because o < deg(vs) holds,
we can assume that & < n when deg(v,) < n, which is often the case in many real-world graphs.
A more detailed discussion and an example are included in Section [A.6] Finally, we denote this
variant as GRAM-A and the combination of the two as GRAM-AB, which has complexity O(naf3).

3.6 TRAINING AND EVALUATION

The loss function is the negative logarithm of Equation [I] and the training is done in the usual
autoregressive manner. In particular, for one graph, forward/backward propagation of n node esti-
mations and at most n(n—1)/2 edge estimations can be processed parallelly (i.e., in O(1) sequential
operations) by using ground-truth labels and proper masking.

To evaluate the quality of generation, evaluation metrics based on MMD with graph statistics were
used in [You et al.| (2018b). However, these metrics cannot consider node/edge labels, and it is
difficult to determine which one is important or not. Therefore, we construct a unified evaluation
metric GK-MMD that can consider not only topology but also node/edge labels by combining a
graph kernel and MMD.

Under review as a conference paper at ICLR 2020

MMD is a test statistic to determine whether two sets of samples from the distribution p and ¢ are
derived from the same distribution (i.e., whether p = ¢). When its function class F is a unit ball in
a reproducing kernel Hilbert space (RKHS) H, we can derive the squared MMD as

MMDQ[}-ap’ ql = Ex,x’Np[k('ra 17/)] - QEpr,qu[k:(x, y)] + Ey,ywq[k(y’ y/)] ®)
where k(-, -) is the associated kernel function (Gretton et al., 2012).

Graph kernels are kernel functions over graphs, and we used the neighborhood subgraph pairwise
distance kernel (NSPDK) (Costa & Gravel |2010), which measures the similarity of two graphs by
matching pairs of subgraphs with different radii and distances. Because NSPDK is a positive-definite
kernel (Costa & Grave, 2010), it follows that it defines a unique RKHS H (Aronszajn, [1950). This
allows us to calculate the squared MMD using Equation 8]

Because NSPDK considers low/high-level topological features and node/edge labels, GK-MMD can
be used as a unified evaluation metric for node/edge-labeled graph generation tasks.

4 EXPERIMENTS

We performed experiments on four types of synthetic graphs and three types of real-world graphs
with various topologies, graph sizes, dataset sizes, and numbers of node/edge labels. We evaluated
the quality of generation and the actual computational cost required.

As synthetic graphs, we used four types of random graphs: grid, lobster, community (Fortunato,
2010), and Barabasi-Albert (B-A) (Barabasi & Albert, [1999). We generated 700 graphs with num-
bers of nodes in the range 50 < |V| < 100. We split them into training/test/validation data at
500:100:100. To make the problem more realistic, we deterministically labeled nodes and edges
according to their properties, such as degree or distance from backbone. Detailed configurations,
including model-specific parameters and node/edge labeling, are described in Section

We used three types of real-world graphs: molecular, ego, and protein. For the molecular graphs,
we used 250k samples from the ZINC database (Sterling & Irwin|, |2015) provided by Kusner et al.
(2017). The ego graphs are ego networks from the Citeseer networks (Sen et al.,|2008)). The protein
graphs represent protein structures with amino acids as nodes (Dobson & Doig, [2003). For the ego
and protein datasets, we used data provided by |You et al.| (2018b).

We compared our models with DeepGMG (Li et al.| 2018), GraphRNN, and GraphRNN-S (You
et al.,|2018Db) as recent deep learning-based baselines. We modified the GraphRNN and GraphRNN-
S models so that they can output multiple node/edge labels. Because we target the unsupervised
learning graph generation task and most of the datasets we used are node/edge-labeled, we did not
conduct a comparison with reinforcement learning-based methods or traditional models, which are
incapable of handling node/edge labels, except for GraphRNN and its variant.

To evaluate the quality of generation, we calculated squared GK-MMD score between generated
graphs and test graphs. We also used the squared MMD score of the three types of graph statistics
used in|You et al.| (2018b): distributions of degree, clustering coefficient, and orbit count; however,
these metrics do not consider node/edge labels. A lower MMD score indicates a better quality of
approximation in terms of the given statistic. For the molecular graphs, we generated 10k samples
and calculated the ratios of generated graphs that are valid as molecules (valid [%]), unique samples
(unique [%]), and novel samples, i.e., valid, unique, and unseen in the training data (novel [%]). We
also reported training time [hour].

