Under review as a conference paper at ICLR 2020

UNSUPERVISED LEARNING OF AUTOMOTIVE 3D
CRASH SIMULATIONS USING LSTMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Long short-term memory (LSTM) networks allow to exhibit temporal dynamic
behavior with feedback connections and seem a natural choice for learning se-
quences of 3D meshes. We introduce an approach for dynamic mesh representa-
tions as used for numerical simulations of car crashes. To bypass the complication
of using 3D meshes, we transform the surface mesh sequences into spectral de-
scriptors that efficiently encode the shape. A two branch LSTM based network
architecture is chosen to learn the representations and dynamics of the crash dur-
ing the simulation. The architecture is based on unsupervised video prediction by
an LSTM without any convolutional layer. It uses an encoder LSTM to map an
input sequence into a fixed length vector representation. On this representation
one decoder LSTM performs the reconstruction of the input sequence, while the
other decoder LSTM predicts the future behavior by receiving initial steps of the
sequence as seed. The spatio-temporal error behavior of the model is analysed
to study how well the model can extrapolate the learned spectral descriptors into
the future, that is, how well it has learned to represent the underlying dynamical
structural mechanics. Considering that only a few training examples are available,
which is the typical case for numerical simulations, the network performs very
well.

1 INTRODUCTION

Data driven virtual product design is nowadays an essential tool in the automotive industry saving
time and resources during the development process. For a new car model, numerical crash simu-
lations are performed where design parameters are changed to study their effects on physical and
functional properties of the car such as firewall intrusion, weight, or cost (Fang et al., 2017). Since
one simulation run takes a couple of hours on a compute cluster, running a large number of sim-
ulation is not feasible. Therefore, a system that is able to use a limited dataset and predict new
simulations would make the development process faster and more efficient.

The rise of deep neural networks (DNNs) in recent years encourages further research and industrial
usages. Besides manifold research for autonomous driving, it is natural for the automotive industry
to seek and evaluate the possible applications of DNNs also in the product design stages. As an
example, we investigate car crash tests, in which for example the plate thickness of certain parts
strongly influences the bending behavior of structural beams and as a result also the intrusion of the
firewall into the passenger compartment. Here, numerical crash simulations for different variations
of such thicknesses are used as a dataset for learning. The aim is to design a system based on a DNN
architecture that learns the crash behavior and would be able to imitate the crash dynamics.

Car crash simulations are based on a mathematical model of the plastic deformations and other
physical and mechanical effects. They are defined on a computing mesh of currently up to three
million points and up to a hundred time steps are stored. Each data instance is a simulation run—of
pre-selected parts and/or time steps—that is very high dimensional. Working with this data directly
exasperates any machine learning (ML) method, but a transformation of this data presented in [Iza-
Teran & Garcke| (2019) allows to obtain a new representation that uses only a small number of
coefficients to represent the high resolution numerical solutions. The transformed representation
is employed here to compress the mesh geometries to feature sets suitable for neural networks,
while avoiding to directly handle geometries in the machine learning method. This way, a network

Under review as a conference paper at ICLR 2020

designed for video prediction and embedding based on a long short-term memory (LSTM) based
architecture (Srivastava et al.,2015)) can be adapted for mesh data. Since LSTM is a recurrent neural
network that allows to exhibit temporal dynamic behavior with feedback connections, it is a natural
choice for learning the 3D sequences. The aim is that the network learns the observed crash behavior
including translation, rotation, or deformation of the parts in the model.

Since the contribution of this paper is using DNNs for analyzing car crash data, the related works are
categorized into a group of publications in which DNNs are extended for 3D graphics and one that
concerns the use of ML techniques for analyzing car crash simulations. For the latter, one typically
uses different embedding techniques to obtain a low dimensional representation for the intrinsic
underlying data space and to cluster simulations with similar characteristics together (Bohn et al.,
2013} [Diezl 2018} |Garcke & Iza-Teran, |2015} [za-Teran & Garckel 2019;|Le Guennec et al., 2018)).

The majority of publications about 3D DNN tried to extend CNN for 3D space and focus on de-
scription learning and shape correspondence, also known as geometric deep learning, (Bronstein
et al., 2017; |[Masci et al.l |2015; Monti et al.,|2017; Boscaini et al., 2015} 2016; |Litany et al., 2017;
Halimi et al.| 2018} Maturana & Scherer;, [2015; |Su et al.| 2015} [Wang et al.l 2017) and some devel-
oped CNN filters for unorganized point clouds (Qi et al., [2017aib). The very active research is so
far very compute resource consuming and there is no extension of ConvLSTM for 3D space to our
knowledge, but for prediction one would need an LSTM (or GAN) approach.

