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Abstract

This paper proposes a partitioning structure learning method for segmented linear
regression trees (SLRT), which assigns linear predictors over the terminal nodes.
The recursive partitioning process is driven by an adaptive split selection algorithm
that maximizes, at each node, a criterion function based on a conditional Kendall’s
τ statistic that measures the rank dependence between the regressors and the fit-
ted linear residuals. Theoretical analysis shows that the split selection algorithm
permits consistent identification and estimation of the unknown segments. A suffi-
ciently large tree is induced by applying the split selection algorithm recursively.
Then the minimal cost-complexity tree pruning procedure is applied to attain the
right-sized tree, that ensures (i) the nested structure of pruned subtrees and (ii)
consistent estimation to the number of segments. Implanting the SLRT as the
built-in base predictor, we obtain the ensemble predictors by random forests (RF)
and the proposed weighted random forests (WRF). The practical performance of
the SLRT and its ensemble versions are evaluated via numerical simulations and
empirical studies. The latter shows their advantageous predictive performance over
a set of state-of-the-art tree-based models on well-studied public datasets.

1 Introduction

Data partitioning is a fundamental pre-processing method that explores the partitioning structure of
the feature space such that the subspaces are more compliant to a simple model [1]. We consider the
segmented linear regression (SLR) models, which prescribes linear predictors over the partitions.
Partitioning structure learning is the core of SLR, that selects the split variables and levels as well as
determines the number of segments.

SLR has been studied in statistics and econometrics [2, 3, 4, 5], but the existing methods tend to
assume the split variable is known and univariate, with segments estimated by a costly simultaneous
optimization. We propose a tree-based approach for SLR called segmented linear regression trees
(SLRT), that does not require the pre-specified information about the split variables. SLRT is
completely data-driven and facilitates more efficient computation via recursive partitioning, which is
fundamentally based on a split selection algorithm and a tree pruning algorithm.

Split Selection Algorithm At each internal node of the tree, the optimal split variable and level pair
is selected to partition the feature space into two halves. Let ê be the fitted residuals by the ordinary
least square regression. Any non-linearity in the underlying regression function is reflected in the
dependence between ê and the regressors. Based on the conditional Kendall’s τ rank correlation [6],
we propose the following criterion function at a candidate split variable index j and a split level a,
C(j, a) =

∑p
k=1 {|τ̂ (Xk, ê|Xj ≤ a)|+ |τ̂ (Xk, ê|Xj > a)|}, where τ̂ is the sample version of the

Kendall’s τ , X is a p-dimensional regressors vector with Xk being its k-th component. The optimal
split is selected by maximizing C(j, a) over the candidate split variables {Xj} and levels {a} in the
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observed sample of Xj . Theoretical analysis shows that it leads to the consistent identification and
estimation of the most prevailing split variable and level that attains the maximum of C(j, a).

Tree Pruning Algorithm We define an adaptive cost-complexity measure that combines the accuracy
of the linear regression fit at each node with a penalty for a large tree size. The optimally pruned tree
is selected from a nested sequence of pruned subtrees by minimizing the cost-complexity measure.
Theoretical analysis shows that the pruning method leads to consistent estimation of the underlying
number of segments, which promotes a parsimonious partitioning structure.

Leaf Modeling and Ensemble Methods For predictors within segments, we employ the LASSO
procedure [7] to select the most influential variables and estimate the linear parameters. Furthermore,
by implanting SLRT as the base predictor in the random forests (RF) formulation, we obtain the
ensemble predictor that improves the model stability and predictive accuracy. A weighted version of
the RF (WRF) is also proposed, which shows an improved performance over the RF by reducing the
importance of those under-performing trees in weighting.

As a novel tree-based learning method for segmented linear models, SLRT possesses attractive
theoretical properties of the consistent identification and estimation of the partitioning structures,
which are confirmed favorably in numerical simulations. Applied on nine benchmark datasets, SLRT
had advantageous predictive performance over several state-of-the-art tree-based methods, with
further improvement offered by the RF and WRF with SLRT as the base predictor.

The source code of the algorithm is available in the supplementary material.