The results are listed in Table We did not train DeepGMG on the ego, protein and molecu-
lar datasets due to its impractical training time (estimated to take over 90 hours). Instead, for the
molecular dataset, we used generated graphs provided by the author for evaluation. Although Deep-
GMG achieved a high valid/unique score and low GK-MMD score in the molecular dataset, it failed
for larger graphs. This is likely because its feature extraction method is based only on graph convo-
lution, which gives only local information, so it works well only on small graphs, such as those of
molecules. Moreover, its training is slow due to its sequentially dependent hidden states.

GraphRNN and its variant achieved low topological MMD scores for simple topology graphs like
grid. However, their performances were poor on other graphs with more complex topologies or
rules. This is likely because they do not calculate node/edge features, which limited their expressive

Under review as a conference paper at ICLR 2020

Table 1: Results on synthetic graphs (top) and real-world graphs (bottom). The dataset size [V, max-
imum graph size |V'|max, and the number of node/edge labels a, b are shown as (N, |V |max, @, b).

Grid (500, 100, 3, 2) Community (500, 100, 4, 2) B-A (500, 100, 2, 3)

deg. clus. orbit GK time deg. clus. orbit GK time deg. clus. orbit GK time
DeepGMG 1.315 1le-5 0.682 0.409 159 1.515 1.074 1.118 0.233 9.2 1.839 1.568 1.075 0.257 9.1
GraphRNN ~ 5e-4 0 2e-5 0.289 1.9 0.011 0.121 0.024 0.061 3.9 0.359 0.096 0.130 0.025 3.4
GraphRNN-S 0.040 8e-4 0.001 0.287 1.1 0.633 0.195 0.427 0.062 2.5 0.581 0.159 0.158 0.037 2.6
GRAM 0.105 0.002 0.013 0.287 0.8 0.011 0.025 0.009 0.016 1.0 0.034 0.009 0.024 0.015 1.0
GRAM-A 0.314 0.007 0.099 0.295 0.7 0.031 0.004 0.038 0.016 0.9 0.061 0.094 0.045 0.015 1.0
GRAM-B 0.029 0.002 0.011 0.287 0.7 0.029 0.056 0.015 0.019 0.9 0.063 0.005 0.031 0.015 1.0
GRAM-AB 0.357 0.015 0.126 0.309 0.7 0.164 0.080 0.080 0.020 0.9 0.044 0.015 0.031 0.020 0.9

Ego (605, 399, 1, 1) Protein (734, 500, 89, 1) Molecular (250k, 38, 9, 3)

deg. clus. orbit GK time deg. clus. orbit GK time valid unique novel GK time

DeepGMG - - - - - - - - - - 845 991 838 0.0201 -

GraphRNN 0.117 0.615 0.043 0.028 16.0 0.040 1.256 0.506 0.011 224 11.1 100.0 11.1 0.0284 20.5
GraphRNN-S 0.306 0.337 0.314 0.067 11.4 0.523 1.247 0.123 0.019 13.7 262 99.9 262 0.0551 12.4
GRAM 0.141 0.160 0.058 0.034 2.5 0.154 0.232 0.257 0.013 6.9 92.7 100.0 92.7 0.0198 9.5
GRAM-A 0.139 0.268 0.062 0.031 2.0 0.224 0.569 0.425 0.011 4.9 95.0 100.0 95.0 0.0198 9.4
GRAM-B 0.108 0.083 0.033 0.017 2.0 0.154 0.247 0.040 0.010 4.6 943 100.0 94.2 0.0206 8.5
GRAM-AB 0.269 0.182 0.249 0.017 2.0 0.046 0.049 0.111 0.010 4.7 949 99.8 94.8 0.0206 84

power. In other words, the feature extraction process is inevitable for the generation of complex
graphs.

In contrast, our models achieved overall lower MMD scores on most of the datasets, which means
that the distance between the approximated distribution and the test set is relatively small in terms of
topological and node/edge label features. Also, from the results on the molecular dataset, we can see
that the generation is diverse while capturing the strict valence rule via unsupervised learning. This
is likely due to the bias term of graph attention in edge estimation: it enables models to control the
valence and type of rings. In terms of training time, there is a significant acceleration compared with
the baselines. This is mainly owing to the graph attention mechanism, which reduces the number of
sequential operations during training to almost constant and enables efficient parallelized training.

