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ABSTRACT

Unsupervised text style transfer aims to rewrite the text of a source style into a tar-
get style while preserving the style-independent content, without parallel training
corpus. Most of the existing methods address the problem by only leveraging the
surface forms of words. In this paper, we incorporate the syntactic knowledge and
propose a multi-task learning based Syntax-Aware Style Transfer (SAST) model.
Our SAST jointly learns to generate a transferred output with aligned words and
syntactic labels, where the alignment between the words and syntactic labels is
enforced with a consistency constraint. The auxiliary syntactic label generation
task regularizes the model to form more generalized representations, which is a
desirable property especially in unsupervised tasks. Experimental results on two
benchmark datasets for text style transfer demonstrate the effectiveness of the pro-
posed method in terms of transfer accuracy, content preservation, and fluency.

1 INTRODUCTION

Text style transfer is the task of transforming an input text by changing its stylistic attribute to a
desired value while keeping the style-independent content unchanged. Focusing on different stylis-
tic attributes, text style transfer has been addressed in many Natural Language Processing (NLP)
applications such as sentiment translation (Xu et al., 2018), persona-based conversation (Li et al.,
2016), text formalization (Rao & Tetreault, 2018), etc.

A descent text style transfer model is expected to produce outputs with the target style, without loss
of the original semantics as well as readability. Unfortunately, since the parallel corpora with pairs
of input and desired output are usually unavailable, models need to learn in an unsupervised setting,
making it quite challenging to satisfy all of these criteria.

Previous dominant research line for unsupervised text style transfer disentangles the style and the
content first, and then generates the output based on the disentangled content and the target style.
The disentanglement is either achieved by learning an implicitly style-agnostic vector as the con-
tent via adversarial training (Shen et al., 2017; Fu et al., 2018; John et al., 2019), or by explicitly
marking the text units as style-related or not through a dictionary or a pre-trained attention-based
classifier (Li et al., 2018; Xu et al., 2018; Zhang et al., 2018a). Recently, Lample et al. (2019) found
the disentanglement can be hardly met in practice and was not necessary for the transfer procedure.
Departing from the disentangled representation, another research line (Zhang et al., 2018b; Lample
et al., 2019; Luo et al., 2019) employs the back-translation technique to create online pseudo-parallel
data, the quality of which can increase as training proceeds and in turn improve the model.

However, most existing methods only utilize the word information, thus may suffer from the data
sparsity problem and fail to understand the underlying semantics of the input text. Take sentiment
transfer as example, this limitation can lead to results simply appending an improper “great” to
convert a sentence to positive sentiment. In this paper, we go beyond the word information and
propose a Syntax-Aware Style Transfer (SAST) model for textual data by considering additional
syntactic information such as part-of-speech (POS) tags. As illustrated in Figure 1, our SAST admits
a multi-task learning scheme with the aim of generating aligned words and syntactic labels as the
transferred outcome. Building on the encoder-decoder architecture, we couple the word emission
and the syntactic label emission through shared hidden layers in the decoder. In this way, the model
is encouraged to learn generalized representations explaining both the lexical knowledge and the
syntactic knowledge, relieving possible word sparsity problem for style transfer.
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Figure 1: Model Overview.

We optimize the proposed SAST to achieve two goals: style conversion and content preservation.
For style conversion, we enforce the model to generate outputs predicted as the target style by a
pre-trained style classifier. For content preservation, we adopt the back-translation scheme follow-
ing (Lample et al., 2019) but with enriched objectives on the syntactic labels: the output for an input
under the transfer direction s → s̃, when fed back into the model for the transfer direction s̃ → s,
should reconstruct the input and the syntactic labels of the input. Moreover, besides the shared hid-
den layers, we further encourage the alignment between the generated words and syntactic labels
by requiring the generated syntactic labels are consistent with the annotated syntactic labels (by an
external NLP tool) for the generated words.

We evaluate our proposed model against state-of-the-art methods on two benchmark dataset: the
sentiment dataset Yelp and the formality dataset GYAFC. Both automatic evaluation and human
evaluation demonstrate our SAST can outperform the baselines in terms of transfer accuracy, se-
mantic conservation, and fluency.

2 RELATED WORK

Although unsupervised style transfer has gained remarkable success in the image domain (Johnson
et al., 2016; Zhu et al., 2017; Choi et al., 2018), exploration for textual data is still limited due to the
discreteness and complicated semantics of the natural language.