However, a couple of very recent works introduce new feature sets and architectures for mesh em-
bedding using autoencoders and LSTM (Tan et al., 2018bj |Qiao et al., 2018; [Tan et al., 2018a).
The feature representation is using local shape deformations obtained by solving an optimization
problem at each node and a global optimization for compensating for rotations. They have shown
that after training the network, a sequences of 3D shapes as an animation can be generated by do-
ing operations in the latent space. The bidirectional LSTM architecture is shown to outperform
autoeconders (Tan et al., 2018a). An LSTM based learning network has also been proposed in|Qiao
et al.| (2018)), where the obtained feature representation is then taken as the temporal data to be feed
into a CNN that takes the features and represents them in a lower dimensional latent space. This
information is subsequently feed into the LSTM module.

2 MESH DATA AND ITS REPRESENTATION

Data collection is a bottleneck for deep learning applications. If the training data is not diverse
enough, the network would neither be able to properly learn the intrinsic data space nor be able to
return reasonable output for before unseen data. We focus on surface mesh data from numerical sim-
ulations of car crashes, where in the industrial setting the car model is divided into several physcical
car parts.

As a simple car model we use a Chevrolet C2500 pick-up truck, a model with around 60,000 nodes
from the National Crash Analysis Cente The data stems from numerical crash simulatio of
a frontal crash for random variations of the plate thickness of nine structural components, a setup
similar to Bohn et al.| (2013). The thickness variations result in different deformation behavior.
Figure[I| shows a snapshot of the crash simulation for the truck model.

The geometries of the car model and parts are available in a regular mesh format and the correspon-
dence of vertices between different simulations and over the time of the simulation are known by
their node id. Therefore, instead of working with the meshes one can simply work with vertices
and treat them like organized point clouds, while being able to recover the mesh and connectivity at
any time. Now, the features for training the network are obtained from these point clouds and the
network outputs a feature vector that is later post-processed to a point cloud or mesh.

Instead of working directly with 3D surface meshes, a set of features is extracted for training the
network. Such a feature set should be able to represent the dynamics of the crash efficiently. In Iza-
Teran & Garcke| (2019) a compact representation for deforming shapes has been presented for the
car crash case. The approach is based on the property that the Laplace Beltrami Operator (LBO) on
a surface is invariant to isometric deformations. That is, the LBO is the same if a surface mesh is de-

'from NCAC|http://web.archive.org/web/*/www.ncac.gwu.edu/vml/models.html
2computed with LS-DYNA http://www.lstc.com/products/ls—-dyna

http://web.archive.org/web/*/www.ncac.gwu.edu/vml/models.html
http://www.lstc.com/products/ls-dyna

Under review as a conference paper at ICLR 2020

Figure 1: A snapshot of the crash simulation of the 3D model used for data collection with a zoom
unto the studied longitudinal beams, fromBohn et al.| (left). The four selected parts (beams)
after the crash for one selected simulation, later used for illustration (right). The colors of the parts
are used to display error behavior per part.

formed in such a way that it is neither stretched nor teared apart, which is the case for the considered
simulations, which additionally all start from the same geometry. Consequently the eigenvectors,
which form an orthogonal basis, do not change under an isometric transformation and can be used
to represent mesh functions such as the deformations (as three functions, one each for z,y, z). The
representation is obtained by projecting mesh functions onto the common orthogonal basis to com-
pute so-called spectral coefficients. It turns out that most of the variations of the deformed shapes
are concentrated in a small number of coefficients. Therefore an efficient representation is obtained
using few spectral coefficients. As shown by |[Brezis & Gomez-Castro|(2017)) using suitable assump-
tions, for the Lo-approximation of functions controlled in the H!-Sobolevnorm the orthonormal
basis stemming from the Laplace operator provides an optimal approximation in a certain sense;
this result can be extended to the LBO and functions in the Sobolev space H?2. Furthermore, the
spectral representation can be understood as a mesh surface analogy to the Fourier decomposition
of signals. This representation is introduced here for training LSTMs and allows to bypass the
complexity of dealing with large meshes directly.

