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Abstract
We consider the recently proposed reinforcement
learning (RL) framework of Contextual Markov
Decision Processes (CMDP), where the agent has
a sequence of episodic interactions with tabular
environments chosen from a possibly infinite set.
The parameters of these environments depend on
a context vector that is available to the agent at
the start of each episode. In this paper, we pro-
pose a no-regret online RL algorithm in the setting
where the MDP parameters are obtained from the
context using generalized linear models (GLMs).
The proposed algorithm GL-ORL relies on effi-
cient online updates and is also memory efficient.
Our analysis of the algorithm gives new results in
the logit link case and improves previous bounds
in the linear case. Our work is theoretical and we
primarily focus on regret bounds but we aim to
highlight the ubiquitous sequential decision mak-
ing problem of learning generalizable policies for
a population of individuals.

1. Introduction
Recent advances in reinforcement learning (RL) methods
has led to increased focus on finding practical RL appli-
cations. RL algorithms provide a set of tools for tackling
sequential decision making problems with potential applica-
tions ranging from web advertising and portfolio optimiza-
tion, to healthcare applications like adaptive drug treatment.
However, despite the empirical success of RL in simulated
domains such boardgames and video games, it has seen lim-
ited use in real world applications because of the inherent
trial-and-error nature of the paradigm. In addition to these
concerns, for the applications listed above, the designer has
to essentially design adaptive methods for a population of
users instead of a single system. For example, consider the
problem of optimizing adaptive drug treatment plans for a
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sequence of patients. In such a scenario, one has to ensure
quickly learning good policies for each user and also share
the observed outcome data efficiently across patients. Intu-
itively, we expect that frequently seen patient types can be
adequately dealt with by using adaptive learning methods
whereas difficult and rare cases could be referred to experts.

In this paper, we consider a setting where at the start of
every patient interaction, we have access to some contex-
tual information. This information can be demographic,
genomic or pertain to measurements taken from lab tests.
We model this setting using the framework of Contextual
Markov Decision Processes (CMDPs) previously studied by
(Modi et al., 2018). Similar settings have been studied with
slightly differing formalizations by (Abbasi-Yadkori & Neu,
2014; Hallak et al., 2015) and (Dann et al., 2018). While the
framework proposed in these works is innovative, there are
a number of deficiencies in the available set of results. First,
theoretical guarantees (PAC-style mistake bounds or regret
bounds) sometimes hold only under a restrictive linearity
assumption on the mapping between contexts and MDPs.
Second, if non-linear mappings are introduced, they do not
always deal properly with the requirement that next-state
distributions be properly normalized probability vectors.

We address these deficiencies using generalized linear mod-
els (GLMs) to model the mapping from context to MDP
parameters. Our results provide new bounds for the logit
link and improve existing results even in the simpler linear
case. In addition, we focus on computational and space
complexity concerns for learning in such CMDPs. Our
proposed algorithm uses the popular optimism under the
face of uncertainty (OFU) approach and relies on efficient
online updates, both in terms of memory and computation
time. It therefore differs from the typical OFU approaches
whose running time scales linearly with number of observed
contexts. Finally, the proposed algorithm also results in
a cumulative policy certificate bound as studied by (Dann
et al., 2018).

Outline In Section 2, we describe the setting formally with
the required assumptions and notation. We present a method
for confidence set construction in Section 3. Section 4
uses the confidence sets to develop our main algorithm
GL-ORL and provides its theoretical analysis. In Section 6,
we show a regret lower bound for our setting. After giving
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a general method for obtaining confidence sets under prior
information (Section 5) and a discussion of related work
(Section 7), we conclude in Section 8.

2. Setting and Notation
The agent in this setting interacts with a sequence of
fixed horizon tabular MDPs which are indexed by contexts
xk ∈ X where X ⊂ Rd. Each episode is a sequence
of length H : {sk,1, ak,1, rk,1, . . . , sk,H , ak,H , rk,H} with
states sk,h ∈ S , actions ak,h ∈ A and rewards rk,h ∈ [0, 1].
In each episode, the state and reward for each timestep h+1
are sampled from the contextual MDPs (Mk) parameters:
P (·|sk,h, ak,h;xk) and R(sk,h, ak,h;xk). The actions ak,h
are chosen by the agent’s (contextual) policy πk computed at
the beginning of each episode. We denote the size of MDP
parameters by the usual notation: |S| = S and |A| = A.

We denote the value of a policy in an episode k by the
expected total return for H steps:

V πk = EMk,πk

[ H∑
h=1

rkh

]
The optimal policy for each episode k is denoted by π∗k :=
arg maxπ V

π
k and its value as V ∗. We denote the instanta-

neous regret for episode k as ∆k = V ∗k − V
πk

k . The goal is
to bound the cumulative regret R(K), i.e., sum of these ∆k

for any number of episodes K. Note that this formulation
allows an adversarial sequence of context vectors.

Additionally, for two matrices X and Y , 〈X,Y 〉 :=
Trace(X>Y ). For a vector x ∈ Rd and a matrix A ∈ Rd×d,
we define ‖x‖2A := x>Ax. For a matrices W ∈ Rm×n
and X ∈ Rn×n, we have ‖W‖2X :=

∑m
i=1 ‖W (i)‖2X where

W (i) is the ith row of the matrix. For simplicity, we re-
move the subscripts/superscripts from the notation when
clear from the context. Any norm which appears without a
subscript will denote the `2 norm.

2.1. Generalized Linear Model for CMDPs

We assume that each contextual MDP Mk is obtained by a
set of generalized linear models. Specifically, for each pair
s, a ∈ S × A, there exists a weight matrix W ∗sa ∈ W ⊆
RS×d whereW is a convex set1. For any context xk ∈ Rd,
the next state distribution for the pair is specified by a GLM:

Pk(·|s, a) = ∇Φ(W ∗saxk) (1)

where Φ(·) : RS → R is the link function of the GLM. We
will assume that this link function is convex which is al-
ways the case for a canonical exponential family (Lauritzen,
1996). For rewards, we assume that each mean reward is

1Without loss of generality, we can set the last row W ∗
S of the

weight matrix to be 0 to avoid an overparametrized system.

given by a linear function of the context: rk(s, a) := θ∗>sa xk
where θ∗ ∈ Θ ⊆ Rd. In addition, we will make the follow-
ing assumptions about the link function.