Besides, we can observe the impact of the two computational reduction techniques on the actual
computational time. They were also more efficient in terms of memory usage, requiring less than
half that of the original model. Surprisingly, although there is generally some trade-off between
training speed and performance, GRAM-B performed better than the original model on the grid
and ego datasets, and GRAM-A performed better on the molecular dataset. This is likely because
each approximated model has its own strong topology for which both performance is boosted and
computational cost is reduced. On average, the proposed models performed better on large graphs.
More detailed discussions are included in Sections and[A.6

From the above results, we can see the scalability of our models for large graphs and datasets and
multiple node/edge labels, which the baseline methods have difficulty in handling. Note that al-
though our approximated models have some trade-off between performance and training speed, they
still achieved superior or competitive results over the baselines in most cases. Also, we found an
interesting correlation between GK-MMD score and topological MMD scores or visual similarity,
which supports the validity of this metric. The detailed setting of the experiments, additional results,
visualization, and an ablation study are included in Section[A.7]

5 CONCLUSION

In this work, we tackled the problem of scalability as it is one of the most important challenges in
graph generation tasks. We first defined scalability from three perspectives, and then we proposed a
scalable graph generative model named GRAM along with some variants. Also, we proposed a novel
graph attention mechanism as a key portion of the model and constructed GK-MMD as a unified
evaluation metric for node/edge-labeled graph generation tasks. In an experiment using synthetic
and real-world graphs, we verified the scalability and superior performances of our models.

Under review as a conference paper at ICLR 2020

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Rami Al-Rfou, and Alexander A Alemi. Watch your step:
Learning node embeddings via graph attention. In Advances in Neural Information Processing
Systems 31. 2018.

Edo M Airoldi, David M. Blei, Stephen E. Fienberg, and Eric P. Xing. Mixed membership stochastic
blockmodels. In Advances in Neural Information Processing Systems 21. 2009.

Réka Albert and Albert-Laszl6 Barabdsi. Statistical mechanics of complex networks. Rev. Mod.
Phys., 74:47-97, Jan 2002.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical Society,
68(3):337-404, 1950.

Albert-Laszl6 Barabasi and Réka Albert. Emergence of scaling in random networks. science, 286
(5439):509-512, 1999.

G. Richard Bickerton, Gaia V. Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L. Hopkins.
Quantifying the chemical beauty of drugs. Nature Chemistry, 4:90 EP —, 01 2012.

Fabrizio Costa and Kurt De Grave. Fast neighborhood subgraph pairwise distance kernel. In Pro-
ceedings of the 27th International Conference on International Conference on Machine Learning,
2010.

Nicola De Cao and Thomas Kipf. MolGAN: An implicit generative model for small molecular
graphs. arXiv e-prints, art. arXiv:1805.11973, 2018.

Paul D. Dobson and Andrew J. Doig. Distinguishing enzyme structures from non-enzymes without
alignments. Journal of Molecular Biology, 330(4):771 — 783, 2003. ISSN 0022-2836.

Paul Erdos and Alfréd Rényi. On random graphs, i. Publicationes Mathematicae (Debrecen), 6:
290-297, 1959.

Santo Fortunato. Community detection in graphs. Physics reports, 486(3-5):75-174, 2010.

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Scholkopf, and Alexander Smola.
A kernel two-sample test. J. Mach. Learn. Res., 13:723-773, 2012.

Aditya Grover, Aaron Zweig, and Stefano Ermon. Graphite: Iterative Generative Modeling of
Graphs. arXiv e-prints, art. arXiv:1803.10459, 2018.

Katsuhiko Ishiguro, Shin-ichi Maeda, and Masanori Koyama. Graph Warp Module: an Auxiliary
Module for Boosting the Power of Graph Neural Networks. arXiv e-prints, art. arXiv:1902.01020,
2019.

Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image generation from scene graphs. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.

Hans-Peter Kriegel, Karsten M. Borgwardt, Arthur Gretton, Bernhard Scholkopf, Malte J. Rasch,
and Alex J. Smola. Integrating structured biological data by Kernel Maximum Mean Discrepancy.
Bioinformatics, 22(14):e49—e57, 07 2006.

Matt J. Kusner, Brooks Paige, and José Miguel Hernandez-Lobato. Grammar Variational Autoen-
coder. arXiv e-prints, art. arXiv:1703.01925, 2017.

Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin Ghahramani.
Kronecker graphs: An approach to modeling networks. J. Mach. Learn. Res., 11:985-1042,
March 2010.

Yibo Li, Liangren Zhang, and Zhenming Liu. Multi-objective de novo drug design with conditional
graph generative model. Journal of Cheminformatics, 10(1):33, 2018.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning Deep Generative
Models of Graphs. arXiv e-prints, art. arXiv:1803.03324, 2018.

Under review as a conference paper at ICLR 2020

Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander Gaunt. Constrained graph varia-
tional autoencoders for molecule design. In Advances in Neural Information Processing Systems
31.2018.

Rengian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimization.
In Advances in Neural Information Processing Systems 31. 2018.

Garry Robins, Pip Pattison, Yuval Kalish, and Dean Lusher. An introduction to exponential random
graph (p*) models for social networks. Social Networks, 29(2):173 — 191, 2007.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. Al Magazine, 29(3):93, Sep. 2008.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
variational autoencoders. In /ICANN, 2018.

