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Abstract
Current practice in machine learning is to employ deep nets in an overparametrized limit,

with the nominal number of parameters typically exceeding the number of measurements.
This resembles the situation in compressed sensing, or in sparse regression with l1 penalty
terms, and provides a theoretical avenue for understanding phenomena that arise in the
context of deep nets. One such phenonemon is the success of deep nets in providing good
generalization in an interpolating regime with zero training error. Traditional statistical
practice calls for regularization or smoothing to prevent "overfitting" (poor generalization
performance). However, recent work shows that there exist data interpolation procedures which
are statistically consistent and provide good generalization performance[4] ("perfect fitting").
In this context, it has been suggested that "classical" and "modern" regimes for machine
learning are separated by a peak in the generalization error ("risk") curve, a phenomenon
dubbed "double descent"[3]. While such overfitting peaks do exist and arise from ill-conditioned
design matrices, here we challenge the interpretation of the overfitting peak as demarcating
the regime where good generalization occurs under overparametrization.

We propose a model of Misparamatrized Sparse Regression (MiSpaR) and analytically
compute the GE curves for l2 and l1 penalties. We show that the overfitting peak arising in the
interpolation limit is dissociated from the regime of good generalization. The analytical expres-
sions are obtained in the so called "thermodynamic" limit. We find an additional interesting
phenomenon: increasing overparametrization in the fitting model increases sparsity, which
should intuitively improve performance of l1 penalized regression. However, at the same time,
the relative number of measurements decrease compared to the number of fitting parameters,
and eventually overparametrization does lead to poor generalization. Nevertheless, l1 penalized
regression can show good generalization performance under conditions of data interpolation
even with a large amount of overparametrization. These results provide a theoretical avenue
into studying inverse problems in the interpolating regime using overparametrized fitting
functions such as deep nets.

1 Introduction
Modern machine learning has two salient characteristics: large numbers of measurements m, and
non-linear parametric models with very many fitting parameters p, with both m and p in the range
of 106 � 109 for many applications. Fitting data with such large numbers of parameters stands
in contrast to the inductive scientific process where models with small numbers of parameters
are normative. Nevertheless, these large-parameter models are successful in dealing with real life
complexity, raising interesting theoretical questions about the generalization ability of models with
large numbers of parameters, particularly in the overparametrized regime µ = p/m > 1.

Classical statistical procedures trade training (TE) and generalization error (GE) by controlling
the model complexity. Sending TE to zero (for noisy data) is expected to increase GE[10]. However
deep nets seem to over-parametrize and drive TE to zero (data interpolation) while maintaining good
GE[18, 5]. Over-parametrization has the benefit that global minima of the empirical loss function
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Figure 1: Numerical simulations of the MiSpaR model inferred using l2 and l1 penalties are
compared with theoretical TE and GE curves for l2 regularized regression. (A,B) and zooms (D,E)
correspond to the interpolation limit � ! 0. Plots in (C,F) show a theory-simulation comparison
just for the l2 case with � = 0.1. Here n = 200, and the numerical values are averaged over 100
draws of the design matrix X, parameters � and measurement noise �. The rows of the design
matrix are sub-sampled in the µ < 1 regime. Standard errors across the 100 trials are shown. Note
that for µ↵ > 1, the GE values for the l1 case are close to zero, whereas the values for the l2
penalized case can be much larger. Note also that the overfitting peak is much larger for ↵ < 1
than for ↵ > 1, and that the region of good generalization starts at µ = 1/↵, which can be to the
left or right of the overfitting peak depending on the value of the undersampling parameter ↵. For
the simulations with � ! 0, in the l2 case a pseudoinverse was used. For the l1 case a numerically
small value � = 10�5 was used, and it was checked that the results do not change on decreasing �.

proliferate and become easier to find[12, 15]. These observations have led to recent theoretical
activity[4, 5, 11]. Regression and classification algorithms have been shown that interpolate data
but also generalize optimally[4]. An interesting related phenomenon has been noted: the existence
of a peak in GE with increasing fitting model complexity[2, 1, 8, 9]. In [2] it was suggested that this
peak separates a classical regime from a modern (interpolating) regime where over-parametrization
improves performance. While the presence of a peak in the GE curve is in stark contrast with the
classical statistical folk wisdom where the GE curve is thought to be U-shaped, understanding the
significance of such peaks is an open question, and motivates the current paper. Parenthetically,
similar over-fitting peaks were reported almost twenty years ago (cf. statistical physics approach to
learning) and attributed to increased fitting model entropy near the peak (see in particular Figs 4.3
and 5.2 in [7]).

