Under review as a conference paper at ICLR 2020

GEOMETRY-AWARE VISUAL PREDICTIVE MODELS OF
INTUITIVE PHYSICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning object dynamics for model-based control usually involves choosing
among two alternatives: i) engineered 3D state representations comprised of 3D
object locations and poses, or, ii) learnt 2D image representations trained end-
to-end for the dynamics prediction task. The former requires laborious human
annotations to extract the 3D information from 2D images, and does not permit
end-to-end learning. The latter has not shown until today to generalize across
camera viewpoints or to handle camera motion and cross-object occlusions. We
propose neural architectures that learn to disentangle an RGB-D video steam into
camera motion and 3D scene appearance, and capture the latter into 3D feature
representations that can be trained end-to-end with 3D object detection and object
motion forecasting. We feed object-centric 3D feature maps and actions of the
agent into differentiable neural modules and learn to forecast object 3D motion.
We empirically demonstrate the proposed 3D representations learn object dynam-
ics that generalize across camera viewpoints and can handle object occlusions.
They do not suffer from error accumulation when unrolled over time thanks to the
permanence of object appearance in 3D. They outperform by a margin both 2D
learned image representations as well as engineered 3D ones in forecasting object
dynamics.

1 INTRODUCTION

For agents to control their environment. they need models that describe how the environment reacts
to their actions and interactions (Miall & Wolpert, [1996; [Haruno et al., [1999). Dynamic models
have a vital role for the development of motor control (Miall & Wolpert, |1996)) as they permit
self-training by mentally simulating the results of the agent’s actions. Such mental planning is
especially important in unfamiliar environments, where expert reactive policies have not yet been
acquired (M. Lake et al., 2016). Dynamics models encode cause-and-effect relationships during
agent-object and object-object interactions, and describe the dynamics of world states given actions
of the agent. World states are extracted from the sensory observation streams of the agent, e.g., visual
RGB, or RGB-D streams. We call such learnt dynamic models intuitive physics as they operate on
state representations and abstractions learnt by the agent, as opposed to mass, inertia, accurate 3D
object shape, coefficient of friction and so on, required by Newtonian physics. Though Newtonian
physics also describes dynamics of the world that can be used for robot control, yet, it suffers from
under-modelling: the Newtonian system of equations would need to be terribly complex to describe
sufficiently well picking up a mug in a cluttered environment. Instead, intuitive physics and learnt
dynamics models extract from the sensory streams state information sufficient for solving the task,
and find shortcuts to achieve this, bypassing Newtonian physics requirements. Indeed, we, humans,
excel in manipulation despite that less than 1% of us know what inertia is. We can all effectively
drink coffee from our coffee mug, despite that we do not have an accurate perception of the coffee
particles and their displacements.

Many recent works have tried learning dynamics of visual state representations using deep neural
networks. A central question then is: how do we represent the world state? We identify two main
research threads:

i) Methods that predict the future in a 2D projection space, such as future visual frames (Math-
1eu et al., 2015} |Oh et al., [2015a} [Finn et al., 2016), CNN encodings of future frames (Ha &
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Schmidhuber;, 2018;|Chiappa et al.L[2017), or object 2D motion trajectories (Fragkiadaki et al., 2015;
Battaglia et al.,|2016; (Chang et al., |2016). Such dynamics models have not been shown to general-
ize across environment variations—e.g. background clutter—or camera viewpoints. High capacity
neural networks are used to learn dynamics of training environments of very limited variability, e.g.,
of a constant camera viewpoint. Moreover, works that use object factorization biases (Fragkiadaki
et al., 2015; Battaglia et al.| [2016; [Chang et al.l 2016) and share weights of the predictive model
across objects present in the scene, either assume the objects’ masks are given (Fragkiadaki et al.
20155 Battaglia et al.,|2016; Chang et al.,|2016) or trivial to obtain from color segmentation.