Assumption 2.1. The function Φ(·) is α-strongly convex:

Φ(v) ≥ Φ(u) + 〈∇Φ(u), v − u〉+ α
2 ‖u− v‖

2
2 (2)

Assumption 2.2. The function Φ(·) is L-strongly smooth:

Φ(v) ≤ Φ(u) + 〈∇Φ(u), v − u〉+ β
2 ‖u− v‖

2
2 (3)

We will see that this assumption is critical for constructing
the confidence sets used in our algorithm. We make another
assumption about the size of the weight matrices W ∗sa and
contexts xk:

Assumption 2.3. For all episodes k, we have ‖xk‖2 ≤ R

and for all state-action pairs (s, a), ‖W ∗(i)sa ‖2 ≤ Bp and
‖θ∗‖2 ≤ Br. So, we have ‖Wx‖∞ ≤ BpR for all W ∈ W .

The regret bounds for the proposed algorithms will depend
on these quantities.

2.2. Special Cases

We show that this setting covers contextual MDPs con-
structed through multinomial logit models or linear combi-
nation of base MDPs.

Example 2.4 (Multinomial logit model, (Agarwal, 2013)).
Each next state is sampled from a multinomial distribution
with probabilities:

p(si|s, a) =
exp(W

(i)
sa x)∑S

j=1 exp(W
(j)
sa x)

The link function for this case can be given as Φ(y) =

log(
∑S
i=1 exp(yi)) which can be shown to be strongly con-

vex with α = 1
exp (BR)S2 and smooth with β = 1.

Example 2.5 (Linear combination of MDPs, (Modi et al.,
2018)). Each MDP is obtained by a linear combination
of d base MDPs. Here, xk ∈ ∆d−1, and Pk(·|s, a) :=∑d
i=1 xkiP

i(·|s, a). The link function for this can be shown
to be:

Φ(y) = 1
2‖y‖

2
2

which is strongly convex and smooth with parameters α =
β = 1. Moreover, W ∗ here is the S × d matrix containing
each next state distribution in a column. We have,Bp ≤

√
d,

‖W ∗‖F ≤
√
d and ‖W ∗xk‖2 ≤ 1.

3. Online Estimates and Confidence Set
Construction

In order to obtain a no-regret algorithm for our setting, we
will follow the popular optimism under uncertainty approach
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which relies of the construction of confidence sets for MDP
parameters at the beginning of each episode. We focus on
deriving these confidence sets for the next state distributions
for all state action pairs. In this section, we will assume
that, for all pairs (s, a), Φ, α, B and R are known apriori.
Therefore, for each state-action pair, we have the following
online estimation problem: For t = 1, 2, . . .:

• Propose an estimate Wt and a set C such that, W ∗ ∈ C
with high probability.

• Observe xt ∈ X and a sample yt ∼ ∇Φt(W
∗xt)

where yt denotes the one-hot vector with the value 1 at
the sampled state st.

We consider this as an online optimization problem with
the following loss sequence based on the negative log-
likelihood:

lt(W ;xt, yt) = Φ(Wxt)− y>t Wxt (4)

The utility of this loss function is that it preserves strong
convexity of Φ with respect to Wxt and is a proper loss
function (Agarwal, 2013):

arg min
W

E
[
lt(W ;xt, yt)|xt

]
= W ∗ (5)

Since our aim is computational and memory efficiency, we
carefully follow the Online Newton Step (Hazan et al., 2007)
based method proposed for 0/1 rewards with logistic link
function in (Zhang et al., 2016). This extension to gener-
alized linear models utilizes the structure of multinomial
vectors in various places of the analysis. Let us focus on
the estimation problem for a single state-action pair. The
update rule for the parameter matrix Wt is given below.

Let W1 = 0 and Z1 = λId. We maintain an estimate Wt+1

by the following update rule:

arg min
W∈W

‖W −Wt‖2Zt+1

2
+ η〈∇lt(Wtxt)x

>
t ,W −Wt〉

(6)
where Zt+1 = Zt + ηα

2 xtx
>
t .

We will see that strong convexity of Φ(·) plays an important
role in the analysis and the multinomial GLM assumption
improves the dependence on S. The method only stores
the empirical covariance matrix and solves an optimization
problem using only the current context. Since, the setW
is convex, this is a tractable problem and can be solved
via any off-the shelf optimizer up to desired accuracy. The
computation time for computing these sets for each context
is O(poly(S,A, d)) with no dependence on t. Furthermore,
we only store SA-many matrices of size S × d and covari-
ance matrices of sizes d × d. In Section 4, we will see
that we can obtain an `1 confidence set over the next state

distribution for each context xt if we have access to a con-
fidence set for W ∗. The following key result gives such a
confidence set.

Theorem 3.1 (Confidence set for W ∗). If Wt is obtained
by equation 6 for all timesteps t = 1, 2, . . ., then for all
timesteps, with probability at least 1− δ, we have:

‖Wt+1 −W ∗‖Zt+1
≤ √γt+1 (7)

with

γt+1 = λ‖W ∗‖2F + 8ηBR

+ 2η
[
( 4
α + 8

3BR)τt + 4
α log det(Zt+1)

det(Z1)

]
(8)

with τt = log(2d2 log tet2/δ).

The term γt now depends on the size of the true weight ma-
trix, strong convexity parameter 1

α and the log determinant
of the covariance matrix. We will see later that the term
is of the order O(d log t). Therefore, overall this term has
scales as O(S + d

α log2 t).