Earlier approaches transfer the input text based on the disentanglement between content and
style. Hu et al. (2017) encourage the disentanglement by recovering the content and style from
the output with an encoder and a style classifier. Shen et al. (2017) use adversarial discriminators
to match the transferred samples with the real samples from the target style. Fu et al. (2018) match
the encoded vectors from different styles. Johnson et al. (2016) seek for better separation by in-
corporating the content-orientated losses based on bag-of-words features, in addition to the style
orientated losses in Fu et al. (2018). From a different perspective, Prabhumoye et al. (2018) assume
a style-agnostic representation can be obtained via an external neural machine translation model.

Since implicitly disentangling the style and the content via hidden vectors is prone to semantic
loss, explicit separation methods have been investigated. Xu et al. (2018); Zhang et al. (2018a) de-
sign a neutralization module to identify the indicators and an emotionalization module to stylize
the neuralized text. Li et al. (2018) propose a delete-retrieve-generate pipeline which removes the
style indicators based on term frequencies and then generates the output using the remaining con-
tent together with retrieved indicators from the target style corpus. Following this pipeline, recent
works (Sudhakar et al., 2019; Wu et al., 2019) propose to employ the Transformer (Vaswani et al.,
2017) based architecture BERT (Devlin et al., 2019) to extract the style indicators or generate the
outputs.
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Recent works start to skip the disentanglement step and address the text style transfer task with
pseudo-parallel data created from back-translation as in unsupervised machine translation (Artetxe
et al., 2018; Lample et al., 2018). Lample et al. (2019) use self-reconstruction and back-translation
to optimize the model. Zhang et al. (2018b) initialize a pair of transfer models (in two direc-
tions) using phrase-based translation system and jointly update the models through iterative back-
translation. Luo et al. (2019) further provide global supervision for the transferred output with re-
wards for style conversion and content preservation. Most recently, Dai et al. (2019) apply the
Transformer to this task for its capability to capture long-term dependency.

3 SYNTAX-AWARE STYLE TRANSFER

We incorporate the syntactic knowledge and address the unsupervised text style transfer task with a
multi-task learning framework: the input text is transformed into a sequence of words with aligned
syntactic labels. The auxiliary syntactic label generation task encourages the model to learn gener-
alized features which can benefit the prediction of both words and syntactic labels. Currently, our
model allows only syntactic labels with one-to-one correspondence to the words. In this paper, we
use the POS tags as the syntactic labels, leave other choices or multiple syntactic labels for future
study.

3.1 PROBLEM DEFINITION

Consider a training corpus D = {(xi, si)}i=1,...,N , where xi is a text sequence and si ∈ S is the
correponding style. S = {sj}j=1,...,m denotes all possible style types. As a preprocessing step,
we extend the training corpus D to D+ = {(xi, si, li)}i=1,...,N by providing an additional syntactic
label sequence for each instance. For each text sequence x = {x1, . . . , xT }, we obtain its syntactic
label sequence l = {l1, . . . , lT } using an external NLP tool F .

The objective of our SAST is to learn a joint conditional probability distribution Pθ(x̃, l̃|x, s̃) to
produce a text sequence x̃ with aligned syntactic labels l̃, conditioned on a given input text x and a
target style s̃. The output text x̃ should possess the style s̃ while retaining the content (i.e., semantics
not exhibiting the style) of x. We denote the marginal probability distribution of x̃ as Pwθ (x̃|x, s̃),
which is the objective for models only leveraging word information.

3.2 MODEL OVERVIEW

We adopt the sequence-to-sequence encoder-decoder architecture (Sutskever et al., 2014) for our
SAST model. For both the encoder and the decoder, we use the recurrent neural networks with the
Gated Recurrent Units (GRU) (Cho et al., 2014). The attention mechenism (Bahdanau et al., 2015)
is also utilized. An overview of our model architecture is shown in Figure 1.

3.2.1 ENCODER

The encoder, designed as a bi-directional GRU, maps the input text to the latent semantic space. For-
mally, given the input text x = {x1, . . . , xT }, we arrive at a set of hidden vectors h = {h1, . . . ,hT }
with ht = [

−→
ht;
←−
ht], where

−→
ht =

−−→
GRU(ht−1,xt) and

←−
ht =

←−−
GRU(ht+1,xt) are the hidden outputs

from the forward GRU and the backward GRU respectively.