ii) Methods that predict the future in a hand-designed 3D space of object or particle locations
and poses extracted from the RGB images using extensive human annotations (OpenAl et al., 2018))
or instrumentation (OpenAl et al. 2018} |Wu et al., 2017; |Li et al., 2019; Mrowca et al., [2018]).
In 3D, objects move and deform under force applications during robot-object and object-object
interactions, but rarely do they drastically change appearance. In contrast, 2D images— and their
CNN activations as a result— change drastically over time due to occlusions and dis-occlusions,
camera motion and changes of the camera field-of-view. As a result, a temporal change predictor
has a lot more to account for in 2D than in 3D. Moreover, if we could detect the objects in 3D, it is
trivial to reason about free space, predict object collisions and plan obstacle-avoiding trajectories in
truly novel environments. Similar capabilities and reasoning would require many examples to learn
directly from 2D RGB images and would have questionable generalization (OpenAl et al.l [2018).
Yet, explicitly engineered 3D representations such as 3D boxes and their arrangements cannot be
learnt end-to-end for the end prediction task or under auxiliary objectives, since the engineer decides
what to retain from the RGB input. Also, such models cannot be used to learn physics in the real
world since these 3D state representations are hard in general to obtain from raw RGB input in-the-
wild (OpenAl et al.l 2018)), outside multiview environments (Li et al., [ 2019)).

We embrace the attractiveness of end-to-end dynamics learning from RGB or RGB-D streams of
the approaches in the first research thread, and conjecture that their limited generalizability is due
to the fact that 2D videos in fact violate basic rules of Newtonian Physics: objects “shake” under
camera motion, they change size as a result of zoom-in or zoom-out, and they appear and disappear
as a result of camera or object motion. This is in turn due to the fact that the camera motion is
entangled with objects’ motion and appearance in video streams. Human brain performs effortlessly
such disentanglement: we perceive a stable computer screen while moving our gaze around our
desks. Thus, when we imagine how the screen will move when pushed, such prediction is carried
out in the egomotion-stable model of the world we infer. This allows us to effortless generalize
dynamics across camera viewpoints.

We propose learning models of intuitive physics in a latent egomotion-disentangled 3-dimensional
feature space that our agent learns to infer from 2.5D video streams by predicting results of its
(ego)motion and end-effectors’ motion. We present neural architectures that estimate camera motion
and disentangle it from the 3D feature appearance of the scene using explicit 3D feature transforma-
tions in their latent feature space (Figure [[[top). As a result, objects in the 3D latent feature space
are permanent: they persist despite occlusions and dis-occlusions in the corresponding 2.5D video
input. It is thus easy to detect and segment such objects in 3D using the egomotion-disentangled 3D
feature map as input to a per-frame 3D object detector. Then, object-centric 3D feature maps are
used as the input to a forecasting neural module that learns to predict an object’s future 3D motion
conditioned on a robot’s action, as shown in Figure E]bottom. We unroll the learned models forward
in time and show we can effectively push objects to desired 3D locations. We show such forward
unrolling benefits from the permanence of 3D feature representations, where object appearance does
not vary much over time, rather, objects simply change locations and orientations according to the
robot’s actions.

We test the proposed architectures in perceiving objects in 3D and predicting their 3D motion re-
sulting from pushing actions of a robot agent. We empirically show our model outperforms models
that either do not take into account object appearance by using 3D object box centroids, ground-
truth or estimated, or models that use 2D visual features obtained from 2D image views. Given
completely new objects and arrangements, our model can detect the objects in 3D, find optimal
paths, and choose the right actions to push the object to desired target locations given a single view
as input. The proposed representations are end-to-end differentiable under both (supervised) mo-
tion forecasting and 3D object detection, as well as (self-supervised) view prediction, that aids their
generalizability. In summary, our contributions are:
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e Re-conciling 3D representations and end-to-end learning for model learning and control
with object-centric predictive models supervised by motion and view prediction, and 3D
object detection.

e Model-based control by unrolling our model’s predictions forward in time in the 3D latent
feature space.

e Strong generalization to environments of novel objects, novel number of objects, novel
objects spatial arrangements and novel camera viewpoints.

e Ablations and comparisons against both 3D engineered baselines and end-to-end learnt 2D
feature baselines.