3.1. Proof of Theorem 3.1

We closely follow the analysis from (Zhang et al., 2016) and
use properties of the multinomial output to adapt it to our
case. We will denote the derivative with respect to the matrix
for loss lt as ∇lt(Wt) and the derivative with respect to the
projection as ∇lt(Wtxt). Now, using the strong convexity
of the loss function lt, for all t, we have:

lt(Wt)− lt(W ∗) ≤ 〈∇lt(Wtxt),Wtxt −W ∗xt〉
− α

2 ‖W
∗xt −Wtxt‖22︸ ︷︷ ︸

:=bt

Taking expectation w.r.t. the multinomial sample yt, we get:

Eyt [lt(Wt)− lt(W ∗)]
≤ Eyt [〈∇lt(Wtxt),Wtxt −W ∗xt〉]− α

2 bt

0 ≤ Eyt [〈∇lt(Wtxt),Wtxt −W ∗xt〉]− α
2 bt (9)

where the lhs is obtained by using the calibration property
from eq. 5. Now, for the first term on rhs, we have:

Eyt [〈∇lt(Wtxt),Wtxt −W ∗xt〉]
= Eyt [〈∇Φ(Wtxt)− yt,Wtxt −W ∗xt〉]
= (p̃t − pt)>(Wt −W ∗)xt
= (p̃t − yt)>(Wt −W ∗)xt︸ ︷︷ ︸

:=I

+ (yt − pt)>(Wt −W ∗)xt︸ ︷︷ ︸
:=ct

(10)

where p̃t = ∇Φ(Wtxt) and E[yt] = pt = ∇Φ(W ∗xt). We
bound the term I using the following lemma:
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Lemma 3.2.

〈∇lt(Wtxt),Wtxt −W ∗xt〉

≤
‖Wt −W ∗‖Zt+1

2η
−
‖Wt+1 −W ∗‖Zt+1

2η

+ 2η‖xt‖2Z−1
t+1

(11)

Proof. To prove this, we go back to the update rule in (6)
which has the following form:

Y = arg min
W∈W

‖W −X‖2M
2

+ ηa>Wb

with Y = Wt+1, X = Wt, a = ∇lt(Wtxt) = p̃t − yt, b =
xt and M = Zt+1. For a solution to any such optimization
problem, by the first order optimality conditions, we have:

〈(Y −X)M + ηab>,W − Y 〉 ≥ 0

(Y −X)MW ≥ (Y −X)MY

− ηa>(W − Y )b

Now,

‖X −W‖2M − ‖Y −W‖2M

=

S∑
i=1

XiMXi +W iMW i − Y iMY i

−W iMW i + 2(Y i −Xi)MW i

≥ ‖X − Y ‖2M − 2ηa>(W − Y )b

= ‖X − Y ‖2M + 2ηa>(Y −X)b

− 2ηa>(W −X)b

≥ arg min
A∈RS×d

‖A‖2M + 2ηa>Ab

− 2ηa>(W −X)b (12)

Noting that a = p̃t − yt, we get

arg min
A∈RS×d

‖A‖2M + 2ηa>Ab ≥
S∑
i=1

−η2a2i ‖b‖2M−1

≥ −4η2‖b‖2M−1

Substituting this and W = W ∗ along with other terms in
ineq. (12) proves the stated lemma (ineq. (11)).

For bounding ct in ineq. 10, we note that ct is a martingale
difference sequence for which we have:

|ct| = (yt − pt)>(Wt −W ∗)xt
≤ ‖(yt − pt)‖1‖(Wt −W ∗)xt‖∞
≤ 4BR

Similarly, for martingale Ct :=
∑t
i=1 ci, we bound the

conditional variance as

Σ2
t =

t∑
i=1

Eyi
[(

(yt − pt)>(Wt −W ∗)xt
)2]

≤
t∑
i=1

Eyi
[(
y>t (Wt −W ∗)xt

)2]
≤

t∑
i=1

4B2R2

Now, using Bernstein’s inequality for martingales and the
peeling technique as used in Lemma 5 of (Zhang et al.,
2016), we get

t∑
i=1

ci ≤ 4BR+ 2

√√√√τt

t∑
i=1

bi + 8
3BRτt

with probability at least 1− δ. Using the RMS-AM inequal-
ity, with probability at least 1− δ, we get

t∑
i=1

ci ≤ 4BR+
α

4

t∑
i=1

bi +
( 4

α
+

8

3
BR
)
τt (13)

From eqs. (9), (10) and (11), we have

‖Wt+1 −W ∗‖Zt+1

≤ ‖Wt −W ∗‖Zt
− ηα

2
bt + 2ηct + 4η2‖xt‖2Z−1

t+1

Unwrapping the rhs over t and substituting ineq. (13), we
get

‖Wt+1 −W ∗‖Zt+1

≤ ‖W ∗‖Z1 + 2η
[
4BR+

( 4

α
+

8

3
BR
)
τt

]
+ 4η2

t∑
i=1

‖xt‖2Z−1
t+1

≤ λ‖W ∗‖2F + 2η
[
4BR+

( 4

α
+

8

3
BR
)
τt

]
+ 4η2

t∑
i=1

‖xt‖2Z−1
t+1

Using the following Lemma from (Zhang et al., 2016), we
arrive at the result in Theorem 3.1.

Lemma 3.3 (Lemma 6, (Zhang et al., 2016)). We have,

t∑
i=1

‖xt‖2Z−1
t+1

≤ 2

ηα
log

det(Zt+1)

det(Z1)
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4. Optimistic Reinforcement Learning for
GLM CMDP

In this section, we describe the OFU based online learning
algorithm which leverages the confidence sets as described
in the previous sections. Not surprisingly, our algorithm is
similar to the algorithm of (Dann et al., 2018) and (Abbasi-
Yadkori & Neu, 2014) and follows the standard format for
no-regret bounds in MDPs. As can be seen from the algo-
rithm outline, we construct confidence sets for the next state
distributions and rewards for each state-action pair (s, a).
Using that, we compute an optimistic policy to run at the
beginning of each episode. We will use xk to denote the
context for episode k and the online update in Section 3
works with a total of T = KH steps. Now, we can state the
confidence interval for pk(·|s, a) as:

ξ
(p)
k,sa := ‖pk(·|s, a)− p̂k(·|s, a)‖1
≤ β

√
S‖W ∗sa −W k,sa‖Zk,sa

‖xk‖Z−1
k,sa

≤ β
√
S
√
γk,sa‖xk‖Z−1

k,sa
(14)

where quantities with subscript k denote the value at the
beginning of episode k. The pair of matrices W,Z is main-
tained for every state action pair (s, a). For rewards, we
assume the usual linear bandit structure, which has a stan-
dard confidence interval ((Lattimore & Szepesvári, 2018),
Theorem 20.5).