Teague Sterling and John J. Irwin. Zinc 15 — ligand discovery for everyone. Journal of Chemical
Information and Modeling, 55(11):2324-2337, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems 30. 2017.

Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph Attention Networks. International Conference on Learning Representations,
2018.

Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng Zhang, Xing Xie, and
Minyi Guo. GraphGAN: Graph Representation Learning with Generative Adversarial Nets. arXiv
e-prints, art. arXiv:1711.08267, 2017.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional pol-
icy network for goal-directed molecular graph generation. In Advances in Neural Information
Processing Systems 31.2018a.

Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. Graphrnn: Generat-
ing realistic graphs with deep auto-regressive models. In Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, 2018b.

10

Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 COMPLEXITY ANALYSIS

In this section, we compare the computational complexity of the training of our models with that
of existing models. Following|Vaswani et al.| (2017), we consider two factors: total computational
complexity and minimum sequential operations with parallelization. Note that we assume all matrix-
vector products can be computed in constant time. Table 2] summarizes the results.

To generate a graph with n nodes and m edges, DeepGMG (Li et al., 2018) requires at least O (mn?)
operations. Because the initialization of the state of the new node depends on the state in the previous
step, DeepGMG’s minimum required sequential operations is O(n?). On the other hand, GraphRNN
(You et al., [2018b) requires O(nM) operations with a dataset-specific constant value M, utilizing
the properties of the BFS and relying mainly on the hidden states of the RNN. However, its minimum
number of sequential operations is O(n + M) because of the sequential dependency of the hidden
states of the RNN; moreover, it cannot generate node/edge-labeled graphs.

Next, we evaluate GRAM and its variants. We denote the average number of nodes/edges within
distance 7 of one node as N,./M, and reuse the o and 3 defined in Section[3.3]

In one step, the feature extractor requires O(m + nN,.) operations, considering a graph convolution
layer requires O(m), and a graph attention layer requires O(nN,.). However, comparing the node
features in G, with those in Ges41(= G5 Uvs U {e1s, ..., €s—1,5}), only nodes within distance
rL of vg change their features. Utilizing this property, we conduct feature extraction only for rL-
neighboring nodes of the previously added node and reuse features for the other nodes, by which the
number of feature extraction operations is reduced to O(n(M,, + N, N,.)).

Also, the node estimator requires O(n) operations in total. In edge estimation, GRAM requires
O(n?) operations, GRAM-B requires O(n3?), GRAM-A requires O(n?«a), and GRAM-AB re-
quires O(naf3).

Therefore, the total complexity of GRAM is O(n® + n(M,r + N, N,)), that of GRAM-B is
O(nB%+n(M,;,+ N, N,)), that of GRAM-A is O(n?a+n(M,r,+ N,1,N,.)), and that of GRAM-
ABis O(naf+n(M,r,+ N, N,)). Note that all the estimation operations of the node estimator and
the edge estimator can be parallelized in training because our model has no sequentially dependent
hidden states like the RNN does.

From the above analysis, we can see that our models require fewer operations than DeepGMG
when N, < n holds, which is the often case, while keeping rich feature extraction. In addition,
assuming N, and M,.; are nearly constant and sufficiently smaller than n and m, respectively,
the total complexities of GRAM-B and GRAM-AB can be regarded as almost linear in n, which is
competitive with GraphRNN, but ours keep the feature extraction. More importantly, all estimation
operations can be parallelized, which facilitates training using multiple computing nodes. Therefore,
we can expect graph scalability and data scalability of our models. We also expect label scalability
because our models are flexible to a variable number of labels by modifying only the dimensions of
the input and output layers.

Table 2: Total computational complexity and minimum sequential operations during training.

Method Total Complexity Minimum Sequential Operations
DeepGMG O(mn?) O(n?)

GraphRNN O(nM) O(n+ M)

GRAM O(n? +n(M,r, + N,N,.)) o)

GRAM-B O(np* +n(M,, + N, N,)) 0(1)

GRAM-A O(n*a+n(M,;, + N,N;)) 0(1)

GRAM-AB O(naf +n(M,r, + N,N;)) o(1)

11

Under review as a conference paper at ICLR 2020

A.2 EXAMPLE OF TENSOR REPRESENTATION

An example of tensor representation is illustrated in Figure[3]

Urr(2)

Um(4)

(G,) (X7, A7)

Figure 3: Example of tensor representation. n, a, and b denote the numbers of nodes, node labels,
and edge labels, respectively. X™ € {0,1}"*“, whose i-th row is a one-hot vector corresponding
to the label of v (;), stores information about nodes. A™ € {0, 1}7Xnx “whose (i, j)-th element
is a one-hot vector corresponding to the label of er(;) ~(;), stores information about edges. If no
edge exists between v (;) and v, (;), we replace it with a zero vector. Note that (G,) and (X™, A™)
correspond uniquely.