3.2.2 DECODER

The decoder, designed as a uni-directional GRU, aims to generate a sequence of (word, syntactic
label) pairs conditioned on the encoded hidden vectors h and the target style s̃. Following Lample
et al. (2019), the style information is involved as the start token of the decoding process. Formally,
at the k-th step, the hidden state gk is computed as

gk =

{
GRU([

−→
hT ;
←−
h1], s̃), if k = 1

GRU(gk−1, x̃k−1), otherwise.
(1)

We then apply the attention mechenism to assign an attention weight αtk = softmax(h>t Wgk) to
each source word xt, where W is a parameter matrix. Based on the attention weights, a context

3



Under review as a conference paper at ICLR 2020

SAST

SAST

SAST

Dis

𝑥

𝑠

𝑙

ℒ𝑟𝑒𝑐

𝑥 ሚ𝑙
𝑙 𝑥

𝑠
𝑥 ሚ𝑙

ǁ𝑠

𝑥𝑏ሚ𝑙𝑏

ℒ𝑑𝑖𝑠

ℒ𝑐𝑜𝑛𝑠
ℒ𝑏𝑎𝑐𝑘

Figure 2: Training procedure of the proposed SAST. Left: the pre-training stage. Right: the regular
training stage.

vector ck is obtained as the weighted average of h: ck =
∑
t α

t
kht. The hidden state gk and the

context vector ck is further concatenated as an attentional hidden state zk = [gk; ck]. Assuming the
next word x̃k and the next syntactic label l̃k are conditionally independent given zk, we predict x̃k
and l̃k by:

Pwθ (x̃k|x̃<k, l̃<k, x, s̃) = softmax(Uwzk + bw) (2)

P lθ(l̃k|x̃<k, l̃<k, x, s̃) = softmax(Ulzk + bl) (3)
where Uw, Ul, bw, and bl are model parameters.

The shared hidden state zk between the word prediction task and the syntactic label prediction task
allows the interaction and complementation between lexical information and syntactic information,
thus facilitating learning more generalized features.

Note that we only feed the generated token without the generated syntactic label from previous
step as the input for the current step. The reasons are three-fold: (1) the knowledge for previous
generated syntactic labels is encoded in gk−1; (2) our preliminary experiments did not show further
improvements by feeding the syntactic label as input; (3) using only the word as input makes zero
additional cost during inference compared to works not using the syntactic information. As a result,
we can eliminate l̃<k from the conditions of Equation 2 and 3. The joint probability distribution
Pθ(x̃, l̃|x, s̃) and the marginal probability distribution Pwθ (x̃|x, s̃) can be formulated as

Pθ(x̃, l̃|x, s̃) =
K∏
k=1

Pwθ (x̃k|x̃<k, x, s̃)P lθ(l̃k|x̃<k, x, s̃) (4)

Pwθ (x̃|x, s̃) =
K∏
k=1

Pwθ (x̃k|x̃<k, x, s̃) (5)

3.3 LEARNING ALGORITHM

We first warm up the model with a pre-training stage based on self-reconstruction. Then we optimize
the model with three losses during the regular training stage: a discrimination loss to encourage
correct style transformation, a back-translation loss to ensure content preservation, and a consistency
loss to enforce the alignment between the generated words and syntactic labels. Figure 2 shows the
training procedure for these two training stages.

3.3.1 SELF-RECONSTRUCTION AS PRE-TRAINING

For non-parallel corpora, self-reconstruction can be used to guide the model for meaningful output.
Given the input text x and its original style s, if the target style s̃ = s, the model should reconstruct
x as the output. In our multi-task learning based SAST, for s̃ = s, the model is optimized to
reconstruct both the text x and the syntactic labels l. Formally, the self-reconstruction loss is defined
as

Lrec(θ) = E(x,s,l)∼D+ [− logPθ(x, l|x∗, s)] (6)
To avoid learning a trivial solution by copying source words, following Shen et al. (2017); Lample
et al. (2019), we feed the model with a corrupted variant x∗ (by word removal/permutation) of x.
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Algorithm 1 The training algorithm for Syntax-Aware Style Transfer (SAST).
1: Input: non-parallel training corpus D and an external NLP tool F
2: Pre-train a style discriminator Pφ on D
3: Expand D to D+ by adding syntactic labels using F
4: Make m splitions D+[sj ]j=1,...,m = {(xi, si, li)|(xi, si, li) ∈ D+ ∧ si = sj}
5: Pre-train θ on D+ by minimizing Lrec(θ)
6: for each iteration r = 1, 2, . . . , L do
7: for each style s ∈ S do
8: Sample a minibatch of samples B = {(xi, si, li)}i=1,...,n from D+[s]
9: Sample a target style s̃ ∈ S with s̃ 6= s