2 RELATED WORK

Model learning and model-based control Many researchers have realized the importance of
model learning, both for model-based control (Ha & Schmidhuber, 2018} |[Finn & Levine, 2016;
Fragkiadaki et al.| 2015) as well as a premise towards unsupervised learning of visuomotor rep-
resentations (Agrawal et al.| [2016; |Pinto et al.| 2016)). Several computational models for learning
intuitive physics have been proposed, under various names, such as, world models (Ha & Schmid-
huber}, 2018]), action-conditioned prediction (Oh et al.| 2015b), forward models (Miall & Wolpert,
1996)), neural physics (Chang et al.,[2016)), neural simulators, etc. A central question is the represen-
tation space in which such predictive learning is carried out. One line of work proposes to learn such
representations by predicting future visual observations directly (Oh et al.,2015b). To facilitate pre-
diction of future frames, many works predict 2D pixel motion fields, which they use to warp frames
forward in time in a differentiable manner (Finn & Levinel [2016; [Ebert et al., 2017). This relies on
the fact that pixel appearance persists while pixels themselves are rearranged spatially over time, yet
such assumption can easily break during occlusions and camera motion where some pixels might
disappear and some new pixels might be introduced to the frame. Some works constrain the flow
fields to be piece-wise affine (Finn et al., [2016; Byravan & Fox| 2016)), but cross-object occlusions
still remain a problem. An alternative is to predict the future in some abstract feature representation,
e.g., CNN feature encodings of future visual frames. One line of work learn such abstract frame en-
coding using autoencoding objectives (Stadie et al.| 2015). Works of (Agrawal et al., 2016} |[Pathak
et al.,2017) combine such (forward) model learning, with inverse model learning (given current and
future observations or their encoding, they predict the action that caused the transition), in order to
learn to ignore part of the visual scene not directly controllable by the agent. However, such models
have not been shown to generalize across either camera viewpoints or scene changes (Kansky et al.,
2017).

Obect-centric implicit representation To generalize across different scenes, there is a number of
works that follow object-centric biases, detect objects in the visual frames and predict their 2D or 3D
trajectories, and share weights of such object-centric predictive model across objects present in the
scene (Fragkiadaki et al.,[2015; Battaglia et al.,|2016). Cross-object interactions are captured either
implicitly by considering large image crops around an object (Fragkiadaki et al.,2015)), or explicitly
using edges in a graph neural network architecture (Battaglia et al.,|2016; |Sanchez-Gonzalez et al.,
2018). While these works propose object-centric predictive models that operate in either a 1D or
2D space, in this paper, we consider to extend the idea in a 3D feature space and propose to encode
object feature by applying a wide enough 3D crop around the object.

Geometry-aware learnable 3D representations Some recent works have attempted various
forms of geometrically-consistent temporal integration of visual information (Gupta et al., 2017}
Henriques & Vedaldil 2018 Tung et al.| [2018), in place of geometry-unaware vanilla LSTM
(Hochreiter & Schmidhuber, [1997) or GRU (Chung et al.| 2014) models. Our work builds upon
geometry-aware RNNs (GRNNs) of [Tung et al.| (2018). GRNNs are neural networks that integrate
multi-view visual observations into geometrically-consistent egomotion-stabilized 3D deep feature
maps by predicting image views from queried viewpoints. Our work extends those architectures for
object-centric action-conditioned dynamics learning and model-based control.
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Figure 1: Neural architectures for dynamics learning in an implicit 3D feature space (A): Inputs
to our model are one or more images of the scene captured from various camera viewpoints. (B):
Each RGB image is unprojected into a set of 3D feature maps through ray shooting and 3D convo-
lutions, oriented to match a common coordinate system, and integrated through plain averaging into
a single 3D feature map M, following (C): An object detector detects 3D object
boxes and 3D object voxel occupancies using the scene 3D feature M as input. (D): The detected
boxes are used to crop the scene 3D feature maps around the object of interest and feed it to a 3D
encoder-decoder network to predicts the object’s future 3D relative rotation and translation for the
object. The action of the agent is represented as a segmentation and 3D flow in the object crop.

3 LEARNING OBJECT-CENTRIC 3D IMPLICIT DYNAMIC MODELS

We consider agents equipped with cameras and end-effectors that can change camera viewpoint and
push objects present in the scene (Figure [I). Our dynamics model is a recurrent neural network
that given one of more RGB-D views x;,7 = 1. .- K of a (static) scene from corresponding camera
viewpoints C;, i = 1--- K whose relative pairwise poses we assume known, and an optional action
of the end-effector, it predicts the future state for the object of interest.