A.3 DETAILED MODEL PIPELINE

A detailed pipeline of GRAM is illustrated in Figure 4]

Feature Extractor Node Estimator Edge Estimator

{Arslr =1t — 1}

g Q
= [+
Q-
= I
o8 B T
>3 g hG
§ 8 Wj
>
< Abs
H
(t=1,..,s—1)
HY

Figure 4: s-th step of the generation process (s = 6,t = 3). In its s-th step, given a subgraph G .,
our model estimates the new node v, and new edges {e1,s, ..., €s—1,s} to add next. Specifically,
it takes a tensor pair (X<s, Acs <) as input and predicts the label of the new node X, and the
labels of the new edges A; s (t = 1,...,s — 1). In detail, first, the feature extractor calculates
s — 1 node feature vectors H” = (hY,...,h? ;)T and a graph feature vector h“ from a tensor pair
(X<ss Acs <s). Next, the node estimator predicts the label of the new node X from the graph
feature vector. When the EOS is output, the generation is terminated. Finally, the edge estimator
predicts the labels of the new edges A; s (¢ = 1,...,s — 1) from the node feature vectors, the
graph feature vector, the embedded vector of the predicted node label, and the embedded vectors of
previously predicted edge labels in this step.

12

Under review as a conference paper at ICLR 2020

A.4 TLLUSTRATION OF GRAPH ATTENTION

The graph attention mechanism in feature extraction (self attention) is illustrated in Figure [5] and
that in edge estimation (source target attention) is illustrated in Figure 6]

JS10

s

Output feature vector

o Projection to output space

H»

01)2

N
\

Attention welghts

(e)y __~

Elementwise product

®—>|5

A Dot product

\
I | Projection to subspaces

ko
oo
q1 ky vy
O\ mEEEE \ [T
k4 'l \ k3 v
4 EEmEE vy 3
\ /
ks vy
Query vector Key vectors Value vectors
h;(l*l)
oD

l([1)

\EEEEEI
b([1) " \ hu(l 1)

1(1 1)
Input feature vectors
Figure 5: Operation of graph attention in the [-th feature extraction block, where query, key, and

value vectors are all node feature vectors (i.e., Q = K =V = HY = (hzf(l_l), s hzgl_l))T) (self
attention). For simplicity, we focused on one query/output vector and one subspace.

13

Under review as a conference paper at ICLR 2020

R
O

Output feature vector

Projection to output space
sum

,t\EIementwise product
&

Attention weights

ADot product

\ o
Projection to subspaces
>

I
¥ ¥

Concat(h{, h?, kS) Concat(hy, h{, h{,)
o e O
[e]
\ Concat(h, hY, hS.,) Concat(hs, by, hs)
Concat(hy, hY) SRS
SREESSEEaS v
Query vector Key vectors Value vectors
h’?.s
o, T g
hy h;_’v5
v —
hY o
I / T
5

Previously generated edges in this step

Figure 6: Operation of graph attention in the estimation of the new edge ¢; s (s = 6,t = 3). The
query vector is Concat(hy, hY), and the value and key vectors are {Concat(h},h,h$ ()|T =
1,...,t — 1}, where h} is the feature vector of the node v;, hY is the embedded vector of
the predicted label of the new node vs, X, and hi,s is the embedded vector of the predicted

label of the new edge ers, A;s. In other words, @ = Concat(vhOT, K = V =
(Concat(hy, hY, hS), ..., Concat(hy_,,h?, hi_;)" (source target attention).

14

Under review as a conference paper at ICLR 2020

A.5 GRAM-B: UTILIZING BREADTH-FIRST SEARCH NODE ORDERING

In this section, a brief and intuitive proof for the proposition in Section [3.5.1]is given along with
additional discussion on how much the computational complexity is actually reduced by this ap-
proximation and its strong topology.

A.5.1 PROOF

Consider the BFS tree in the left of Figure [7] Suppose there is at least one con-
nection between the new node vy and the non-frontier nodes V \ Vy, where V; =
{v-| min({i|v; is connected to v,_1}) < 7 < s — 1} (right of Figure [7). Then, under the as-
sumption of BFS node ordering, vs must be visited/generated before vs_1, which is a contradiction.
Therefore, the nodes that can have connections between the new node v, are limited to the frontier
nodes V; (middle of Figure[7).