To formalise, in B,, x., we collect the first m unit eigenvectors of the LBO, where n is the number
of points in the considered 3D shape. The spectral coefficients C'y,, at one time step are obtained
by

CBXm = RBXanXm; (1)
where Rsy,, contains the x, y, z coordinates of the n points from the considered 3D shape. Four B
matrices are required for four distinct parts in the dataset, which are four distinct geometries.

Recovering the 3D shapes from their spectral coefficients is possible by

R;xn = C3><mB7:,;><m7 (2)

since By, is orthonormal. R’ is an approximation of R and by choosing larger m, the approxima-
tion error gets smaller. In other words, the more eigenvectors are used in B, x.,,, the more details are
saved in the spectral representation. Figure 2] visualizes the localization and histogram of average
error for reconstructing four selected parts from their spectral coefficients. The averaging is done
over 205 x 10 samples for each part independently. Note that the bounding box of the entire data
is [2750,4500] x [—600,600] x [250, 650], determined over simulation time. Comparing the his-
togram with the tight bounding box’s dimensions shows that the reconstruction error is not very high
for m = 40, while the part with blue color coding seems to have more overall error. Note that the
error is localized mostly toward the front of the parts, this area goes through very large deformations
during the crash. Note that with m = 100 the observed maximal observed error would go down
from 40 to 20.

3 MODEL DESCRIPTION

For frame prediction in video and to obtain latent representations a number of quite interesting
applications in robotics and computer vision have been developed. Different DNN architectures
have been investigated very extensively. |Srivastava et al.|(2015) was one of the first proposals of an

Under review as a conference paper at ICLR 2020

45

160

40
140

35
120

30
100

80
20
60
15
40
10
20
5 -

Figure 2: Localization and histogram of errors between original parts and their reconstruction from
their spectral representation with m = 40 spectral coefficients. Histogram color coding follows the
color convention in Figure[T] right.

unsupervised LSTM based representation learning method for video. The logic behind the choice is
that the same operation must be applied at each step to propagate dynamics to the next step. This
implies that the underlying dynamics of the dataset remains the same, i.e. the same dynamics acting
on any state, at anytime, should produce the next state (Srivastava et al., 2015). Others extended this
work by adding convolutional operations in LSTM, introducing new recurrent networks, or using
model based architectures (Xingjian et al.| 2015} [Finn et al., 2016} Kalchbrenner et al., 2017} |Lotter
et al., |2016;[Sharma et al.,[2015)).

Car crash simulation data can basically be considered a sequence of 3D geometries. In analogy to the
video processing case, one can see each geometry in the sequence as a video frame. Inspired from
the work on video prediction, we use a similar architecture for the case of car crash representation
learning. We choose a two branch LSTM architecture with reconstruction and prediction decoders
from |Srivastava et al.| (2015). The encoder LSTM maps an input sequence of k time steps into a
fixed length vector representation. This representation is decoded using a decoder LSTM to perform
the reconstruction of the input sequence of size k. Receiving a few steps [, [< k, from the beginning
of the sequence, the other decoder LSTM predicts future sequences of length k — [, see Figure 3]
where we here use | = k/2 for simplicity. The architecture is in |Srivastava et al.| (2015) shown to
have a better performance for predicting future frames compared to other approaches.

The design of the prediction encoder-decoder LSTM is same as that of the autoencoder LSTM,
except that it is like a supervised method in which the decoder LSTM predicts future behavior that
comes after the input sequence while the encoders hidden state will capture information about the
representation of the input sequence. In comparing to an autoencoder LSTM that receives the entire
k time steps of the simulations and reconstruct them again, the prediction encoder-decoder LSTM
receives just the first [steps and predicts the remaining time steps. Therefore, the input sequence
acts as seed points for generating the rest of the sequence.

This compositional architecture is supposed to address the shortcomings that one has to confront
by the use of an autoencoder or encoder-predictor alone. Namely, on the one hand an autoencoder
LSTM suffers from a bias by memorizing the inputs, which is not sufficient for predicting future
frames. On the other hand, an encoder-decoder LSTM suffers from the bias to save information
mostly about the last few frames since these carry more information for predicting the future frames,
but then the representation at the end of the encoder will ignore large parts of the input. In the
compositional architecture, the model is trained to also predict all of the input sequence, therefore it
cannot just store information about the last few frames (Srivastava et al., 2015)).