1.1 Related Work

The proposed segmented linear regression tree is a tree-based approach to segmented linear regression
(SLR) models, where the partitions of the feature space is axis-aligned. The existing methods of SLR
tend to assume a known split variable, such that the partitioning structure learning is reduced to the
change-points detection with respect to a given variable. For instance, [2, 3] considered the case
where both the univariate partitioning variable and the number of segments are pre-specified. [4, 5]
estimated the number of change-points by minimizing the Bayesian information criteria (BIC). [8]
selected the change-points via the sum of squared residuals in conjunction with the permutation test,
which also assumed a known split variable. Our approach does not require pre-specified information
of the segments, and learns the partitioning structure via a tree induction process.

SLR also belongs to the class of region-specific linear models. [1] proposed a partition-wise linear
model, where axis-aligned partitions are pre-specified and an 0-1 activeness function was assigned to
each region. With each region-specific linear model being estimated first, the activeness functions are
optimized through a global convex loss function. [9] proposed a local supervised learning through
space partitioning for classification which allows arbitrary partitions and considered linear classifiers,
while [10] employed a Bayesian updating process to partition the feature space to rectangular
bounding boxes and assigned a constant estimation over each partition like CART.

Our approach is closely related to the regression tree (regression part of CART, [11]), a well-known
region-specific approach that used a constant-valued predictor within each terminal node. There
have been tree-based algorithms which assigns linear predictors in terminal nodes, which tend to
be heuristic without theoretical analysis. One group of the methods [12, 13, 14] adopted splitting
algorithms similar to that of CART, which tend to ignore the correspondence between the evaluation
criteria for splits and the models in terminal nodes. Another group [15, 16, 17, 18, 19] employed
heuristic criteria designed to make the subsets more compliant for linear models in one step, without
considering the properties of the estimated boundaries. Our split selection algorithm is closely related
to GUIDE [17, 18] as both utilize the estimated residuals ê at a node level. However, GUIDE used
the signs of ê that would be less informative than using ê via the Kenall’s τ . Another difference is
that GUIDE considered the marginal association between signs of ê and the regressors instead of
conditioning on a split variable and level, which can lead to the mis-identification of the split variable.

2 Segmented Linear Regression Models

This section presents the framework of SLRT, and provides the motivation and the theoretical
properties to the computational algorithms in Section 3.
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2.1 Framework

Consider the relationship between a univariate response Y and a multivariate explanatory covariate
X = (X1, · · · , Xp)

T . Assume that the mean regression function m(X) = E(Y |X) is partition-wise
linear over L0 unknown partitions {Dl}L0

l=1 in the domain of X so that

Y =

L0∑
l=1

(αl +X ′βl)1(X ∈ Dl) + ε, (1)

where (αl, βl) are regression coefficients over domain Dl and ε is the random error satisfying
E(ε|X) = 0. In this paper, we consider the case of axis-aligned partitions {Dl}, which are
determined by a collection of split levels {Xjq = aq}Q0

q=1. The model may be extended to more
general shape of {Dl} by undergoing pre-transformations, which will be a topic for a future study.

The determination of {Dl} is equivalent to selecting the split variable and level pairs, namely
S = {(jq, aq)}Q0

q=1, whereQ0 is determined by L0 and the geometry of {Dl}. The task of partitioning
structure learning is to identify the underlying split variables and estimate the split levels consistently.
We adopt the computationally efficient regression tree approach by applying the split variable and
level selection algorithm recursively, ending with terminal nodes for the desired partitions.

2.2 Statistical Analysis of Criterion Functions

To select the optimal split variable and level at a node, we fit the least square regression over the node
and select the optimal split by studying the rank correlation between the estimated residuals and the
regressors given a candidate split variable and a split level. This is computationally more efficient
than the commonly used cost minimization procedure [11, 17, 20], which would require repeated
least square fitting for each candidate split variable and level.

For the ease of presentation, we consider the one-time split selection over the root node t0 which
contains data Dt0 of n independent observations {X(i), Y (i)}ni=1 generated from Model (1). We are
to partition Dt0 into two subsets to make the data on each subset more compliant to a linear model.
To attain this, let Ŷ = α̂t0 +X ′β̂t0 be the fitted ordinary least square (OLS) regression over Dt0 , and
ê=Y − Ŷ be the estimated residuals. If the underlying regression function m(X) is nonlinear, the
non-linearity will be reflected in the residuals ê and their dependence with the potential split variables.
Indeed, if m(X) is piecewise linear, the estimated residuals ê is also piecewise linear in X since
ê =