Breadth-first search tree Possible connections Impossible connections

CTv<s

U1

O O VAV

Vs—2 VUs—1

Figure 7: BFS tree example of G, (left), possible connections to the new node vs (middle), and
impossible connections to the new node v, (right).

A.5.2 DISCUSSION

The average values of 5 = |Vy| for each dataset are listed in Table [3] In both the synthetic and
real-world graphs, we can see that 3 is relatively small compared to n (approximately 1/10 ~
1/3). Therefore, considering the results in Table [2} the average computational cost of GRAM-B is
estimated to be approximately 1/100 ~ 1/9 that of GRAM, which is a significant reduction.

In the experiment, GRAM-B performed better than its original model on the grid and ego datasets.
This is likely because these graphs have simple topologies and their BES trees also have typical
simple patterns. Therefore, restricting the range of edge estimation to the frontier nodes Vy made
the problem easier for the model. Thus, we expect GRAM-B’s performance to be boosted when the
topologies of the graphs and their BES trees have simple patterns.

Table 3: Average values of « and 3 and the number of nodes n per graph for each dataset.

« 15} n
Grid 1.8 9.0 72.2
Lobster 1.0 42 76.0
Community 2.7 235 742
B-A 38 319 727
Molecular 1.1 3.6 23.2
Ego 2.1 458 141.1
Protein 25 257 260.2

15

Under review as a conference paper at ICLR 2020

A.6 GRAM-A: ZEROING ATTENTION WEIGHTS

Here, we provide an additional discussion on the actual computational complexity reduction by this
approximation and its strong graph types. Figure [J]illustrates the attention weight zeroing in edge
estimation.

Figure [§] shows the two distributions of attention weights in one step of edge estimation (i.e., in the
calculation of hZ ;) on the grid dataset. The blue represents the distribution of weights for nodes that
are predicted to have no connection to the new node v; (i.e., {v-|A7 ; = 0,7 = 1,...,t—1}), and the
orange represents the distribution of weights for those predicted to have connection to the new node
(e, {v/|AT; # 0,7 = 1,...,t — 1}). From this figure, we can see that the former distribution is
sharper around zero compared with the latter, most of whose weights take near-zero values. Similar
results were observed for the other datasets.

The average values of « for each dataset are listed in Talbe [3} In both the synthetic and real-world
graphs, we can see that « is less than 4 and approximately 1/100 ~ 1/20 of n. Thus, considering
the results in Table the computational cost of GRAM-A is estimated to be approximately 1/100 ~
1/20 that of GRAM on average, which is a dramatic reduction.

In the experiment, GRAM-A performed better than GRAM on the molecular dataset. This is likely
because these graphs have strict rules or distinct patterns in incident edges to a node, such as the
valence rule, and focusing only on the actual generated edges is both sufficient and makes the prob-
lem simpler. Thus, we expect that GRAM-A will demonstrate better performance when the graphs
follow a certain strict rule on incident edges of their nodes.

100

80 -
60 -
40 -

201

no_edge
have_edge

0.0 0.2 0.4 0.6 0.8 1.0
attention weight

Figure 8: Distributions of attention weights in edge estimation on the grid dataset. The blue rep-
resents the distribution of nodes predicted to have no connection to the new node, and the orange
represents that of nodes predicted to have connection. More than 90 % of attention weights are
less than 0.05 for the former distribution, whereas approximately 70 % of attention weights are less
than 0.05 and more than 15 % are larger than 0.95 for the latter. Note that the scale of the y-axis is
different between the top and halves.

A.7 EXPERIMENTAL SETTING DETAILS

A.7.1 DATASET CONFIGURATION

Here, the detailed configurations of the synthetic graphs are described. Samples from each synthetic
graph dataset are illustrated in Figures[T0}[TT}[I2] and[I3](color is best). Different color corresponds
to different node/edge labels on each dataset.

Grid We used 2D grid graphs with the number of nodes in the range 50 < |V| < 100. Each

CEINNT3

node was labeled according to its degree, yielding 3 types of node labels: “corner”, “edge”, and

16

Under review as a conference paper at ICLR 2020

€2, s (no edge, ignore in graph attention)

€1,s
et,s

Figure 9: Illustration of attention weight zeroing. In the estimation of e; ¢, we ignore nodes that are
predicted to have no connection with v, (v or ez s in this case) and set their attention weights to
zero deterministically.

“inside”. Each edge was labeled according to its geometric direction, yielding 2 types of edge
labels: “horizontal” and “vertical”.

Lobster We used lobster graphs with the number of nodes in the range 50 < |V| < 100. We set
probability of adding an edge to the backbone p; = 0.7, and probability of adding an edge one level
beyond the backbone ps = 0.3. Each node was labeled according to its distance from backbone,
yielding 3 types of node labels: “leaf”, “branch”, and “backbone”. Each edge was labeled according
to its incident nodes, yielding 2 types of edge labels: “leaf-branch” and “branch-backbone”.