It is worth to mention that the dataset contains the translation, rotation, and deformation of car parts
during the crash. Therefore the network would learn the entire degrees of freedom of the crash
dynamics and would be able to imitate the crash by the prediction decoder after receiving the initial
time steps as seeds.

Under review as a conference paper at ICLR 2020

Input Reconstruction
=
|_
(7))
ol -
fl f, fk
=
|_
n
|
=
|_
(7))
Sequence of Inputs - o f
Future Prediction fror K

Figure 3: The two branches LSTM autoencoder network architecture. The data sequence of fs are
feed into the network in two lengths and a joint encoder is learned. The top decoder is learning the
reconstruction, while the bottom decoder is performing future prediction.

4 EXPERIMENTS AND EVALUATION

Although the 3D truck model consists of several parts, only the left and right structural beam, which
are made of two parts each, are considered for evaluating our approach. These beams are structurally
very important parts of the car and typically investigated by engineers, therefore it is justified to
concentrate on these parts.

Overall 205 different simulations were performed. For each simulation, ten snapshots equally dis-
tributed in time are selected and the deformation of the two beams are extracted from it. Therefore
a data sample consists of the four selected parts during ten time steps. Together, the dataset after
the extraction from the crash simulations contains 205 samples and each full sample is a long con-
catenated vector of 4 x 3 x 40 x 10 elements. The entire dataset is divided into training and test
set of 105 and 100 samples, respectively. Each data point, i.e. each time step of a simulation, is
normalized by the /2 norm of the features at £ = 0 beforehand.

Note that one could consider a different scenario in which each part, out of the four, over all ten time
steps is a data sample, that is treat the for beams with individual machine learning models. Since the
dynamics of the two beams are coupled during the crash, considering them together can reduce the
error for learning the crash dynamics by the network and we thereforce consider this setup.

We employ the two branch LSTM from Figure [3| where the implementation is done with Keras. In
our experiments, the encoder component of the network has 1000, the decoder has 1500, and the
prediction part has 2000 LSTM units without any convolutional layer, as defining a convolutional
layer for 3D graphics is not trivial and existing approaches are resource intensive. Further, we use
ReLU as the activation function. Using ADAM with default parameters the entire network is trained
together, which includes the encoder, reconstruction, and prediction parts over 100 iterations, until
the mean squared error (over all parts) reaches the order of 10~7 and becomes stable. The training
phase takes about 30 minutes on an Intel i7-7700 CPU@3.60GHz x 8. The achieved minimum
during training is a trade-off between reconstruction and prediction loss functions. The prediction
part of the network receives the first five time steps as inputs and generates the next five steps of the
crash (which are both a vector of 4 x 3 x 40 x 5 elements).

For each grid point j we compute in the following the least squares error at time ¢ and averaged over
the simulations, as well as accumulated over time:

s k
Bi) = 2 IS0 - 80l AB =Y B()

where s is the number of simulations and S]‘ (1), S’; (t) are the three-dimensional (one for each direc-
tion) original mesh function and its reconstruction (or prediction) for simulation ¢ at time ¢.

Under review as a conference paper at ICLR 2020

10000
30000

25000 8000

20000

6000

15000
4000
10000

2000
50001

o 0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 o 0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007

Figure 4: Histogram of the reconstruction (blue) and prediction (red) errors for the spectral coeffi-
cients by the network, left for the training data, on the right for the testing data.

4.1 NETWORK PERFORMANCE AND EXISTING BIFURCATION

Figure [] shows the histograms of the reconstruction and prediction error for the training and test
datasets of all four parts, only here for the spectral coefficients. The reconstruction error is larger
than the prediction error since the reconstruction part recovers the entire £ = 10 time steps while
the prediction part just generates the last [= 5 time steps.

Bohn et al.| (2013) and |Iza-Teran & Garcke| (2019) have reported a bifurcation for this car crash
dataset. That is, two different bending behavior for the beams arise in the simulation data, which is
due to changes in the plate thicknesses. One can cluster the 205 simulations into two groups of 71
and 134 for the two bending behaviors. It gives an unique opportunity to investigate the performance
of the proposed system by analyzing and visualizing the error for each branch of bifurcation indi-
vidually. Moreover, it is possible to see if and how well the network can recognize this bifurcation
and how the spectral coefficients can preserve this.