∑L
l=1

(
(αl − α̂t0) +X ′(βl − β̂t0)

)
I(X ∈ Dl) + ε. A regressor Xk and ê tend to be accordant

(discordant) for positive (negative) coefficient within each partition. To capture the dependence, we
employ the Kendall’s τ coefficient [6] to define the following criterion function:

C(j, a) =

p∑
k=1

{|τ̂ (Xk, ê|Xj ≤ a)|+ |τ̂ (Xk, ê|Xj > a)|} , (2)

for 1 ≤ j ≤ p, a ∈ {Xj(i)}ni=1 and

τ̂
(
Xk, ê

∣∣Xj ≤ a
)

=

∑
i<i′

i,i′∈ItL (j,a)

sgn ((Xk(i)− ê(i))(Xk(i′)− ê(i′)))

NtL(j, a)(NtL(j, a)− 1)/2
(3)

is the Kendall’s τ statistic, where ItL(j, a) = {i
∣∣Xj(i) ≤ a, 1 ≤ i ≤ n} is the index set for the left

partition split by variable Xj at level a and the sample size of ItL(j, a) is NtL(j, a) = |ItL(j, a)|.
The τ̂(Xk, ê

∣∣Xj > a), ItR(j, a) and NtR(j, a) are defined analogously.

Based on C(j, a), we propose the split selection Algorithm 1 in Section 3.1, which is essentially
motivated by the following Lemma 2.1.

Lemma 2.1 Suppose the regressors are uncorrelated conditional on each partition of {Dl}L0

l=1. As-
sume the following technical conditions: (1) E(ε|X)=median(ε|X)=median(Xj−E(Xj)|Xk) =

0 for k 6= j; (2) for (jk, ak)∈S , 0<P(X
(s)
jk
≤ak|X(s)

j′ ≤a′)<1 when (j′, a′) 6= (jk, ak). Let C̄(j, a)

be the probability limit of C(j, a). Then, for any (j′, a′) /∈ S , C̄(j′, a′) < C̄(jq, aq) for any (jq, aq) ∈
S, with S being the genuine set of split variable and level pairs.
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The proof of Lemma 2.1 includes two phases. We firstly investigate the simple case where L0 = 2,
and then generalize the conclusion to L0 ≥ 2 using the law of iterated expectation. Please refer to
the supplements for the details and a further discussion about the technical conditions. Intuitively
speaking, maximizing C(j, a) is to maximize the sum of rank correlations between the estimated
residuals ê and each element of the regressors X over each of the selected subsets ({Xj ≤ a} and
{Xj>a}), such that the rank correlation with X contained in ê could be further distilled by regressing
ê on the regressors conditional on each subset, which leads to a segmented linear regression.

Define the distance d((ĵ, â),S)=minq{|(ĵ, â)− (jq, aq)|
∣∣(jq, aq) ∈ S}. Then, Lemma 2.1 leads to

the following theorem that validates the consistency property of the selected split.

Theorem 2.1 Let (ĵ, â) = argmax C(j, a). Then, P
(
d((ĵ, â),S) > ε

)
→ 0 as n → ∞ under

the assumptions of Lemma 2.1. Specially, when C̄(j, a) has a unique maximum (j∗, a∗), we have

(j∗, a∗) ∈ S and (ĵ, â)
P→ (j∗, a∗) as n→∞.

When the regressors are not conditional uncorrelated as required by Lemma 2.1, we conduct a
linear transformation when calculating the conditional Kendall’s τ coefficients with ê. Specifically,
let X = (X(1), · · · , X(n))′ be the data matrix for n observations of X . Given a split variable and
level Xj = a, define XL =Xdiag{1(Xj(1) ≤ a), · · · ,1(Xj(n) ≤ a)} and XR =Xdiag{1(Xj(1) >

a), · · · ,1(Xj(n) > a)}. Then, there exists a non-singular matrix P (j,a) such that Z′Z is diagonal
for Z=XP (j,a), XLP

(j,a) and XRP
(j,a), which is facilitated by the simultaneous diagonalization

of positive definite matrices (see supplements for detailed calculation procedures of P (j,a) that are
based on the spectral decomposition). Let Z(j̄,ā) = XP (j̄,ā) be the transformed regressors with
Z

(j̄,ā)
k being the k-th element. Define the modified criterion function with index (j̄, ā),