Community We used 4-community graphs (Fortunato, [2010) with the number of nodes in the
range 50 < |V| < 100. We set number of communities | = 4, number of nodes in one community
k = |V|/4, probability of intra-connection p;, = 0.23, and probability of inter-connection p,; =
0.023. Each node was labeled according to the community it belongs to, yielding 4 types of node
labels: “community1”, “community2”, “community3”, and “community4”. Each edge was labeled
according to its incident nodes, yielding 2 types of edge labels: “intra-community connection” and
“inter-community connection”.

B-A We used Barabési-Albert (B-A) graphs (Barabasi & Albert, [1999) with the number of nodes
in the range 50 < |V| < 100. We set number of edges to connect a new node and existing nodes
as m = 4. Each node was labeled according to whether its degree falls in the top 50% or bottom
50%, yielding 2 types of node labels: “hub” and “exterior”. Each edge was labeled according to its
incident nodes, yielding 3 types of edge labels: “hub-hub”, “hub-exterior”, and “exterior-exterior”.

A.7.2 TRAINING CONFIGURATION

Here, we give details of the training configurations. We essentially used the default settings for the
baseline methods.

For all datasets, DeepGMG was trained using a single GPU for 10 epochs with batch size 1 because
its generation process is so complex that batch implementation is difficult.

GraphRNN and GraphRNN-S were trained using a single GPU for 96000 iterations with batch size
32. For the molecular dataset, considering its relatively large dataset size, we increased the number
of iterations to 1536000.

For the convenience of implementation, we started the generation process from seed subgraphs with
the number of nodes N,;,. For the synthetic graph datasets, we trained our models using a single
GPU for 100 epochs with batch size 32, and we used » = 2 and Ny,;, = 10. For the molecular
dataset, we trained our models using 2 GPUs for 20 epochs with batch size 256, and we used r = 7
and N, = 5. For the ego dataset, we trained our models using 2 GPUs for 25 epochs, and we used
r = 2 and Ny,;, = 12. We used batch size 4 for GRAM and batch size 8 for GRAM-A, GRAM-B,
and GRAM-AB. For the protein dataset, we trained our models using 2 GPUs for 25 epochs, and
we used r = 2 and Ny,;, = 12. We used batch size 4 for GRAM and batch size 32 for GRAM-A,
GRAM-B, and GRAM-AB. Due to the code dependencies, Tesla P100 was used for DeepGMG,
GraphRNN, and GraphRNN-S, and Tesla V100 was used for GRAM and its variants. Empirically,
the choice between the two gave no significant difference in computation time for our cases.

17

Under review as a conference paper at ICLR 2020

In evaluation, we reported an average of 3 runs for each score. To calculate GK-MMD score for the
molecular dataset, we used 100 samples from the generated graphs and 100 samples from the test
set for fast evaluation. We reported an average of 10 runs.

A.7.3 ADDITIONAL EXPERIMENT RESULT

The results on the lobster dataset are listed in Table [As on other datasets, GRAM and its variants
demonstrated competitive results in terms of topological MMDs, and better performance in terms of
GK-MMD.

Table 4: Results on lobster dataset. Dataset size N, maximum graph size |V|pax, and the number
of node/edge labels a, b are shown as (N, |V |max, a,).

Lobster (500, 100, 3, 4)
deg. clus. orbit GK time
DeepGMG 0958 8e-5 0.035 0.527 135

GraphRNN le-4 0 0 0.203 2.2
GraphRNN-S 0.020 0.023 4e-4 0221 14
GRAM 0.001 5e-4 6e-5 0.049 09

GRAM-A 0.001 0.001 84 0.043 0.8
GRAM-B 0.001 8e-5 24 0048 0.7
GRAM-AB 0.001 25 7e-5 0.047 0.7

In addition, considering that the molecular dataset is a subset of the druglike category in ZINC
database (Sterling & Irwin, 2015), we reported the average QED scores (Bickerton et al., 2012) of
the training samples and the generated samples. QED score measures the drug likeliness of the
molecular.

Table [5] summarizes the results. We can see the generated molecular graphs of our models have
higher QED compared with those of baselines, and near to that of the training set. Note that our
models do not rely on reinforcement learning methods and utilize neither the information of QED
nor valence rule; they learned only through unsupervised learning.

Table 5: Average QED score.