Our model disentangles 3D appearance of the scene from the motion of the camera—changes of
viewpoint—and motion of the objects. It represents the scene appearance in terms of world-centric
3D feature maps, as opposed to image-centric 2D feature maps of vanilla CNNs. In comparison to
engineered 3D representations that also disentangle appearance from camera motion, our 3D object
feature appearance is learned end-to-end from any number of 2.5D camera views by optimizing for
the end dynamics prediction objective. Thus, the proposed model combines the best of 3D object
permanence and end-to-end learning. We assume that the 3D appearance of an object does not
change over time. Under this assumption, the future state of the object is entirely represented by the
3D rotation and translation it undergoes as a result of the (optional) pushing action. We note that
appearance constancy holds exactly in 3D for most rigid objects, but only approximately in 2D due
to occlusions and dis-occlusions.

Our model’s architecture builds upon geometry-aware recurrent neural networks (GRNNs) of
(2018), that given RGB or RGB-D image sequences as input, learn a set of geometrically-
consistent 3D deep feature maps of the scene M € R**"*dx¢ by optimizing a downstream objec-
tive. In contrast to popular convolutional LSTM or GRU models used in the literature
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& Schmidhuber 1997} |Shi et al., 2015} Song et al., 2018; Zhang et al.,|2018), whose hidden state is
image-centric, GRNNs’ hidden state is world-centric: it is a multi-dimensional tensor with 3 spatial
dimensions (X, Y, Z) and multiple feature dimensions, akin to a 3D map of the scene, which for
every (x,y, z) grid location holds an 1-dimensional feature vector F, as we show in Figure |1| right.
That feature vector describes the semantic and geometric content of a corresponding 3D physical
point in the 3D world scene. The map is updated with each new video frame in an egomotion-
stabilized manner: deep features are transformed to match the coordinate system of the map before
fusing features, so that information from 2D pixels that correspond to the same 3D physical point
end up nearby in the map. GRNNs are equipped with trainable neural modules in order to map
between 2D pixel space and 3D feature space in a differentiable manner, as well as to estimate and
transform image features to cancel egomotion. They are inspired by Simultaneous Localization and
Mapping (SLAM) methods (Sturm et al., 2012)), but instead of 3D pointcloud maps they build 3D
feature maps. These feature maps can represent a wide variety of information that is related to the
downstream task, as opposed to merely 3D occupancy. The tasks they considered are 3D object
detection and RGB view prediction. Our work extends those architectures to dynamic scenes, where
object displacements are caused by an agent pushing objects around on a table surface. We focus on
learning object-centric motion dynamics and unroll those forward in time for model-based control.

Our 3D object detector module follows the architecture of Mask R-CNN (He et al.,[2017), a state-of-
the-art 2D visual detector, re-purposed to operate with 3D input and output: the input is the motion-
disentangled 3D feature map M and the output is object 3D bounding boxes and 3D object binary
voxel occupancies. We use supervision from groundtruth 3D object boxes and masks supplied by our
physics simulator. For each detected object, we compute a fixed-size axis-aligned 3D box around the
predicted 3D centroid and crop accordingly to obtain an object-centered 3D feature map,fed into our
object-centric dynamics module. We use the predicted object 3D segmentation mask m to sample
nearby gripper locations for initiating the pushing motion. Specifically, the action of the agent is
represented in terms of a segmentation mask for the robotic arm and a corresponding 3D flow field
of the gripper’s motion, resulting in an action representation in the Cartesian space.

Our object-centric dynamics module is a single-step 3D motion predictor. Given an object-centric
3D feature crop and the action representation, it predicts the object 3D motion for the next time step,
in terms of relative rotation §6 and translation dp, as shown in Figure[I] Specifically, we predict the
quaternion representation of the relative 3D object rotation. For every object in the scene and for
each time step our loss reads:

L(5p, 86, 6p,60) = [|6p — 3p||1 + (1 — (86 - 66)?)), (1)

where dp and 66 denote groundtruth translation and rotation, respectively.