C(j̄,ā)(j, a) =

pr∑
k=1

∣∣∣τ̂t (Z(j̄,ā)
k , ê|Xj ≤ a

)∣∣∣+
∣∣∣τ̂t (Z(j̄,ā)

k , ê|Xj > a
)∣∣∣ , (4)

where Z(j̄,ā) replaces X in (2) and ê is still the residuals of OLS regression at the node t0 without
transformation. The following Lemma 2.2 shows that C(j̄,ā) possesses properties similar to that of C
introduced in Lemma 2.1, while Lemma 2.2 does not require X to be conditional uncorrelated. This
motivates the Algorithm 2 in Section 3.1 and leads to the convergence result in Theorem 2.2.

Lemma 2.2 Let C̄(j̄,ā)(j, a) be the probability limit of C(j̄,ā)(j, a), Then, under the same technical
conditions (1) and (2) as required in Lemma 2.1, argmax(j,a) C̄(j̄,ā)(j, a) = (j̄, ā) when (j̄, ā) ∈ S,
with S = {(jq, aq)}Q0

q=1 being the genuine set of split variable and level pairs.

Theorem 2.2 Let (ĵ, â)(j̄, ā) = argmax(j,a) C(j̄,ā)(j, a). Under the technical conditions in Lemma

2.2, if (j̄, ā) ∈ S, then (ĵ, â)(j̄, ā)
P−→ (j̄, ā) as n→∞.

Theorem 2.2 implies that the convergence of
(
ĵ, â

)
(j̄,ā)

to (j̄, ā) is a necessary condition for (j̄, ā) ∈
S. This motivates the distance minimization procedure in Line 7 of Algorithm 2 .

3 Partitioning Structure Learning

We first use the recursive partitioning procedures to generate the initial partitions. Then, we employ
the cost-complexity tree pruning procedure to obtain a parsimonious partitions structure.

3.1 Initial Partitions by Recursive Partitioning

The recursive partitioning needs a split selection algorithm at the node level, and a stopping rule for
the termination of the partitioning process, the latter is based on two tuning parameters: Nmin that
controls the sample size in any leaf node and Depmax that limits the depth of the tree.

The split selection is the core of the recursive partitioning. In the following Algorithm 1 of recursive
partitioning, the split is selected by maximizing C(j, a). This is directly motivated by Lemma 2.1,
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that shows the maximum of C̄(j, a) is within the genuine set of split variable and level pairs S.
Besides, according to Theorem 2.1, the selected split level Xĵ = â determined by the maximum of
the criterion function C(j, a) is consistent to one of the underlying genuine partitioning boundary
provided the regressors are uncorrelated conditional on each partition.

Algorithm 1 Recursive Partitioning for Conditional Uncorrelated Regressors

Input: Training data Dt0 = {(Xi, Yi)}ni=1.
Output: Data partitions D = {Di}Li=1.
1: Initialize: No pre-specified partitions, D = ∅; the depth of the root node Dep(t0) = 0.
2: if |Dt0 | < 2Nmin or Dep(t0) > Depmax then
3: return D = D ∪ {Dt0}
4: else
5: Fit a least square linear regression of Y on X over Dt0 and get the estimated residuals ê.
6: Calculate the criterion function C(j, a) for (j, a) in the set of candidate split pairs Ct0 =

{(j, a)
∣∣j = 1, · · · , p, a∈{Xj(i)|(X(i), Y (i)) ∈ Dt0}, Nmin ≤ |{i|Xj(i) > a}| < |Dt0 | −Nmin}.

7: (ĵ, â) = argmax(j,a) C(j, a)

8: Let tL and tR be the left and right child-nodes of t0, Dep(tL)=Dep(tR)=Dep(t0) + 1, with
DtL =

{
(X(i), Y (i))

∣∣∣Xĵ(i) ≤ â} ∩Dt0 and DtR =
{

(X(i), Y (i))
∣∣∣Xĵ(i) > â

}
∩Dt0 .

9: t0 ⇐ tL and execute step 2 − 11.
10: t0 ⇐ tR and execute step 2 − 11.
11: end if

When taking the correlation between regressors into consideration, we apply Algorithm 2 to select
the optimal split over the original untransformed variables, which retains easy interpretability of the
partitions but requires higher computation cost as is analyzed in the following. Since Algorithm 1 has
outlined the recursive partitioning process, Algorithm 2 will concentrate on the split selection at the
node level, which corresponds to Line 5−7 of Algorithm 1.