ξ
(r)
k,sa =

(√
λd+

√
1
4 log

detZk,sa

δ2r detλI

)
︸ ︷︷ ︸

:=ζk,sa

‖xk‖Z−1
k,sa

(15)

For the given algorithm using the confidence sets from pre-
vious sections, we can show the following bound:

Theorem 4.1 (Regret of GL-ORL). For any δ ∈ (0, 1), if
Algorithm 4 is run with the estimators from Section 3, then
for all K ∈ N and with probability at least 1− δ, the regret
R(K) is:

Õ
((√dmaxs,a ‖W ∗sa‖F√

α
+
d

α

)
βSH2

√
AK log

KHd

λδ

)
4.1. Proof of Theorem 4.1

We first begin by showing that the computed policy’s value
is optimistic.

Lemma 4.2 (Optimism). If all the confidence intervals as
computed in Algorithm 4 are valid for all episodes k, then
for all k and h ∈ [H] and s, a ∈ S ×A, we have:

Q̃k,h(s, a) ≥ Q∗k,h(s, a)

Proof. For every episode, the lemma is true trivially for
H + 1. Assume that it is true for h + 1. Now, for h, we

Algorithm 1 GL-ORL (Generalized Linear Optimistic Re-
inforcement Learning)

Input:S,A, H,Φ, d,W , λ, δ
δ′ = δ

2SA+SH , Ṽk,H+1(s) = 0 ∀s ∈ S, k ∈ N
for k ← 1, 2, 3, . . . do

Observe current context xk
for s ∈ S, a ∈ A do
p̂k(·|s, a)← ∇Φ(Ŵk,saxk)

r̂k(s, a)← 〈θ̂k,sa, xk〉
Compute confidence intervals using eqns. (14), (15)

end for
for h← H,H − 1, · · · , 1, and s ∈ S do

for a ∈ A do
ϕ(s, a) = ‖Ṽk,h+1‖∞ξ(p)k,sa + ξ

(r)
k,sa

Q̃k,h(s, a) = 0∨ (p̂k(·|s, a)>Ṽk,h+1 + r̂k(s, a)+
ϕ(s, a)) ∧ V max

h

end for
πk,h(s) = arg maxa Q̃k,h(s, a)

Ṽk,h(s) = Q̃k,h(s, πk,h(s))
end for
Sample episode using policy πk

end for

have:

Q̃k,h(s, a)−Q∗k,h(s, a)

= (p̂k(s, a)>Ṽk,h+1 + r̂k(s, a) + ϕ(s, a)) ∧ V max
h

− pk(s, a)>V ∗k,h+1 − rk(s, a)

= r̂k(s, a)− rk(s, a) + p̂k(s, a)>(Ṽk,h+1 − V ∗k,h+1)

+ ϕ(s, a)− (pk(s, a)− p̂k(s, a))>V ∗k,h+1

≥ −|r̂k(s, a)− rk(s, a)|+ ϕ

− ‖pk(s, a)− p̂k(s, a)‖1‖Ṽk,h+1‖∞
≥ 0

where the last line uses the guarantee on confidence intervals
and the assumption for h+ 1.

Using the optimism guarantee, we have

∆k ≤ Ṽk,1(s)− V πk

k,1(s)

≤ (p̂k(s, a)>Ṽk,2 + r̂k(s, a) + ϕ) ∧ V max
1

− pk(s, a)>V πk

k,2 − rk(s, a)

≤ (ϕ+ p̂k(s, a)− pk(s, a))>Ṽk,2 + r̂k(s, a)

− rk(s, a)) ∧ V max
1 + pk(s, a)>(V πk

k,2 − Ṽk,2)

≤ 2ϕ ∧ V max
1 + pk(s, a)>(V πk

k,2 − Ṽk,2)

≤
∑
h,s,a

[
Pk[sh, ah = s, a|sk,1]

(2ϕ(s, a) ∧ V max
h )

]
(16)
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Therefore, we have:

R(K) :=

K∑
k=1

∆k

≤
K∑
k=1

H∑
h=1

∑
s,a

(
Pk[sk,h = s, ak,h = a|sk,1]

− I[sk,h = s, ak,h = a]
)
V max
h

+

K∑
k=1

H∑
h=1

I[sk,h = s, ak,h = a]

· (2ϕ(sk,h, ak,h) ∧ V max
h )

We bound the first summation using Lemma 23 of (Dann
et al., 2018).

Lemma 4.3 ((Dann et al., 2018), Lemma 23). With proba-
bility at least 1− SHδ1, for all K ∈ N, we have

K∑
k=1

H∑
h=1

∑
s,a

(
Pk[sk,h = s, ak,h = a|sk,1]

− I[sk,h = s, ak,h = a]
)
≤ SH

√
K log 6 log(2K)

δ1

Now, we bound the second term of the regret bound decom-
position:

K∑
k=1

H∑
h=1

Ik,h(s, a)(2ϕ(sk,h, ak,h) ∧ V max
h )

≤
K∑
k=1

H∑
h=1

Ik,h(s, a)(2ξ
(r)
k,sk,h,ak,h

∧ V max
h )

+

K∑
k=1

H∑
h=1

Ik,h(s, a)(2V max
h+1 ξ

(p)
k,sk,h,ak,h

∧ V max
h )

Now, we can bound the individual terms, where we focus
on the higher order terms arising due to ξ(p):

K∑
k=1

H∑
h=1

(2V max
h+1 ξ

(p)
k,sk,h,ak,h

∧ V max
h )