Model unrolling using temporal skip connections Our dynamics module predicts the single step
3D motion of an object given an agent’s actions. To predict long term results of actions, or results
of long action sequences, the model is unrolled over time by feeding its predictions back as input.
Such forward model unrolling is notorious for causing error accumulation over time (Ross et al.,
2010). Permanence of 3D representations allows us to use a novel model unrolling mechanism that
iteratively warps the initial 3D object appearance, as opposed to the one computed in the last time
step, minimizing error accumulation. Specifically, given estimated 3D object motion, dp, §6, and
predicted from the 3D detector object mask m, we rotate and translate the object differentiably using
3D spatial transformers. We iteratively update the 3D rotation and translation with respect to the first
time step, and each time warp the 3D object feature tensor using the cumulative predicted motion.
After we rotate and translate the object features and the corresponding mask, we use them to com-
pose a new scene tensor and crop again at the predicted object location. The predicted appearance
for both the scene and the objects can be updated using the following equations:

my, = R(mg,07),Yo € O (2)
Mii1 = Y DRAW(m{,; © R(MG, 6;),p}.1), Yo € O 3)
0€0
My, =mi @ RME,0)+ (1-mfi)© Y CROP(Myy1,pf,),Voi €0, (4)
0;€O0ON0;#0;

where ® denotes element-wise multiplication, R(-, ) denotes the rotation operation given angle 6,
DRAW (-, p) denotes the operation of putting an object-centric tensor back to the scene tensor at
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location p, and CROP(-, p) denotes cropping an object-centric tensor from the scene tensor, and m
denotes 3D object mask in terms of a binary 3D voxel occupancy. Such temporal skip connections
is a benefit of the what-where decomposition of the proposed 3D feature representations.

Model-based control To control an object towards desired locations on the table surface we follow
a receding horizon control (Tassa et al., |2008) scheme. We search over randomly sampled actions
around the objects. For each sampled action sequence, we unroll the model forward in time as
detailed in the previous paragraph, evaluate how close its predicted final location is to the desired
goal 3D location, and select the action sequence with the minimum error. We then execute the first
action of the selected sequence and re-plan, till either we reach the goal or a maximum number of
planning look-ahead steps. Specifically, a receding horizon window of 1 step proves sufficient in
our experiments.

Auxiliary view-prediction objective The proposed architectures are end-to-end differentiable.
We train them under the joint objectives of 3D object detection, 3D object motion forecasting, and
RGB prediction, an auxiliary self-supervised objective, similar to Tung et al.|(2018). This helps the
3D object detector generalize to unknown objects with smaller number of groundtruth annotations,
as independently empirically verified by authors of Harley et al.| (2019).

4 EXPERIMENTS

We train and test our dynamics model in the Bullet Physics Simulator. We create scenes using 31
different 3D object meshes, including 11 objects from the MIT Push dataset (Yu et al.l [2016) and
20 objects selected from 4 categories (camera, mug, bowl and bed) in the Shapenet Dataset (Chang
et al., |2015). Each scene is observed from multiple viewpoints. We consider a Kuka robotic arm
equipped with a single rod (as shown in Figure[I)) pushing objects on the table. Each pushing video
contains a pushing trajectory of 5 steps. The objects move freely on a planar workspace of size
0.6m x 0.6m. We show experimental results below on pushing tasks in both 1-obj scenes and 2-obj
scenes. Specifically, 2-obj experiments contain data where the object pushed by the robot in turn
pushes the other object. With this setting we show our model’s capability to model dynamics for
inter-object interactions.

We train our model using three randomly selected views as input, and we test it using one or three
randomly selected views as input. All images are 128 x 128. Further details of the dataset collection
are included in the appendix.

Our experiments aim to evaluate the accuracy of our model for single step and multi-step motion
prediction, its ability to generalize across camera viewpoints, its performance in pushing objects to
desired locations, and its ability to detect and segment objects in 3D from RGB streams in diverse
environments, a necessary step for applying the learned object-centric dynamics.