Enlightened by Theorem 2.2, we select the optimal split by minimizing the distance between (ĵ, â)(j̄,ā)

and (j̄, ā) in Algorithm 2, where the standardized distance d(â(j̄,ā), ā)= |â(j̄,ā) − ā|/σ̂(Xj̄) is used
for j̄ = ĵ(j̄,ā), with σ̂(Xj̄) being the sample standard deviation of Xj̄ .

Algorithm 2 Split Selection for Correlated Regressors

Input: Training data Dt0 = {(Xi, Yi)}ni=1, |Dt0 | > 2Nmin.
Output: The optimal split variable and level pair (ĵ, â); or no splits and t0 is a terminal node.
1: Fit a least square linear regression of Y on X over Dt0 and get the estimated residuals ê.
2: for each (j̄, ā) ∈ Ct0 do
3: calculate the criterion function C(j̄,ā)(j, a) for each (j, a) ∈ Ct0 ;
4: (ĵ, â)(j̄,ā) = argmax(j,a) Cj̄,ā(j, a), the ‘local’ optimal split under (j̄, ā),
5: end for
6: if {(ĵ, â)(j̄,ā)|j̄ = ĵ(j̄,ā)} 6= ∅ then
7: return the optimal split (ĵ, â) = argmin(j̄,ā){d(â(j̄,ā), ā)

∣∣(j̄, ā) ∈ Ct0 , j̄ = ĵ(j̄,ā)}.
8: else
9: return no suitable splits, t0 is a terminal node.

10: end if

As for the computation complexity of Algorithm 2, suppose there are Mt candidate splits in a node t,
then it involves M2

t times of calculations of the criterion functions. Since the calculation of Kendall’s
τ in C(j̄,ā)(·, ·) is of complexity O(Nt log(Nt)), with Nt being the sample size of node t. Hence
the complexity of Algorithm 2 is M2

t O(Nt log(Nt)), which is costly compared to Algorithm 1 that
is only MtO(Nt log(Nt)). Therefore, we may adopt a stopping strategy that terminates the split
process when the min d(â(j̄,ā), ā) in Line 7 in Algorithm 2 is larger than a given threshold.

Applying either Algorithm 1 or Algorithm 2 recursively for split selections leads to an initial tree
Tmax, which determines the initial partitions. We outline the pruning of Tmax in the following.
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3.2 Minimal Cost-complexity Tree Pruning

We adopt the minimal cost-complexity pruning procedure in CART [11], but with a newly defined
cost-complexity measure Iα(T ) for the regression tree T with linear regression models on leaves.

Define the accuracy measure at a node t in a tree T as I(t) =
∑

(X(i),Y (i))∈t(Y (i) − m̂T (Xi))
2,

where m̂
T

(·) is the segmented liner regression function determined by T . The accuracy of T is
I(T ) = n−1∑

t∈T̃ I(t), where T̃ denotes the set of leaf nodes in T and n is the sample size of the
training data. The model complexity of T is measured by the number of leaf nodes |T̃ |.
Taking both the accuracy measure and model complexity into consideration, the cost-complexity
measure Iα(T )=I(T ) + α|T̃ |, where α is a positive penalizing parameter. The optimally pruned tree
T (α) is defined as the smallest subtree of Tmax that minimizes Iα(T ), same as the Definition 3.6 in
[11]. Proposition 3.1 verifies the existence and the uniqueness of T (α) and the nested structure of
{T (α), α > 0} as α varies, which is essential for an efficient programming. The proof is by induction
where the key is an inequality satisfied by Iα(T ). Please refer to the supplementary for details.

Proposition 3.1 Let Tmax be the initial tree, then

(i) given an α, there exists one optimally pruned subtree T (α) of Tmax;

(ii) if α2 > α1, then T (α2) is a subtree of or equal to T (α1).