≤ 2

K∑
k=1

H∑
h=1

V max
h

(
1 ∧ β

√
Sγk(sk,h, ak,h)‖xk‖Z−1

k,sa,h

)

≤ 2βV max
1

√
2SγT
ηα

K∑
k=1

H∑
h=1

(
1 ∧

√
ηα

2
‖xk‖Z−1

k,sa,h

)

≤ 2βV max
1

√
2SγTT

ηα

√√√√ K∑
k=1

H∑
h=1

(
1 ∧ ηα

2
‖xk‖2Z−1

k,sa,h

)
where the last inequality follows from Cauchy-Schwartz
inequality. We now bound the elliptic potential inside the

square root. Note that, instead of summing up the weighted
operator norm with changing values of Zt, we keep the
matrix same for all observations in an episode. Note that,
Zk denotes the matrix at the beginning of episode k and
therefore, does not include the terms xkx>k . Therefore, we
re-derive the bound for this setting. Now, for any episode k:

H∑
h=1

(
1 ∧ ηα

2
‖xk‖2Z−1

k,sa,h

)
≤ 2

∑
s,a

H∑
h=1

Ik,h(s, a) log
(

1 +
ηα

2
‖xk‖2Z−1

k,sa

)
≤ 2

∑
s,a

Nk(s, a) log
(

1 +Nk(s, a)
ηα

2
‖xk‖2Z−1

k,sa

)
= 2H

∑
s,a

log
(detZk+1,sa

detZk,sa

)
where in the last step, we have used the following:

Zk+1 = Z
1/2
k (1 +

ηα

2
NkZ

−1/2
k xkx

>
k Z
−1/2
k )Z

1/2
k

detZk+1 = detZk
(
1 +Nk

ηα

2
‖xk‖2Z−1

k

)
Therefore, we can finally bound the term as:

K∑
k=1

H∑
h=1

(2V max
h+1 ξ

(p)
k,sk,h,ak,h

∧ V max
h )

≤ 4βV max
1

√
2SγTT

ηα

√
2H
∑
s,a

log
detZK+1

detλI

= 4βV max
1

√
2SγTT

ηα

√
2HSAd log

(
1 +

TR2

λd

)
The regret component for rewards will contain lower or-
der terms and we ignore it for conciseness. Now, taking
δ1 = δp = δr = δ/(2SA + SH), we get the total fail-
ure probability for Lemma 4.3 and the confidence intervals
to be at most δ. If we use the results from Section 3, we
know that γT = Õ

(
‖W ∗‖2F + d

α log
(

1 + TR2

λd

))
. Thus,

by combining all terms, we get

R(K) = Õ
((√dmaxs,a ‖W ∗sa‖F√

α
+
d

α

)
βSH2

√
AK

)
Substituting the bounds on ‖W ∗sa‖2F , we have the following
two corollaries.
Corollary 4.4 (Multinomial logit model). For exam-
ple 2.4, we have ‖W ∗‖F ≤ B

√
S, α = 1

exp(BR)S2 and
β = 1. Therefore, the regret bound of Algorithm 4 is
Õ(dS3H2

√
AK).

Corollary 4.5 (Regret bound for linear combination case).
For example 2.5, with ‖W ∗‖F ≤

√
d, the regret bound of

Algorithm 4 is Õ(dSH2
√
AK).
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For the linear case, as considered by (Dann et al., 2018),
our guarantee improves by a factor of Õ(

√
S) which can

be attributed to our use of improved estimators for next-
state distribution for each state-action pair. For GLMs, the
guarantee provided by (Abbasi-Yadkori & Neu, 2014) is
not comparable with our case as their assumptions consid-
ered invalid MDPs. Specifically, their setting assumes that
the probability distribution for each next state is a GLM
which does not create normalized next state-distributions.
However, even if we ignore their modelling error and the
strong convexity coefficient in our result, we still get an
Õ(S
√
AH) improvement. Further, as the confidence inter-

vals in Section 3 are two-sided, we would also get a policy
certificate bound of the same order with the same improve-
ment over (Dann et al., 2018). In the next section, we show
a lower bound for both the linear and logit cases. Our lower
bound highlights a gap of Õ(H

√
dS) and Õ(S2H

√
dS) for

the two cases respectively.

4.2. Mistake bound for the setting

In their paper, (Dann et al., 2018) claim that showing a
PAC style mistake bound for this setting may require an
entirely novel confidence set construction. The key issue
is the increasing size of these sets due to a factor of log t.
However, it is still important for practical purposes to have
an understanding of how the number of mistakes scale with
the total number of episodes. For example, in healthcare,
this will be akin to bounding the error rate of treatments.
Here, a mistake is defined as an episode in which the value of
the learner’s policy πk is not ε-optimal, i.e., V ∗k − V

πk

k ≥ ε.
In our setting, we can show the following result.

Theorem 4.6 (Bound on the number of mistakes). For any
number of episodes K, δ ∈ (0, 1) and ε ∈ (0, H), with
probability at least 1 − δ, the number of episodes where
GL-ORL’s policy πk is not ε-optimal is bounded by

O
(dS2AH5 log(KH)

ε2

(d log2(KH)

α
+ S

))
ignoring O(poly(log logKH)) terms.

We defer the proof to Appendix A. Note that this term de-
pends poly-logarithmically on K and therefore increases
with time. The algorithm doesn’t need to know the value of
ε and gives this guarantee for all ε. In contrast, PAC algo-
rithms typically use the ε value to be compute the optimistic
bonus. Also, guaranteeing that a certain episode will not
incur a mistake requires a tight confidence set or a oracle
which guarantees the required threshold. As such, we can
either obtain such an algorithm by modifying the confidence
sets or combining the algorithm with a KWIK oracle (Li
et al., 2011). Therefore, we expect that such a bound can be
obtained and leave it for future work.