1.1 Summary of Results
1. We introduce a model, Misparametrized (or Misspecified) Sparse Regression (MiSpaR), which

separates the number of measurements m, the number of model parameters n (which can be
controlled for sparsity by a parameter ⇢), and the number of fitting degrees of freedom p. 1

2. We obtain analytical expressions for the GE and TE curves for l2 penalized regression in the
"high-dimensional" or "thermodynamic" asymptotic regime m, p, n ! 1 keeping the ratios
µ = p/m and ↵ = m/n fixed. We are also able to analytically compute GE for l1 penalized
regression, and exhibit explicit expressions for µ < 1 and µ >> 1 as � ! 0.

3. We show that for � ! 0 and for � > 0, the overfitting peak appears at the data interpolation
point µ = 1 (p = m) for both l2 and l1 penalized interpolation (GE ⇠ |1� µ|�1 near µ = 1),
but does not demarcate the point at which "good generalization" first occurs, which for small

1A similar misspecified model has been studied in [9] with l2 regularization, but this paper did not study the
effects of sparsity and l1 penalized regression.
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� corresponds to the point p = n (µ↵ = 1) (Figure 1). The region of good generalization can
start before or after the overfitting peak. The overfitting peak is suppressed for finite �.

4. For infinitely large overparametrization, generalization does not occur: GE(µ ! 1) = 1 for
both l2 and l1 penalized interpolation. However, for small values of the sparsity parameter ⇢
and measurement noise variance �2, there is a large range of values of µ where l1 regularized
interpolation generalizes well, but l2 penalized interpolation does not (Fig. 1).
This range is given by 1 << log(µ) << 1

�2 ,
1
⇢ , with �2, ⇢/↵ << 1. In this regime the sparsity

penalty is effective, and suppresses noise-driven mis-estimation of parameters for the l1 penalty.
This shows how generalization properties of penalized interpolation depend strongly on the
inductive bias, and are not properties of data interpolation per se. This has important
implications for the usage of deep nets for solving inverse problems.

5. For � = 0 and for µ > 1, GE(l2) > 0. In contrast, if ↵ is greater than a critical value ↵c(⇢) that
depends on ⇢, then for l1 penalized interpolation GE1 = 0 for a range of overparameterization
1
↵  µ  µc. The maximum overparametrization µc for which GE1 = 0 depends on ⇢

↵ .
For small values of ⇢

↵ , µc ⇠
q

⇡↵
2⇢ e

↵
2⇢ . For µ > µc, GE(l1) rises quadratically from zero

(GE2(µ > µc) / (µ� µc)2 for small µ� µc) and GE1(µ ! 1) = 1.

6. For � = 0 and ↵ > ↵c(⇢), GE1 goes to zero linearly at µ↵ = 1 (GE1 / ( 1
↵ � µ) for 1

↵ � µ
small). When ↵ = ↵c(⇢), GE1 = 0 only at the single point µc = 1

↵c(⇢)
. In this case GE1

goes to zero with a nontrivial 2
3 power GE1(µ . 1

↵c(⇢)
) / ( 1

↵c(⇢)
� µ)

2
3 on the left, but rises

quadratically on the right GE1(µ & 1
↵c(⇢)

) / ( 1
µ�↵c(⇢)

)2. For ↵ < ↵c(⇢), GE1 > 0 for all
values of µ.

2 Model: Misparametrized Sparse Regression
Usually in linear regression the same (known) design matrix xij is used both for data generation and
for parameter inference. In MiSpaR the generative model has a fixed number n of parameters �j ,
which generate m measurements yi, but the number of parameters p in the inference model is allowed
to vary freely, with p < n corresponding the under-parametrized and p > n the over-parametrized
case. For the under-parametrized case, a truncated version of the design matrix is used for inference,
whereas for the over-parametrized case, the design matrix is augmented with extra rows.

In addition, we assume that the parameters in the generative model are sparse, and consider the
effect of sparsity-inducing regularization in the interpolation limit. Combining misparametrization
with sparsity is important to our study for two reasons

• Dissociating data interpolation (which happens when µ = 1, � ! 0) from the regime where
good generalization can occur (this is controlled by the undersampling ↵ as well as by the
model sparsity ⇢).

• We are able to study the effect of different regularization procedures on data interpolation
in an analytically tractable manner and obtain analytical expressions for the generalization
error.

Generative Model ("Teacher") We assume that the (known/measured) design variables are
i.i.d. Gaussian distributed2 from one realization of the generative model to another with variance
1/n. This choice of variance is important to fix normalization. Other choices have also been
employed in the literature (notably xij ⇠ N(0, 1/m)) - this is important to keep in mind when
comparing with literature formulae where factors of ↵ may need to be inserted appropriately to

2Note that these choices are convenient, but could be relaxed. It is only required that xij are i.i.d. and have
finite second moment. The asymptotic results only depend on V (xij)
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obtain a match.

yi =
nX

j=1

xij�j + ni

ni ⇠ N(0,�) �j ⇠ (1� ⇢)��,0 + ⇢⇡(�)

⇡(�) ⇠ N(0, 1) unless otherwise specified

xij ⇠ N

✓
0,

1

n

◆
i = 1 . . .m measurements j = 1 . . . n generative parameters

Undersampling: ↵ = m/n Sparsity: ⇢ Overparametrization: µ = p/m

Here ⇡(�) is the distribution of the non-zero model parameters. We assume this distribution to be
Gaussian as this permits closed form evaluation of integrals appearing in the l1 case. Note that we
term µ = p/m as overpametrization (referring to the case where µ > 1) and we term ↵ = m/n as
undersampling (referring to the case where ↵ < 1).