To obtain the optimally pruned tree, the optimal complexity parameter α∗should be selected. Although
α runs through a continuum of values, there are finite number of subtrees T (α), say K subtrees of
Tmax. Then by Proposition 3.1, there exists an increasing sequence of {αk|k = 1, · · · ,K} such
that T (αk+1) ⊂ T (αk), and for α ∈ [αk, αk+1), T (α) = T (αk). In fact, {αk}Kk=1 can be exactly
calculated from Tmax. Specifically, let Tt be the subbranch of a tree T with node t being its root, then
αk=mint{ I(t)−I(Tt)|T̃t|−1

∣∣t ∈ T and t /∈ T̃} for T =Tmax when k=1 and T =T (αk−1) when k>1.

Therefore, the optimization of α∗ is reduced to selecting an optimal k∗ from {1, · · · ,K}. let
ᾱk =

√
αkαk+1 for 1≤ k≤(K−1)and ᾱ

K
=α

K
. The optimal complexity parameter α∗ is selected

from {ᾱk}Kk=1 by the ten-fold cross-validation to optimize the average predictive accuracy measured
by the sum of squared residuals. Then, the optimally pruned subtree is T (α∗). Let L̂ be the number
of terminal nodes in T (α∗), under certain general conditions for the distribution of ε and given
appropriate α∗, it can be proved that L̂ converges to the genuine number of segments L0 in probability.

4 Leaf Modeling and Ensemble Methods

4.1 LASSO Linear Regression on Leaf Nodes

Let {D̂l}L̂l=1 be the partitions structure determined by T (α∗). Confined on each partition, the regression
coefficients (αl, βl) can be estimated by the ordinary least square. However, as X is the overall
regressors, not each of them necessarily owns a non-zero coefficient over D̂l, and the significant
variables set within each D̂l may vary. Thus, we consider the variables selection within each leaf
node. Besides, as the partitioning process decreases the sample size for estimation in each node, we
would like to determine a smaller set of variables that exhibit the strongest effects on each D̂l.

To this purpose, the LASSO method [7] is employed for the variables selection, where the regression
coefficients (αl, βl) is estimated by

α̂
lasso

l = ȲD̂l ; β̂
lasso

l = argmin
βl

∑
{i|X(s)(i)∈D̂l}

{(Y (i)− Ȳ −X(r)(i)′βl)
2 + λl

p∑
j=1

|βl(j)|},

where ȲD̂l is the sample average over D̂l and λl is the shrinkage parameter selected by cross-validation.

Then, the final prediction function is m̂
lasso

T (α∗)
(X)=

L̂∑
l=1

(
α̂lasso
l +X(r)′β̂

lasso

l

)
1(X(s) ∈ D̂l).
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4.2 Weighted Random Forests

We can implant the Kendall’s τ based partitioning learning algorithm in random forests (RF, [21]) to
create the ensemble predictor. Here we propose the weighted random forests (WRF), that considers
the accuracy of each tree and puts the final predictor as a weighted average to improve the predictions.

Suppose {Tb}Bb=1 are the B regression trees induced from the bootstrap training sets. The RF takes
the simple average over the predictions of all regression trees, that is, m̂RF(X) = 1

B

∑B
b=1 m̂Tb

(X).

Note given the training set and X , {m̂T1
(X), · · · , m̂TB (X)} are independent random variables. The

variance of m̂Tb(X) reflects the predictive accuracy of regression tree Tb, that can be estimated by
I(tTb(X)) for tTb(X) is the leaf node in Tb containing X . According to Proposition 4.1, taking the
variances of single predictors into account will improve the accuracy of the ensemble predictor.

Proposition 4.1 Let {Zb}Bb=1 be independently distributed random variables from a population P ∈
P having a common mean µ and Var(Zb) = σ2

b . LetA be the class of all unbiased linear estimations

for µ. Then, the optimal estimation that minimizes E(A− µ)2(A ∈ A) is
∑B
b=1

1/σ2
b∑B

j=1 1/σ2
j

Zb.

Motivated by Proposition 4.1, we propose the weighted random forests (WRF), which shows improved
predictive accuracy over the RF on the benchmark datasets in Section 5.2.

m̂WRF(X) =

B∑
b=1

1/I(tTb(X))∑B
j=1 1/I(tTj (X))

m̂
Tb

(X). (5)

5 Experimental Results

5.1 Simulation Study

In this part, we would illustrate SLRT with two examples. One is segmented linear regression function
to investigate the performance of partitions structure learning, the other is a general continuous
regression function considered in [22], to illustrate how our method works under a general setting.