5. Improved Confidence Sets for Structured
Spaces

In Section 3, we derived confidence sets for W ∗ for the
case when it lies in a bounded set. However, in many cases,
we have additional prior knowledge about the problem in
terms of possible constraints over the set W . For exam-
ple, consider the healthcare inspired scenario where the
context vector is the genomic encoding of the patient. For
treating a given disease, it is fair to assume that the disease-
progression of the patient depends on a few genes rather than
the entire genome which suggests a sparse dependence of
the transition model on the context vector x. In terms of the
parameter W ∗, this translates as complete columns of the
matrix being zeroed out for the irrelevant indices. Thus, we
may want to consider methods for constructing confidence
sets which take this specific structure into account.

In this section, we show that it is possible to convert a
generic regret guarantee of an online learner to a confidence
set. If the online learner adapts to the structure ofW , we
would get the aforementioned improvement. Our conversion
proof presented here is reminiscent of the techniques used
in (Abbasi-Yadkori et al., 2012) and (Jun et al., 2017) with
close resemblance to the latter. For this section, we use Xt

to denote the t× d shaped matrix with each row as xi and
Ct as t× S shaped matrix with each row i being (Wixi)

>.
Also, set W t := Z−1t+1X

>
t Ct. Using a similar notation as

before, we can give the following guarantee.

Theorem 5.1 (Multinomial GLM Online-to-confidence set
conversion). Suppose losses li are α-strongly convex. If
there exists an online learning oracle which takes in the
sequence {xi, yi}ti=1, and produces outputs {Wi}ti=1 with
bounded regret for all W ∈ W and t ≥ 1:

t∑
i=1

li(Wi)− li(W ) ≤ Bt,

then with the centers W t defined above, we have, with
probability at least 1− δ, for all t ≥ 1, we have

‖W ∗ −W t‖2Zt+1
≤ γt,

where γt := γ′t(Bt) + λB2S − (‖Ct‖2F − 〈W t, X
>
t Ct〉)

with

γ′t(Bt) := 1 + 4
αBt + 8

α2 log
(

1
δ

√
4 + 8Bt

α + 16
α4δ2

)
.

We defer the proof to Appendix C due to space constraints.
Note that, all quantities required in the expression γt can be
incrementally computed. The required quantities are Zt and
Z−1t along with X>t Ct which are incrementally updated
with O(poly(S, d)) computation. Also, we note that this
confidence set is meaningful when Bt is poly-logarithmic
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in t which is possible for strongly convex losses as shown in
(Jun et al., 2017). The dependence on S and d is the same as
the previous construction, but the dependence on the strong
convexity parameter is worse.

Column sparsity of W ∗ Similar to sparse stochastic lin-
ear bandit, as discussed in (Abbasi-Yadkori et al., 2012),
one can use an online learning method with the group norm
regularizer (‖W‖2,1). Therefore, if there exists an online
no-regret algorithm which is efficient and has improved
dependence on the sparsity coefficient p, we can get an
O(
√
p log d) size confidence set improving the final regret

bound to Õ(
√
pdT ) as observed in the linear bandit case.

To our knowledge, even in the sparse adversarial linear re-
gression setting, obtaining an efficient and sparsity aware
regret bound is an open problem. The algorithms proposed
by (Gaillard & Wintenberger, 2018) can potentially lead
to such an online learning algorithm and we leave this for
future work.

6. Lower Bound for GLM CMDP
We construct a family of hard instances for the GLM-CMDP
problem by building up on the construction of (Osband &
Van Roy, 2016) and (Jaksch et al., 2010) and show the
following lower bound2:

Theorem 6.1. For any algorithm A, there exists a set of
values for {S,A,H}, CMDP’s with S states, A actions,
horizon H and K ≥ dSA for logit and linear combination
case, such that the expected regret of A (for any sequence
of initial states SK) after K episodes is Ω(H

√
dSAK).

7. Related Work
Contextual MDP Online learning in a sequence of MDPs
indexed by contextual information has been previously stud-
ied by (Abbasi-Yadkori & Neu, 2014), (Hallak et al., 2015),
(Modi et al., 2018) and (Dann et al., 2018). (Abbasi-Yadkori
& Neu, 2014) considered an online learning scenario where
the values pk(s′|s, a) is parameterized by a GLM. The au-
thors give a no-regret algorithm which uses confidence sets
based on (Abbasi-Yadkori et al., 2012). However, their
next state distributions are not normalized and as such, their
model considers invalid probability distributions. (Modi
et al., 2018) formalized the CMDP setting and considered
a smoothly parameterized CMDP and the linear combina-
tion considered in this paper. Their algorithms and analysis
deal with the PAC setting and are not directly comparable.
(Dann et al., 2018) studied the problem of providing policy
certificates and proposed an improved analysis for the linear
combination case. They also consider a per next-state linear
model which introduces an extra

√
S factor.

2The proof is deferred to the appendix due to space constraints.

(Generalized) linear models and partial feedback Our
reward model is based on (stochastic) linear bandits which
has seen a vast number of studies since (Abe et al., 2003).
Our work leverages ideas from (Abbasi-Yadkori et al., 2011)
for both the reward model and intermediate results for the
GLM case. Extending the linear bandit problem, (Filippi
et al., 2010) first proposed the GLM bandit problem and
provided a no-regret algorithm in the OFU paradigm. This
paper builds up on the ideas from (Zhang et al., 2016) and
(Jun et al., 2017) who also studied the logistic bandit and
GLM Bernoulli bandit case. We provide the extension of
both methodologies to a generic multinomial GLM setting.
Consequently, our bounds also show a dependence on the
strong convexity parameter 1

α which was recently shown to
be unavoidable by (Foster et al., 2018) for proper learning
in online logistic regression. Further, (Li et al., 2017) have
recently proposed an optimal regret bound for the GLM
Bernoulli bandit problem by using phases for removing
the statistical dependence between parameter estimates and
covariates. However, the proposed algorithm is inefficient
and obtaining such an optimal algorithm is still an open
problem.