QED
Train 0.732

DeepGMG 0.644
GraphRNN 0.563
GraphRNN-S 0.496

GRAM 0.722
GRAM-A 0.722
GRAM-B 0.691
GRAM-AB 0.694

A.7.4 ABLATION STUDY

To examine the effectiveness of the bias terms in the graph attention mechanism, we conducted an
ablation study. Specifically, we evaluated two variants: GRAM without bias terms of graph attention
in edge estimation, and GRAM without bias terms of graph attention in feature extraction.

The results are listed in Table [§] On all the synthetic graph datasets, removing bias terms in edge
estimation degraded its performance. From this, we can see the importance of the bias terms in
edge estimation for the better quality of generation. Also, removing bias terms in feature extraction
degraded the performance on the B-A dataset. This is likely because its expressive power is limited.

18

Under review as a conference paper at ICLR 2020

On the other hand, the drop in the performance by removing bias terms in feature extraction is minor
on the grid, lobster and community dataset. Considering the properties of these random graphs, this
is likely because only local features were enough for these cases.

Table 6: Results of ablation study.

Grid Community
deg. clus. orbit GK deg. clus. orbit GK
GRAM 0.105 0.002 0.013 0.287 0.011 0.025 0.009 0.016

w/o bias in feature extraction 0.111 0.001 0.009 0.287 0.006 0.007 0.016 0.016
w/o bias in edge estimation 0.247 0272 0.190 0306 0.066 0.037 0.038 0.017

B-A Lobster
deg. clus. orbit GK deg. clus. orbit GK
GRAM 0.034 0.009 0.024 0.015 0.001 5e-4 6e-5 0.049

w/o bias in feature extraction 0.034 0.020 0.033 0.016 0.003 1le-4 2e-4 0.054
w/o bias in edge estimation 0.050 0.035 0.042 0.017 0.002 3e-4 8e-5 0.054

A.7.5 VISUALIZATION OF GENERATED GRAPHS

Visualizations of generated graphs on each dataset are shown in Figures[I0] [TT} [T2] [[3]and[14] (color
is best). We used the same visualization method for all graphs. Different color corresponds to
different node/edge labels on each dataset.

The graphs generated by GraphRNN are quite similar to those in the training set in terms of their
topology. However, they completely failed to capture node/edge label patterns in most cases.

In contrast, the graphs generated by GRAM are similar to training samples in terms of both topology
and node/edge label pattens.

A.8 LIMITATIONS AND FUTURE WORK

While our models demonstrated superior performance on most of the datasets, they have some lim-
itations. For example, on inference, one wrong prediction of node/edge label may collapse all the
following generation processes, resulting in a bizarre graph generated. This is a deficit of its rich fea-
ture extraction process. A possible solution to this problem is, for example, to employ beam search.
By applying beam search on inference, we can get rid of samples with a quite lower likelihood and
avoid the above undesirable situations.

Additionally, although we reduced the computational complexity of the models by a significant
amount, the feature extraction process still requires a large amount of computation. To this chal-
lenge, some methods proposed in the field of image processing and natural language processing
would help to alleviate it.

19

Under review as a conference paper at ICLR 2020

GraphRNN Train

GRAM

GraphRNN Train

GRAM

.}:}}5"“ ::;,Ma
oo 20® re
1 1
s
"% "#&‘.\‘

o
T
Cal
,
¢

Figure 11: Generated graphs (lobster).

20

Under review as a conference paper at ICLR 2020

GraphRNN Train

GRAM

Train

GraphRNN

GRAM

Figure 13: Generated graphs (B-A).

21

Under review as a conference paper at ICLR 2020

= o /
§ P s0d oo Bod® sy
% - PO

o 4 AN N - -

-g D = A % , - O 9 Q kﬁm
O /

DeenGMG
\r/

GRAM

=~

Figure 14: Generated molecular graphs.

22

	Introduction
	Related Work
	Proposed Method
	Notations and Problem Definition
	Likelihood Formulation of Graphs
	Graph Attention Mechanism
	GRAM: Scalable Generative Models for Graphs
	Model Overview
	Feature Extractor
	Node Estimator
	Edge Estimator

	Reducing Computational Complexity in Edge Estimation
	Complexity Reduction via Breadth Frist Search
	Complexity Reduction via Attention Weights Zeroing

	Training and Evaluation

	Experiments
	Conclusion
	Appendix
	Complexity Analysis
	Example of Tensor Representation
	Detailed Model Pipeline
	Illustration of Graph Attention
	GRAM-B: Utilizing Breadth-First Search Node Ordering
	Proof
	Discussion

	GRAM-A: Zeroing Attention Weights
	Experimental Setting Details
	Dataset Configuration
	Training Configuration
	Additional Experiment Result
	Ablation Study
	Visualization of Generated Graphs

	Limitations and Future Work