Inference Model ("Student") The design matrix used for inference is mis-parametrized or
mis-specified: under-specified (or partially observed) when µ↵ < 1 ⌘ p < n; over-specified, with
extra, effect-free rows in the design matrix when µ↵ > 1 ⌘ p > n

xinf
ij = xij , j = 1 . . . p if p  n

xinf
ij = xextra

ij , j = n+ 1 . . . p if p > n

Parameter inference is carried out by minimizing a penalized mean squared error

�̂ = argmin�
1

2

��Y �Xinf�
��2 + �V (�)

Note that for p > n, the model parameters � are augmented by p� n zero entries. We consider l2
and l1 penalties (correspondingly V (�) = 1

2 |�|
2
2 or |�|1) and the interpolation limit is obtained by

taking � ! 0. For the l2 penalty (ridge regression), �̂2 = (X+X + �)�1X+Y . The training and
generalization errors are defined as the expected values of the normalized MSEs on training and
test sets,

TE =
E|Y�Xinf �̂|2

E|Y |2 and GE =
E|Y New�Xinf

new�̂|2
E|Y new|2 Note that the expectation E is taken simulta-

neously over the parameter values, the design matrix and measurement noise.
We obtain exact analytical expressions for the risk (generalization error) in the (thermodynamic)

limit where n, p,m all tend to infinity, but the ratios ↵ = m/n, µ = p/m are held finite. Similar
"thermodynamic" or "high-dimensional" limiting procedures are used in statistical physics, eg in the
study of random matrices and spin-glass models in large spatial dimensions[14, 13]. Such limits are
also well-studied in modern statistics[17] (for example to understand phase-transition phenomena
in the LASSO algorithm[6]). While there is a large literature on the LASSO phase transition, we
were unable to find any computations of the GE curves that span across the underparametrized
and overparametrized regimes in a systematic model as presented here.

We derive analytical formulae for TE and GE with l2 or ridge regularization. For l1 regularization,
explicit formulae are given in some parameter regimes. More generally for the l1 case we obtain a
pair of simultaneous nonlinear equations in two variables which implicitly define the MSE. These
can be solved numerically to obtain the GE. The nonlinear equations are given in closed form
without hidden parameters and do not require integration.

Analytical Formulae: TE2, GE2 are the training and generalization errors for the l2 penalized
case, and GE1 the generalization error for the l1 penalized case. Due to lack of space we do not
present the analytical formulae for � > 0 as these expressions are complex, but the corresponding
analytical expressions were used to generated the theory curves in Fig.1 for the case � > 0. The
derivations employ the cavity mean field theory approach [16]. Here �2

eff = �2 + ⇢(1� µ↵).
Note that the formulae for GE agree for the l2 and l! cases in the underparametrized regime

µ < 1, but diverge in the overparametrized regime: infinitesimal l1 regularization provides no better
generalization than the pseudoinverse based procedure unless there is overparametrization. Further
note that "good generalization" (GE small) begins when µ↵ > 1 not at the overfitting peak (µ = 1).
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� ! 0 µ, µ↵ < 1 µ < 1, µ↵ > 1 µ > 1, µ↵ < 1 µ > 1, µ↵ > 1

TE2
�2
eff (1�µ)

�2+⇢
�2(1�µ)
�2+⇢ 0 0

GE2(� > 0)
�2
eff

�2+⇢
1

1�µ
�2

�2+⇢
1

1�µ
1

�2+⇢

⇥
⇢µ↵(1� 1

µ ) +
µ�2

eff

µ�1

⇤
1

�2+⇢

⇥
⇢(1� 1

µ ) +
µ�2

µ�1

⇤

GE2(� = 0) 1�µ↵
1�µ 0 1� 2↵+ 1�↵

µ�1 1� 1
µ

GE1(� > 0)
�2
eff

�2+⇢
1

1�µ
�2

�2+⇢
1

1�µ ⇡ �2
eff

�2+⇢
1

µ�1 [if 1
µ�1 � 1] ⇡ �2

�2+⇢ [if (i)]

GE1(� = 0) 1�µ↵
1�µ 0 ⇡ 1�µ↵

µ�1 [if 1
µ�1 � 1] 0 [if (ii)]

Condition (i): 1 ⌧ log(µ) ⌧ min( 1
�2 ,

↵
⇢ ) Condition (ii): [↵ > ↵c(⇢)] ^ [µ < µc(↵/⇢)]
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