Regret analysis in MDPs (Auer & Ortner, 2007) first
proposed a no-regret online learning algorithm for average
reward infinite horizon MDPs, and the problem has been
extensively studied afterwards. More recently, there has
been an increased focus on fixed horizon problems where
the gap between the upper and lower bounds has been ef-
fectively closed. (Azar et al., 2017) and (Dann et al., 2018),
both provide optimal regret guarantees (Õ(

√
HSAT )) for

repeated interaction with a finite episodic MDP by using
empirical Bernstein based bonus and a fine-grained analy-
sis. Both these methods do not directly carry over to our
setting and therefore, improving the dependence on S,H is
an interesting problem for future work which would require
a novel approach.

8. Conclusion and Future Work
In this paper, we have proposed a no-regret algorithm for
contextual MDPs which are parameterized by generalized
linear models. We provide an ONS based and online regret
to confidence set conversion based method for constructing
confidence sets. One potential direction for future work is
to aim for an efficient and sparsity aware regret bound. In
addition, a very important direction to consider is to give
a mistake bound simultaneously with the regret guarantee.
Further, as a byproduct of our online updates, we don’t need
to store the contexts thereby adding a layer of privacy. It
would be interesting to pursue an algorithm with a corre-
sponding differential privacy style guarantee for the setting.
Lastly, closing the gap between the lower and upper bounds
is desirable.
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A. Proof of the Mistake Bound
In order to prove the mistake bound, we need to bound the
number of episodes where the policy’s value is more than
ε-suboptimal. We start with inequality 16 in the main text:

V ∗k,1(s)− V πk

k,1(s)

≤
∑
h,s,a

Pk[sh, ah = s, a|sk,1](2ϕ(s, a) ∧ V max
h )
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We note that if ϕ(s, a) ≤ ε
2H for all (s, a), then we have

V ∗k,1(s)− V πk

k,1(s) ≤
∑
h,s,a

Pk[sh, ah = s, a|sk,1]
ε

H

≤ ε

In order to satisfy the constraint, we bound each error term
as: ξ(p) ≤ ε

4H2 and ξ(r) ≤ ε
4H .

We bound the number of episodes where this constraint is
violated. For simplicity, we consider that the rewards are
known and only consider the transition probabilities in the
analysis:

∑
k∈[K]

I
[
∃(s, a) s.t. ξ(p)k,sa ≥

ε

4H2

]
≤

∑
k∈[K]

∑
s,a

I[β
√
S
√
γk,sa‖xk‖Z−1

k,sa
≥ ε

4H2
]

≤
∑
k∈[K]

∑
s,a

16β2SH4γk,sa
ε2

‖xk‖2Z−1
k,sa

≤ 16β2SH4γT
ε2

∑
k∈[K]

∑
s,a

‖xk‖2Z−1
k,sa

≤ 16β2H4γT
ε2

∑
s,a

∑
k∈[K]

‖xk‖2Z−1
k,sa

where in the intermediate steps, we have used the nature of
the indicator function and the fact that minimum is upper
bounded by the average. For bounding the inner term, we
first consider:

‖xk‖2Z−1
k+1

= x>k (Zk +Nkxkx
>
k )xk

= x>k Zkxk −
Nkx

>
k Z
−1
k xkx

>
k Z
−1
k xk

1 +Nkx>k Z
−1
k xk

= ‖xk‖2Z−1
k

−
Nk‖xk‖4Z−1

k

1 +Nk‖xk‖2Z−1
k

With this setup, we get:

‖xk‖2Z−1
k

=
‖xk‖2Z−1

k+1

1−Nk‖xk‖2Z−1
k+1

≤ λ+H

λ
‖xk‖2Z−1

k+1

Therefore, the inner summation can be instead bounded
as λ+H

λ

∑
k∈[K] ‖xk‖2Z−1

k+1

. Using Lemma 11 from (Hazan

et al., 2007), we can bound the sum as d log
(
R2T
λ + 1

)
.

Combining all these bounds, we get:

Figure 1. Hard 2-state MDP (Osband & Van Roy, 2016)

∑
k∈[K]

I
[
∃(s, a) s.t. ξ(p)k,sa ≥

ε

4H2

]
≤ 16(λ+H)β2dS2AH4γT

λε2
log
(R2T

λ
+ 1
)

Noting that γT = O(d log
2 T
α + S), we get the final mistake

bound as:

O
(dS2AH5 log T

ε2

(d log2 T

α
+ S

))
ignoring O(poly(log log T )) terms.

B. Proof of the Lower Bound
Proof. We start with the lower bound from (Jaksch et al.,
2010) adapted to the episodic setting.

Theorem B.1 ((Jaksch et al., 2010), Thm. 5). For any al-
gorithm A′, there exists a set of values for {S,A,H}, an
MDP M with S states, A actions, and horizon H , such that
for K ≥ dSA, the expected regret of A after K episodes
is:

E[R(K;A′, s,M)] = Ω(H
√
SAK)

The lower bound construction is obtained by concatenat-
ing dS/2e-copies of a bandit-like 2-state MDP as shown
in figure 13. Essentially, state 1 is a rewarding state and
all but one action take the agent to state 0 with probability
δ1. The remaining optimal action transits to state 0 with
probability δ1 − ε. This makes the construction similar to a
hard Bernoulli multi-armed bandit instance which leads to
the lower bound. Now, we will construct a set of such hard
instances with the logit link function for transition probabil-
ities. A similar construction for the linear combination case
is discussed in Appendix B. Since, the number of next states
is 2, we use a GLM with parameter vector w∗ of shape 1×d.
Thus, for any context x, the next state probabilities are given
as:

p(1|1, a;x) =
exp(w∗ax)

1 + exp(w∗ax)
= φ(w∗ax)

3The two state MDP is built using A/2 actions with the rest
used for concatenation. We ignore this as it only leads to a differ-
ence in constants.
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If w∗ax = 0, the value turns out to be 1
2 which we choose

as δ1 − ε. For making the probability δ1 = 1
2 + ε, we need

to have w∗ax = φ−1(δ1) = c∗. We consider the case where
for each index i, all but one action has w∗a[i] = 0 and one
action a∗i has w∗a∗ [i] = c∗. The sequence of contexts given
to the algorithm comprises of K/d indicator vectors with 1
at only one index. Therefore, for each episode k, we get an
MDP with pk(0|1, a∗k%d) = 1/2 for one optimal action and
1/2 for all other actions. Therefore, this is a hard instance
as shown in figure 1. The agent interacts with each such
MDP Ki ≈ K/d times. Further, these MDPs are decoupled
as the context vectors are non-overlapping. Therefore, we
have:

E[R(K;A,M1:K , s1:K)]

=

d∑
i=1

E[R(Ki;A,M1:K , s1:K)]

≥
d∑
i=1

cH
√
SAK/d = cH

√
dSAK

Linear combination case Similar to the logit case, we
need to construct the sequence of hard instances in the lin-
ear combination case. It turns out that a similar construction
works. Note that, in the linear combination case, each pa-
rameter vector w∗a now directly contains the probability of
moving to the rewarding state. In other words, each index
of this vector w∗a[i] corresponds to the next state visitation
probability for the base MDP Mi. Therefore, for each index,
we again set one action’s value to 1

2 + ε and all others to
0. This maintains the independence argument and using
indicator vectors as contexts, we get the same sequence of
MDPs. The same lower bound can therefore be obtained for
the linear combination case.

C. Omitted Proofs from Section 5
Theorem C.1 (Multinomial GLM Online-to-confidence set
conversion). Suppose losses li are α-strongly convex. If
there exists an online learning oracle which takes in the
sequence {xi, yi}ti=1, and produces outputs {Wi}ti=1 with
bounded regret for all W ∈ W and t ≥ 1:

t∑
i=1

li(Wi)− li(W ) ≤ Bt,

then with the centers W t defined above, we have, with
probability at least 1− δ, for all t ≥ 1, we have

‖W ∗ −W t‖2Zt+1
≤ γt

where γt := γ′t(Bt) + λB2S − (‖Ct‖2F − 〈W t, X
>
t Ct〉)

with

γ′t(Bt) := 1 + 4
αBt + 8

α2 log
(

1
δ

√
4 + 8Bt

α + 16
α4δ2

)
.

Proof. Using the strong convexity of the losses li, we again
have:

li(Wi)− li(W ∗)

≥ 〈∇li(W ∗),W ∗ −Wi〉+
α

2
‖W ∗xi −Wixi‖22

Summing this for i = 1 to t and substituting the regret
bound Bt, we get

t∑
i=1

‖W ∗xi −Wixi‖22

≤ 2

α
Bt +

2

α

t∑
i=1

〈pt − yt,W ∗xi −Wixi〉 (17)

Now, we focus on bounding the second term in the rhs.
We note that for any z ∈ RS , we have

〈pt − yt, z〉 ≤ ‖pt − yt‖2‖z‖2 ≤ 2‖z‖2
In addition, 〈ηt, z〉 := 〈pt − yt, z〉 is a martingale with
respect to the filtration Ft := σ(x1, y1, . . . , xt−1, yt−1, xt).
This shows that

E[Dλ
t |Ft] = E[exp(λ〈ηt, z〉 − 1

2λ
2‖z‖22)|Ft] ≤ 1

We can substitute zt = W ∗xt −Wtxt which is Ft mea-
surable. Now, using St =

∑t
i=1〈ηi, zi〉, we can show that

Mλ
t = exp

(
4λSt − 1

2λ
2
∑t
i=1 ‖zi‖22

)
is a Ft+1-adapted

supermartingale. Using the same analysis as in (Abbasi-
Yadkori et al., 2012), we get the following result:

Corollary C.2 (Corollary 8, (Abbasi-Yadkori et al., 2012)).
With probability at least 1− δ, for all t > 0, we have

t∑
i=1

〈ηi, zi〉

≤

√√√√√2
(
1 +

t∑
i=1

‖zi‖22
)

ln
(
1
δ

√√√√(1 +

t∑
i=1

‖zi‖22)
)

Substituting this in ineq. 17, we get
t∑
i=1

‖zi‖22 −
2

α
Bt

≤ 2

α

√√√√√2
(
1 +

t∑
i=1

‖zi‖22
)

ln
(
1
δ

√√√√(1 +

t∑
i=1

‖zi‖22)
)

We now use Lemma 2 from (Jun et al., 2017), to obtain a
simplified bound:
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Lemma C.3 (Lemma 2, (Jun et al., 2017)). For δ ∈ (0, 1),
a ≥ 0, f ≥ 0, q ≥ 1, q2 ≤ a+ fq

√
log q

δ implies

q2 ≤ 2a+ f2 log
(√4a+ f4/(4δ2)

δ

)
With q :=

√
1 +

∑t
i=1 ‖zi‖22, a := 1 + 2

αBt and f = 2
√
2

α ,
we now have:

t∑
i=1

‖W ∗xi −Wixi‖22 ≤ γ′t (18)

with γ′t := 1 + 4
αBt + 8

α2 log
(

1
δ

√
4 + 8Bt

α + 16
α4δ2

)
.

We can rewrite ineq. 18 as

‖XtW
∗> − Ct‖2F ≤ γ′t (19)

If we center this quadratic form around

W t := arg min
W

‖XtW
>−Ct‖2F +λ‖W‖2F = Z−1t+1X

>
t Ct

we can rewrite the set as:

‖W ∗ −W t‖2Zt+1

≤ λB2S + γ′t − (‖W t‖2F + ‖XtW
>
t − Ct‖2F )

Simplifying the expression on the rhs gives the stated re-
sult.


	Introduction
	Setting and Notation
	Generalized Linear Model for CMDPs
	Special Cases

	Online Estimates and Confidence Set Construction
	Proof of Theorem 3.1

	Optimistic Reinforcement Learning for GLM CMDP
	Proof of Theorem 4.1
	Mistake bound for the setting

	Improved Confidence Sets for Structured Spaces
	Lower Bound for GLM CMDP
	Related Work
	Conclusion and Future Work
	Proof of the Mistake Bound
	Proof of the Lower Bound
	Omitted Proofs from Section 5