The 105 simulations used for training include samples from both branches of the bifurcation, as do
the remaining 100 for testing. The distances between ground truth and the outputs of two decoders,
after decompression and re-normalization from the spectral coefficient back to 3D shapes, are vi-
sualized on a template to present the spatial localization of the average error of each bifurcation
branch and its histogram is also shown for a better comparison (all for the testing dataset). Figure[3]
gives the accumulated error over time. Overall, the reconstruction and prediction errors are small
in relation to the bounding box of the data, the network based on the spectral coefficients is able to
learn the complex structural mechanics.

It can be seen in first two histograms of Figure 5] that the errors accumulation for the reconstruction
in the two branches is similar, which can also be seen in the first and second row in Figure[5] The
part color coded red shows somewhat higher error values, while the blue part has more mid-range
errors. The third and fourth row in Figure [5]for the prediction have very different error localization.

Considering the localization and histograms of the average error over time for the reconstruction
branch of the network, one can observe that the error behavior stays roughly the same over time, i.e.
the localization of error and histograms show that the error stay the same.

Regarding the localization and histogram of the average error over time for the prediction branch of
the network, now the error increases in time and the behavior changes at the eighth time step. Here,
one can observe that the localization of the error changes and the histograms show that the error
increases more strongly for the first branch, see Figure[7)in the Appendix.

4.2 EMBEDDING

The encoder LSTM weights can be used for visualizing the intrinsic underlying space of the dataset.
Therefore, in order to see how well the encoder learned the representation and dynamics of the
car crash simulations, the weights are visualized using different markers for the two branches of
bifurcation. Due to the encoder having 1000 layers, to which each sample is mapped, one needs to
use some visualization techniques for embedding from higher dimensions to a lower dimensional
space. We use t-SNE (Van Der Maaten & Hinton| [2008) and show the result in Figure |§[As can
be seen, the bifurcation is shown as two well-separated clusters. There are a few points from each

Under review as a conference paper at ICLR 2020

o 3 w0 ° W e s 100 o o £ 3

reconstruction branch 1 reconstruction branch 2 prediction branch 1 prediction branch 2

Figure 5: Localization and histogram of the error accumulation AE. First and third rows show
the reconstruction and prediction error, respectively, for the first bifurcation branch. Second and
forth rows show the reconstruction and prediction error, respectively, for the second bifurcation
branch. The error is shown on a representative final time step of each branch to illustrate the different
deformation behaviors. Histogram color coding follows the color convention in Figure[] right.

Figure 6: 2D embedding of LSTM’s reconstruction weights. Two branches of the bifurcation are
well separated in the 2D visualization made by t-SNE. First bifurcation branch is marrked by red
dots and the second one by blue triangles.

bifurcation branch that are misaligned with the rest of their branch members. This might be because
of using the spectral coefficients as an approximation which leads to losing some details about the
bifurcation, therefore increasing m might rectify the issue. Or a 2D embedding is not sufficient
for properly visualization the encoder LSTM weights. Nevertheless, this 2D visualization proves
that the network was able to learn the complex dynamics of the crash since the bifurcation is well
represented by the encoder weights.

Under review as a conference paper at ICLR 2020

5 CONCLUSIONS AND FUTURE WORK

Video frames prediction has been in the center of attention of researchers for a while, but there has
been only very few extensions of these works to the 3D case so far. The problem is addressed here
by introducing spectral coefficients to encode functions on the geometry together with a two branch
LSTM based architecture without any convolutional layer, which has already proven to be feasible
for video embedding and future frames prediction. The employed LBO basis and the resulting
spectral coefficients provide a trade-off between accuracy and required computational resources.
We encode the 3D shapes by a set of features using the eigenvectors of the LBO.

For empirical evaluation, a dataset is employed from a set of numerical simulations of a car during
crash under different design conditions, i.e. plate thickness variations. The appearance of a bifur-
cation during the crash in the dataset, motivates an error analysis done for both groups to see how
good the network performs in the presence of a bifurcation. In both branches, the network is able
to perform very good predictions, while we observe different error localisations for reconstruction
versus prediction. Moreover, the 2D visualization of the reconstruction branch shows the bifurca-
tion as two clusters. In any case, from a relatively small number of data, the proposed network using
spectral coefficients is able to learn complex dynamical structural mechanical behaviors.