We compare our model against the following baselines: i) a model that uses groundtruth 3D object
centroid position and orientation as object state (XYZ), similar to (OpenAl et al., 2018} Wu et al.,
2017), ii) a model that uses object-centered 2D image patches, computes 2D feature embeddings,
tiles the embeddings with the action representation and camera pose of the image, and concatenates
those across views (2D-multiview ), extending 2D object-centric models to take multiple views as
input, iii) our model with access only to multiview depth with no RGB information (ours-depth ).

4.1 SINGLE STEP MOTION PREDICTION

We evaluate performance of our model and baselines in single step motion prediction in Tables [I]
and[2] We evaluate predicted translation error in Euclidean distance and predicted rotation error in
degrees. In Table[I} we show the performance of our model and baselines using different number of
views for pushing 1 object. The XYZ baseline does not use image views and has the same error in
both scenarios. Our model outperforms the baselines both in position and orientation prediction. 2D-
multiview performs on par with XYZ, which means it does not gain from having access to additional
appearance information. The prediction error of our single view model is only slightly higher than
the model using three random views as input. Our model is flexible enough to accept a variable
number of views as input, and improve the more views are available, yet, it can accurately predict
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future motion even from a single view. As we see, the 2D-multiview baseline does not improve with
more views available. We believe this is due to the geometry-unaware way of combining multiview
information by concatenation, though the model does have access to camera poses of the input
images.

In Table[2]row 1, we show prediction performance in the 2-obj scenes. Our proposed model shows a
clear advantage over all the baselines. All the experiments so far are done with the aforementioned
single rod as the Kuka robot’s end-effector. Additionally, we conducted another experiment where
we test our model’s performance over varing end-effector geometries. We train our model in the
2-obj scene, using only the single rod Kuka robot as the pushing agent for data collection, and then
test the model on pushing tasks using robot with 6 different end-effectors with varying geometries
(see the appendix for the detailed designs). Interestingly, as shown in Table [2[row 2, our model is
able to generalize well to novel end-effector design although it’s only trained on a simple rod-shape
end-effector, since it captures such dynamics by learning inter-object interactions, where the objects
provide geometry diversities.

Experiment Setting | XYZ  2D-multiview ours-depth  ours

object position (mm) 3views + gt-bbox | 17.68 17.72 12.38 9.02
object orientation (degree) 6.13 7.68 5.79 5.62
object position (mm) lview + gt-bbox 17.68 17.60 12.26 9.80
object orientation (degree) 6.13 7.85 5.96 5.84

Table 1: Single step prediction error with a single object. We show prediction error using different
number of views as inputs.

Experiment Setting | XYZ 2D-multiview ours-depth ours

object position (mm) 3views + gt-bbox 13.9 13.9 8.30 7.12
object orientation (degree) 10.3 11.7 3.90 3.94
object position (mm) 3views + gt-bbox 19.4 23.2 13.6 12,5
object orientation (degree) + varfinger 11.4 12.8 4.06 4.07

Table 2: Single step prediction error with multiple objects. We evaluate the models with fingertips
of various shape.

Inferring 3D object detections for object-centric dynamics Most previous works on learning
object-centric dynamic models assume object segmentations given, i.e., they assume the state of
the simulator known, and they focus on approximating its next-step function. However, accurately
detecting objects in 3D is an unsolved problem, and given the projection artifacts and occlusions
in the input RGB stream, 3D object detection is as difficult as, if not more difficult, than applying
learned dynamics over ground-truth 3D boxes. The architectures we propose invert the input RGB
stream to obtain a stable 3D feature model of the scene. Such architectures are ideal for extracting
3D object detections that persist over time despite occlusions (Tung et al., [2018)). In Table |3] we
show motion prediction performance using the 3D object detector built on top of the 3D latent
representation. Our model outperforms all the baselines, and reaches comparable results as the one
using groudtruth object poses.

| Experiment Setting | XYZ  2D-multiview  ours-depth  ours

object position (mm) 3views + est-bbox | 18.24 17.88 17.60 14.56
object orientation (degree) 10.03 7.62 6.94 6.76

Table 3: Single step prediction error with a single object with detected objects. We show prediction
error using different number of views as inputs, using object pose estimated by the proposed 3D
object detector.