10: Generate words x̃i ∼ Pwθ (x̃|xi, s̃) for ∀(xi, si, li) ∈ B
11: Compute the discrimination loss Ldis(θ) based on Equation 7
12: Compute the back-translation loss Lback(θ) based on Equation 8
13: Compute the consistency loss Lcons(θ) based on Equation 11
14: Compute total loss L(θ) based on Equation 12
15: Update θ based on ∇θL(θ)
16: end for
17: end for

3.3.2 DISCRIMINATION LOSS FOR STYLE CONVERSION

To improve the style conversion accuracy, we adopt a pre-trained style discriminator Pφ to justify the
style of the transferred results. For a given input text x and a target style s̃, an output x̃ ∼ Pwθ (x̃|x, s̃)
is expected to be predicted as having style s̃ by the discriminator. Therefore, the discrimination loss
is defined as

Ldis(θ) = E(x,s,l)∼D+,x̃∼Pwθ (x̃|x,s̃)[− logPφ(s̃|x̃)] (7)

A problem in Equation 7 is the discrete property of the sampling operation x̃ ∼ Pwθ (x̃|x, s̃) impedes
the gradient back-propagation from Ldis(θ) to θ. We tackle this problem by replacing the discrete
words with soft distributions: each word x̃k in x̃ is replaced with softmax(ok/τ), where ok is the
logit vector inside the softmax function of Equation 2, and τ is a a temperature hyper-parameter.

3.3.3 BACK-TRANSLATION LOSS FOR CONTENT PRESERVATION

To ensure content preservation, we adopt a back-translation loss to avoid generating results comply-
ing with the target style but irrelevant to the source content. Suppose for a training instance (x, s, l)
and a target style s̃, we sample an output x̃ ∼ Pwθ (x̃|x, s̃). Then the model is enforced to reconstruct
the source words x and syntactic labels l when we feed x̃ as the input text and s as the target style.
Formally, the back-translation loss is defined as

Lback(θ) = E(x,s,l)∼D+,x̃∼Pwθ (x̃|x,s̃)[− logPθ(x, l|x̃, s)] (8)

Each x̃, s, x, and l form a pseudo-parallel instance for our model. As training proceeds, the quality
of x̃ gets improved and can gradually boost the performance. As in existing methods, the gradients
are not back-propagated through x̃.

3.3.4 CONSISTENCY LOSS FOR WORD-SYNTAX ALIGNMENT

To guarantee the alignment between the generated words and syntactic labels, we design a consis-
tency loss to pernalize incompatible outputs. Given an input text x and a target style s̃, we sample
an output pair (x̃, l̃) ∼ Pθ(x̃, l̃|x, s̃). We then annotate x̃ with syntactic labels l̂ using the external
tool F , and a legimate transfer should have l̃k = l̂k for ∀k. For training stability, we only apply the
consistency contraint on the word prediction side. As the annotation operation is non-differential,
we resort to the REINFORCE (Williams, 1992) technique to enable gradient estimation. Specifi-
cally, we define a consistency rewardQk for step k as the log-probability of l̂ given by the syntactic
label prediction module

Qk = logP lθ(l̂k|x̃<k, x, s̃) (9)

5



Under review as a conference paper at ICLR 2020

The total expected consistency reward is

Rcons = E(x,s,l)∼D+ [
∑
k

∑
x̃k

Pwθ (x̃k|x̃<k, x, s̃)Qk] (10)

which corresponds to a consistency loss

Lcons(θ) = −Rcons (11)

3.3.5 FULL TRAINING OBJECTIVE

Combining the discrimination loss 7, the back-translation loss 8, and the consistency loss 11, The
full objective of SAST is to minimize

L(θ) = λdisLdis(θ) + Lback(θ) + λconsLcons(θ) (12)

where λdis and λcons are hyper-parameters for balancing the three losses. Our SAST belongs to the
non-disentanglement based methods as with Zhang et al. (2018b); Lample et al. (2019); Luo et al.
(2019), however, it is straightforward to adapt this multi-task learning scheme to the disentanglement
based methods. The training algorithm is summarized in Algorithm 1.