Future work could go toward scaling the pipeline for learning the crash dynamics of the entire car
and larger mesh sizes, which increases the needed computational effort. On the other hand, one
might be able to use smaller number of eigenvectors by not simply selecting the first few ones, but
those with a large variance in the spectral coefficients of the data set. Furthermore, in practical
settings, re-meshing of the parts can take place, here using spectral coefficients can ease this step
since one can encode shapes with different vertices number to fixed size feature vectors, as long as
the geometry is (approximately) isometric. Still, there is the overall question, if and how a trained
network can be evaluated for changed geometries (relevant question for any 3D DNN approach
introduced so far) or different crash setups. Moreover, adding design parameters could also improve
the accuracy but requires modifications of the networks architecture.

For practical applications, as each crash simulation requires hours of heavy computation running
computational solvers on a large cluster, a system that is able to learn the representation of exper-
iments with very few training data and generate the predicted simulation results for new design
parameters would save much resources. Moreover, the ultimate goal of research along this direction
would be a data driven system that receives very little information about the simulation (like design
parameters) and output the crash sequences with minimum error.

Another application of the current system could be feasibility detectors while running the simulation
on the compute cluster. Using the network, one could check if the simulation goes well or if for some
reasons it should be terminated. From the current stage of the system, one would be able to generate
the parts of the future simulation simply by extrapolating the learned spectral coefficients from a
few initial time steps, which are already computed on the cluster, as inputs. If the distance between
network predicts and simulation gets very large over the iterations, the simulation can be terminated
since it failed the feasibility check.

Further, related works such as|Qiao et al.|(2018) introduce a specific feature set and LSTM autoen-
coders, where also graph convolution operation is required. This approach could be applied for car
crash data under the assumption that the local optimization can still be applied for large deforma-
tions as the ones occurring in our applications. Further, the resulting features are long vectors, which
results in 8 hours for learning on a CPU/GPU system for a data set similar in size to ours, where we
need 30 minutes. Nevertheless, a comparison of these two approach will be worthwhile future work.

REFERENCES

Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards Al. In Large Scale Kernel
Machines. MIT Press, 2007.

Bastian Bohn, Jochen Garcke, Rodrigo Iza-Teran, Alexander Paprotny, Benjamin Peherstorfer, Ulf
Schepsmeier, and Clemens-August Thole. Analysis of car crash simulation data with nonlinear
machine learning methods. Procedia Computer Science, 18:621-630, 2013.

Under review as a conference paper at ICLR 2020

Bastian Bohn, Jochen Garcke, and Michael Griebel. A sparse grid based method for generative
dimensionality reduction of high-dimensional data. Journal of Computational Physics, 309:1-17,
2016.

D. Boscaini, J. Masci, S. Melzi, M. M. Bronstein, U. Castellani, and P. Vandergheynst. Learn-
ing class-specific descriptors for deformable shapes using localized spectral convolutional net-
works. Computer Graphics Forum, 34(5):13-23, 2015. doi: 10.1111/cgf.12693. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12693.

D. Boscaini, J. Masci, E. Rodola, M. M. Bronstein, and D. Cremers. Anisotropic diffusion de-
scriptors. Computer Graphics Forum, 35(2):431-441, 2016. doi: 10.1111/cgf.12844. URL
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12844\

Haim Brezis and David Gémez-Castro. Rigidity of optimal bases for signal spaces. Comptes Rendus
Mathematique, 355(7):780-785, jul 2017. doi: 10.1016/j.crma.2017.06.004.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geomet-
ric deep learning: Going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18—42,
2017.

Constantin Diez. Using artificial intelligence to analyze crash simulations. NAFEMS Benchmark,
pp. 20-23, 2018.

Jianguang Fang, Guangyong Sun, Na Qiu, Nam H. Kim, and Qing Li. On design optimiza-
tion for structural crashworthiness and its state of the art. Structural and Multidisciplinary
Optimization, 55(3):1091-1119, mar 2017. doi: 10.1007/s00158-016-1579-y. URL http:
//1link.springer.com/10.1007/s00158-016-1579~-vy.

Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical interaction
through video prediction. In Advances in neural information processing systems, pp. 64-72,2016.

Jochen Garcke and Rodrigo Iza-Teran. Machine learning approaches for repositories of numerical
simulation results. In 10th European LS-DYNA Conference, 2015.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

Oshri Halimi, Or Litany, Emanuele Rodola, Alex Bronstein, and Ron Kimmel. Self-supervised
learning of dense shape correspondence. arXiv preprint arXiv:1812.02415, 2018.

Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18:1527-1554, 2006.

Rodrigo Iza-Teran and Jochen Garcke. A geometrical method for low-dimensional representations
of simulations. SIAM/ASA Journal on Uncertainty Quantification, 7(2):472-496, 2019. doi:
doi:10.1137/17M1154205.

Nal Kalchbrenner, Adron van den Oord, Karen Simonyan, Ivo Danihelka, Oriol Vinyals, Alex
Graves, and Koray Kavukcuoglu. Video pixel networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70, pp. 1771-1779. JMLR. org, 2017.

Yves Le Guennec, J-P Brunet, F-Z Daim, Ming Chau, and Yves Tourbier. A parametric and non-
intrusive reduced order model of car crash simulation. Computer Methods in Applied Mechanics
and Engineering, 338:186-207, 2018.

Or Litany, Tal Remez, Emanuele Rodola, Alex Bronstein, and Michael Bronstein. Deep functional
maps: Structured prediction for dense shape correspondence. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pp. 5659-5667, 2017.

William Lotter, Gabriel Kreiman, and David Cox. Deep predictive coding networks for video pre-
diction and unsupervised learning. arXiv preprint arXiv:1605.08104, 2016.

Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst. Geodesic con-
volutional neural networks on riemannian manifolds. In Proceedings of the IEEE international
conference on computer vision workshops, pp. 37-45, 2015.

https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12693
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12693
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12844
http://link.springer.com/10.1007/s00158-016-1579-y
http://link.springer.com/10.1007/s00158-016-1579-y

Under review as a conference paper at ICLR 2020

Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural network for real-time
object recognition. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 922-928. IEEE, 2015.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M
Bronstein. Geometric deep learning on graphs and manifolds using mixture model CNNs. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5115—
5124, 2017.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point
sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 652-660, 2017a.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. In Advances in Neural Information Processing
Systems, pp. 5099-5108, 2017b.

Yi-Ling Qiao, Lin Gao, Yu-Kun Lai, and Shihong Xia. Learning bidirectional LSTM networks for
synthesizing 3d mesh animation sequences. arXiv preprint arXiv:1810.02042, 2018.

Shikhar Sharma, Ryan Kiros, and Ruslan Salakhutdinov. Action recognition using visual attention.
arXiv preprint arXiv:1511.04119, 2015.

Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. Unsupervised learning of video
representations using LSTMs. In International Conference on Machine Learning, pp. 843-852,
2015.

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. Multi-view convo-
lutional neural networks for 3d shape recognition. In Proceedings of the IEEE international
conference on computer vision, pp. 945-953, 2015.

Qingyang Tan, Lin Gao, Yu-Kun Lai, and Shihong Xia. Variational autoencoders for deforming 3d
mesh models. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 5841-5850, 2018a.

Qingyang Tan, Lin Gao, Yu-Kun Lai, Jie Yang, and Shihong Xia. Mesh-based autoencoders for
localized deformation component analysis. In Thirty-Second AAAI Conference on Artificial Intel-
ligence, 2018b.

L J P Van Der Maaten and G E Hinton. Visualizing high-dimensional data using t-sne. Journal of
Machine Learning Research, 9:2579-2605, 2008. doi: 10.1007/s10479-011-0841-3.

Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. O-cnn: Octree-based
convolutional neural networks for 3d shape analysis. ACM Transactions on Graphics (TOG), 36
(4):72, 2017.

SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo.
Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In
Advances in neural information processing systems, pp. 802-810, 2015.

10

Under review as a conference paper at ICLR 2020

A APPENDIX

Res?,
)
=3
- 3)

B

~13)

time step 6 time step 7 time step 8 time step 9 time step 10

/

3213)
- 3

- 30

Fﬁzll)

-

time step 6 time step 7 time step 8 time step 9 time step 10

Figure 7: Localization and histogram of the error accumulation AE for the prediction per time step.
Top rows show the prediction error for the first bifurcation branch. Bottom rows show the prediction
error for the second bifurcation branch. The error is shown on a representative final time step of
each branch. Histogram color coding follows the color convention in Figure/[I] right.

11

	Introduction
	Mesh data and its representation
	Model description
	Experiments and evaluation
	Network performance and existing bifurcation
	Embedding

	Conclusions and future work
	Appendix