4.2 MULTI-STEPS MOTION PREDICTION

We show unrolling results using the dynamic models trained on single-step motion. XYZ is trivial
to unroll forward in time without much error accumulation since it does not use any appearance
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features. Still, our model outperforms it. Though our model uses appearance features in the form
of 3D feature maps, it uses temporal skip connections to avoid error accumulation. XYZ is blind to
the object’s appearance and thus cannot learn fine-grained motion forecasting for different tailored
to different object shapes. We show qualitative results for multi-step motion prediction in Figure 2]

pueviers O o . M g

(t0)

A A AT A T2,

(front view)
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(bird view)

XYZ-R

Ours-depth
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Figure 2: Forward unrolling of our dynamics model and baselines In the top row, we show
randomly sampled input image views for our model and the ours-depth baseline. The second row
shows the ground-truth motion of the object from the front view. Rows 3-6 show the object motion
from an overhead camera. The ground truth object poses are colored in red while the predicted
object poses are colored in . Their intersected regions stay in black. Our model shows a clear
performance margin over the baselines.

4.3 MODEL-BASED CONTROL

We test the performance of our model in single-step motion prediction by applying it with model
based control. We run 50 examples by randomizing initial and desired object 3D location, as well as
randomizing the camera viewpoint. It is considered a success pushing sequence if all objects end up
within Scm (about half of the average object size) from the target positions on average. We compare
our model against the XYZ baseline in Table ]

| Setting | XYZ ours
1 object | 0.76 0.86
2 objects | 0.64 0.74

success rate
success rate

Table 4: Success rate for pushing objects to target 3D locations.

5 CONCLUSION

We have presented models of object dynamics that invert 2D video streams into a learnt 3D feature
space, detect 3D objects, and predict their future motion therein, given actions of the agent. The
proposed models enjoys the benefits of permanence of 3D representations and end-to-end feature
learning, can generalize across camera viewpoints, can effectively detect objects in 3D to support
object-centric dynamics forecasting, and benefit from view prediction auxiliary objectives. Our em-
pirical findings suggest that learning models of intuitive physics benefits from state representations
that themselves obey physics: states that do not arbitrarily “shake” under camera motion, do not
change size, or appear and disappear, but rather persist over time and are viewpoint invariant, sim-
ilar to the egomotion-stabilized perception we, humans, are capable of. Extending this model to
non-rigid object dynamics and multi-object interactions is a clear avenue for future work.
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A APPENDIX

A.1 DATA COLLECTION DETAILS
For each sequence, we render images from 27 different views including 9 different azimuth angels
ranging from the left side of the agent to the right side of the agent combining with 3 different

elevation angles from 20, 40, 60 degrees. All cameras are looking at the 0.1m above the center of
the table, and are 1 meter away from the look-at point.

A.2 END-EFFECTOR DESIGNS
We designed 6 different types of end-effectors for evaluating our model’s generalizability towards

novel end-effector geometries. They are rod, hexagon, circle, ellipse, square and triangle, as shown
in Figure[3]

VAV V4"

Figure 3: Various end-effector geometries for generalizability evaluation

A.3 IMPLEMENTATION DETAILS

We train our model and baselines for single step prediction. Both after unprojection and after aggre-
gation, we have a 3D encoder-decoder tower with 4 3D convolutional layers and 4 deconvolutional
layers. The channel size is set to 8, 16, 32, 64. We apply relu activation and batch normalization
after each layer. The size of the object-centric latent memory is set to 16. To convert the object mem-
ory to the final motion prediction, we use 4 convolutional layers without batch normalization. The
channel size is set to 32, 32, 64, respectively. We then flatten it as a vector and pass it through two
more fully-connected layers. For the XYZ-orn baseline, we use four fully-connected layers with the
size of 32 for each. We also experiment with deeper and wider network, but the performance seems
similar. For the appearance-based baseline, we use seven convolutional layers with channel size 16,
32, 32, 64, 64, 128 and filter size 3,5,3,5,3,5,3. Each layers has batch normalization and relu acti-
vation. We again flatten the output from the convolutional layers and pass it to two fully connected
layers. For the SLAM baseline, we remove the 2D encoder-decoder tower from our model and we
double the channel size in the following 3D convolutional layers. The learning is set to 1e — 3 for
all the experiments with Adam optimizer.
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