4 EXPERIMENTS

4.1 DATASETS

We evaluate our model on two public datasets for unsupervised text style transfer: a sentiment
dataset YELP (Li et al., 2018) and a formality dataset GYAFC (Rao & Tetreault, 2018). The YELP
dataset consists of business reviews from Yelp, with each review categorized as positive or negative.
We use the same train-dev-test split from Li et al. (2018). The GYAFC dataset consists of sentences
from Yahoo Answers, with each sentence categorized as formal or informal. We use the data in the
Family & Relationship domain. Following Luo et al. (2019), while GYAFC is a parallel corpus, we
do not use the alignment information for training.

4.2 IMPLEMENTATION DETAILS

We use the POS tags as syntactic labels, which are obtained by the spaCy1 library. The bi-directional
GRU encoder is single-layer with 256 hidden units for each direction, and the uni-directional GRU
decoder is single-layer with 512 hidden units. The size of the word embeddings is 128. The temper-
ature τ is set to 0.5. The balancing weights in Equation 12 are: λdis = 0.1 and λcons = 0.005, which
are tuned on the development set. We employ the Adam algorithm with a learning rate of 10−3 for
optimization. The batch size is set to 32. We train the model for 20K iterations in the pre-training
stage and 60K iterations in the regular training stage. We sample the transferred output x̃ by greedy
decoding during both the regular training stage and the inference stage. For the style discriminator,
we the TextCNN model architecture Kim (2014). Our code will be released soon.

4.3 BASELINES

We compare our SAST to various baselines, including (1) the implicit disentanglement based meth-
ods: CrossAligned (Shen et al., 2017), StyleEmbedding (Fu et al., 2018), MultiDecoder (Fu et al.,
2018), and BackTrans (Prabhumoye et al., 2018); (2) the explicit disentanglement based methods:
CycledRL (Xu et al., 2018), TemplateBased (Li et al., 2018), RetrieveOnly (Li et al., 2018), Dele-
teOnly (Li et al., 2018), and Del-Ret-Gen (Li et al., 2018); (3) non-disentanglement based methods:
UnsuperMT (Zhang et al., 2018b) and DualRL (Luo et al., 2019).

4.4 EVALUATION METRICS

Different text style transfer models are assessed based on their outputs on the test split of each
dataset. The assessment focuses on three aspects: transfer accuracy, content preservation, and
fluency. Both automatic evaluation and human evaluation are conducted.

1https://spacy.io
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YELP GYAFC
ACC (%) ↑ BLEU ↑ PPL ↓ ACC (%) ↑ BLEU ↑ PPL ↓

CrossAligned (Shen et al., 2017) 74.4 17.9 43.0 71.2 3.6 23.8
StyleEmbedding (Fu et al., 2018) 8.2 42.3 43.2 24.3 7.9 60.4
MultiDecoder (Fu et al., 2018) 48.9 27.9 79.3 19.3 12.3 69.7
BackTrans (Prabhumoye et al., 2018) 94.7 5.0 19.3 60.6 0.9 113.1

CycledRL (Xu et al., 2018) 53.4 37.0 167.4 80.7 2.0 76.7
TemplateBased (Li et al., 2018) 84.1 45.5 158.1 50.4 35.2 151.0
RetrieveOnly (Li et al., 2018) 97.7 2.9 41.1 91.6 0.4 43.5
DeleteOnly (Li et al., 2018) 85.6 29.0 56.6 16.9 29.2 82.0
Del-Ret-Gen (Li et al., 2018) 88.3 31.1 54.6 51.7 21.2 73.1

UnsuperMT (Zhang et al., 2018b) 97.6 44.5 50.2 66.5 33.4 45.4
DualRL (Luo et al., 2019) 89.5 55.2 43.3 63.5 41.9 50.7

SAST 98.3 60.2 37.5 94.1 45.5 42.5

Table 1: Automatic evaluation results on the YELP dataset and the GYAFC dataset.

YELP GYAFC
Style ↑ Content ↑ Fluency ↑ Style ↑ Content ↑ Fluency ↑

CrossAligned (Shen et al., 2017) 2.7 2.6 3.2 2.8 1.5 3.0
MultiDecoder (Fu et al., 2018) 2.0 3.2 3.3 2.3 2.3 2.7
CycledRL (Xu et al., 2018) 2.8 3.4 3.4 2.8 1.3 2.6
TemplateBased (Li et al., 2018) 3.3 3.7 3.5 3.0 3.8 3.4
Del-Ret-Gen (Li et al., 2018) 3.6 3.8 3.9 2.7 2.9 2.9
DualRL (Luo et al., 2019) 4.1 4.1 4.0 3.5 3.7 3.7

SAST 4.1 4.3 4.2 3.7 3.9 3.8

Table 2: Human evaluation results on the YELP dataset and the GYAFC dataset.