First, we consider a regression function m(X) that is segmented linear with 12 segments determined
by 4 binary splits at X1 = 10, X2 = 10, X2 = 15, X4 ∈ {a, b} or {c}:

m(X) = 3X1I{X2 > 15} − 3X1I{X2 ≤ 15} − 3X2I{X2 > 10} − 5X2I{X2 ≤ 10}
+X3I{X1 > 10} −X3I{X1 ≤ 10}+X3I{X4 ∈ {‘a’, ‘b’}} − 3X3I{X4 ∈ {‘c’}}. (6)

Training data of size 1500 was generated from Y = m(X) + ε with ε ∼ N(0, 1) and independent
regressors X1∼U(0, 20), X2∼U(0, 25), X3∼U(0, 10) and X4 took values in {‘a’, ‘b’, ‘c’} with
equal probabilities (see Supplementary for the case of dependent regressors). Figure 1 shows that the
estimated partitions in the terminal nodes of T (α∗) are quite close to the space partitions in m(X).

All Data

x2<15.02 x2>15.02

x4 in { a, b } x4 in { c } x4 in { a, b } x4 in { c }

x2<9.99 x2>9.99 x2<9.93 x2>9.93 x1<9.97 x1>9.97 x1<10.0 x1>10.0

x1<9.87 x1>9.87 x1<9.84 x1>9.84 x1<9.68 x1>9.68 x1<9.91 x1>9.91

Figure 1: The optimally pruned tree T (α∗) of α∗=0.0957, with |T̃ (α∗)|=12 and I(T (α∗))=1.13.

Furthermore, 100 repetitions of the simulation from (6) were made. Figure 2 provides the histograms
of the estimated split levels on X1, X2 and X4, collected from the 100 optimally pruned trees.
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Figure 2: The histogram of split levels in 100 pruned trees

The selected splits concentrated around the genuine split levels with high probability. Specifically,
93% of the splits on X1 were within (9, 11) (the true split at X1 = 10), 94% of the splits on X2 were
within (9, 11)∪ (14, 16) (the true splits at X2 = 10 and 15), and nearly 80% of the splits on X4 were
in the form of {{a, b}, {c}}, with the rest of the 20% of the splits were in the form of {{a}, {b}}.
This strongly supported the consistency results of the split selection procedure and validated the
pruning procedures could effectively remove the redundant splits.

The second example is a regression function that
does not conform the segmented linear form,

m(X)=max{e−10X2
1 , e−50X2

2 1.25e−5(X2
1+X2

2 )},

which was also considered in [22]. Figure 3 demon-
strates the surface of m(X) within the domain of
[−1, 1]2. We generated the training data of 1000
records Y = m(X) + ε, for X1,X2

i.i.d∼ U(−1, 1)
and ε ∼ N(0, 0.01). With the same stopping pa-
rameter of Nmin = 10,Depmax = 10, we applied
SLRT and CART respectively, obtaining the ap-
proximated surface in Figure 4 and 5. Figure 3: The true surface defined by m(X)

Figure 4: The approximated surface by SLRT Figure 5: The approximated surface by CART

Then we calculated the root mean squared prediction errors (RMSPE) on an independent testing
sample of size 500. The RMSPE of SLRT is 0.047, and that of CART is higher at 0.073. Under
this situation, SLRT obtains a locally linear approximation with a large tree structure, which tend to
outperforms CART since it is locally constant. In practice, since the model complexity (the tree size)
is adaptive to the nature of data, it depends on data whether the estimated regression function is a
interpretable segmented linear approximation or a locally linear approximation.

5.2 Comparisons on Benchmark Datasets

The predictive performance is tested on 9 benchmark datasets from the StatLib library [23] and
the UCI Machine Learning Repository [24], where the sample sizes range from 74(Pyrimidine) to
39644(News Popularity) and 5 datasets include categorical variables. Detailed information about the
covariates and sample sizes are reported in the supplementary materials.
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The proposed SLRT with the least square estimation (SLRTLS) and the LASSO (SLRTLASSO) were
compared with three tree-based methods: CART [11], GUIDE [17, 25] and MARS [26], with the
same Nmin and Depmax for all the methods. Ensemble predictors RFSLRT and WRFSLRT are random
forests (RF) and the newly proposed weighted random forests (WRF) equipped with SLRT as the base
predictor. The conventional RF based on CART (RFCART) as well as WRF with CART (WRFCART)
were also implemented to serve as benchmarks. To make the results of RF and WRF comparable,
their predictions were based on the same ensembles of 50 trees and only different in the way of
aggregation. To evaluate the predictive performance, we divided each dataset into 10 subsets and
implemented each method for 10 times using each subset as the testing set and the rest as the training
set, where all methods shared the same training and testing sets. Table 1 summarizes the average
RMSPEs from the 10-fold cross validation, where the integers in parentheses indicate the ranks
within the single and the ensemble predictors, respectively.

Table 1: RMSPE (rank) of 10-fold cross-validation on 9 data sets: data name(sample size). The best
performance is marked in bold italic, within each group of single predictors and ensemble predictors.

Datasets Single Predictors Ensemble Predictors

SLRTLSSLRTLASSO GUIDE CART MARS RFSLRT WRFSLRT RFCART WRFCART

Boston Housing(506) 0.174(2) 0.170(1) 0.187(4) 0.262(5) 0.179(3) 0.162(2) 0.158(1) 0.218(4) 0.200(3)
ComputerHardware(209) 47.89(2) 47.40(1) 48.06(3) 62.60(5) 54.17(4) 38.49(2) 36.77(1) 64.91(4) 39.08(3)
Auto-mpg(392) 2.831(2) 2.791(1) 3.545(4) 3.680(5) 2.942(3) 2.633(2) 2.614(1) 3.273(3) 3.240(4)
Auto-mobile(159) 0.154(2) 0.140(1) 0.231(5) 0.192(4) 0.184(3) 0.160(1) 0.172(4) 0.165(3) 0.162(2)
Kinematics(8192) 0.139(2) 0.138(1) 0.140(3) 0.257(5) 0.198(4) 0.117(2) 0.115(1) 0.249(4) 0.248(3)
Abalone(4176) 2.161(3) 2.141(1) 2.151(2) 2.497(5) 2.161(3) 2.116(2) 2.113(1) 2.458(4) 2.456(3)
Parkinson(5875) 9.374(3) 9.327(2) 9.300(1) 10.534(5) 9.660(4) 8.691(2) 8.679(1) 10.326(4) 10.317(3)
Pyrimidine(74) 0.088(2) 0.093(3) 0.096(5) 0.094(4) 0.074(1) 0.078(4) 0.076(3) 0.073(2) 0.049(1)
NewsPopularity(39644) 0.877(4) 0.872(2) 0.873(3) 0.903(5) 0.865(1) 0.868(1) 0.868(1) 0.901(3) 0.901(3)

Among the five single tree predictors, SLRTLASSO attained the best prediction in six dataset, MARS in
two, and SLRTLS and GUIDE in one, respectively. This demonstrates the advantages of the proposed
SLRT. Directly comparing SLRT with GUIDE, SLRTLS had better prediction in 7 out of the 9 datasets
and SLRTLASSO in 8 out of 9 datasets. SLRT also compared favorably to MARS, having better
performance in 6 out of the 9 datasets. CART appeared to be the worst predictor in seven datasets,
while GUIDE ranked the last on the other two datasets. The better performance of SLRTLASSO over
SLRTLS shows the benefits of conducting the variables selection on the leaf nodes.

The ensemble predictors RFSLRT and WRFSLRT showed better performance than the conventional
RF with CART in 8 out of 9 datasets. Meanwhile, the ensemble predictors tended to outperform
the single predictors, which suggests the effects of the bagging operation. The proposed WRF also
showed improved predictions over the RF, which benefit from the weighting procedure that reduces
the importance of those under-performing trees.

6 Conclusion

We propose a tree based approach called segmented linear regression trees (SLRT), which is based
on two consecutive algorithms for partitioning structure learning: one for the split selection at each
internal node based on a cumulative Kendall’s τ statistic; the other for the parsimonious partitioning
structure by tree pruning through an adaptive cost-complexity measure. Theoretical analysis shows
that the split selection algorithm leads to the consistent identification and estimation of both the
genuine split variables and the split levels, and the pruning procedure ensures the consistent estimation
of the genuine number of segments. We implant the SLRT as the base predictor in RF and WRF
to create two breeds of ensemble predictors. The proposed procedures are evaluated by numerical
simulations and case studies, which shows advantageous predictive accuracy over other tree-based
methods, and in creating more powerful breeds of ensemble predictors.
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