Automatic Evaluation The transfer accuracy is measured by the prediction accuracy of a style
classifier (same architecure but independent of Pφ) on the model outputs, using the target styles as
the ground-truth labels. The content preservation is measured by the case-insensitive BLEU score,
calculated using the multi-bleu.perl script, between the model outputs and reference outputs.
We use the reference outputs from Luo et al. (2019) for YELP, which provides three more references
(four in total) for each sample compared with Li et al. (2018). The GYAFC Rao & Tetreault (2018)
dataset comes with four references for each sample and we directly use them for evaluation. The
fluency is measured by the Perplexity (PPL) of the model outputs, resulted from a single-layer GRU
based language model learned on the training set.

Human Evaluation We invite three human annotators to evaluate the outputs from different models
for 200 test samples on each dataset. The annotators rate each transfer result from 1 (the lowest
quality) to 5 (the highest quality) in terms of transfer accuracy, content preservation, and fluency.

4.5 RESULTS

Table 1 presents the automatic evaluation results on the YELP dataset and the GYAFC dataset. Our
SAST outperforms the baselines by a clear margin on both datasets in terms of transfer accuracy
and content preservation. For fluency, SAST shows better performance than most baselines except
BackTrans (Prabhumoye et al., 2018) on YELP and CrossAligned (Shen et al., 2017) on GYAFC.
However, despite the low perplexity values, both methods are prone to information loss with low
BLEU scores. Overall, by jointly modeling aligned words and syntactic labels, our SAST achieves
better balance among the three metrics. Moreover, the non-disentanglement based methods show a
clear advantage over the disentanglement based methods which tend to sacrifice the content preser-
vation or fluency for better transfer accuracy (or the other direction).

Table 2 presents the human evaluation results on the YELP dataset and the GYAFC dataset for a
subset of baselines due to high evaluation cost. For both datasets, our proposed SAST achieves the
best results on all the three aspects. We notice that there exist some inconsistencies between the
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YELP: negative→ positive
Input i just received a delivery order from them and essentially wasted my money .
CrossAligned i just received a problem job from them and a happy car back .
MultiDecoder i just received the same time us , everyone came , find their time .
CycledRL i just received a delivery order from them and excellent curds how delicious .
TemplateBased i just received a delivery order from them and essentially good as it gets .
Del-Ret-Gen i just received a delivery order from them and essentially perfect .
DualRL i just received a delivery order from them and happy my money .

SAST i just received a delivery order from them and essentially love this place !

YELP: positive→ negative
Input they are so fresh and yummy .
CrossAligned they are so fresh and everything and old .
MultiDecoder they are so fresh and unprofessional .
CycledRL <unk>
TemplateBased they are n’t return phone .
Del-Ret-Gen we are so lazy they need .
DualRL they are so bland and yummy .

SAST they are so sloppy and overdone .

GYAFC: formal→ informal
Input that is if you truly adore them .
CrossAligned if you are talking about you ?
MultiDecoder that is if you them .
CycledRL it if you asked myself
TemplateBased that is if you truly adore the i dont and i meanm .
Del-Ret-Gen that is if you you them ... you .
DualRL that is if you truly adore them

SAST that is if u truly luv them

GYAFC: informal→ formal
Input remember being friends with someone online is ok but there are limits .
CrossAligned tell her and it is not sure that men are looking as well .
MultiDecoder or with someone with that is but the best
CycledRL he is not a good time and do not like it .
TemplateBased remember being friends with someone online is ok but there are limit i wish you thes .
Del-Ret-Gen you being friends with someone you is ok . yes , but there is you .
DualRL remember being friends with someone online is ok but there are limits .

SAST remember being friends with someone online is acceptable , but there are limits .

Table 3: Transferred outcomes of different models on four exemplary sentences.

human evaluation results and automatic evaluation results. For example, the transfer accuracy of
CrossAligned is better than CycledRL on YELP for automatic evaluation results, which is opposite
to the human evaluation results. Also, the differences between different models are much smaller
for human evaluation than those for automatic evaluation. These phenomena can be attributed to
the imperfection of the tools for automatic evaluation. In particular, the pre-trained classifier may
not extract the appropriate patterns for specific styles, or give biased predictions (e.g., predicting as
“positive” as long as there is a “great”); and the pre-trained language model may have quite different
penalties for two equally improper (for human) words.

4.6 QUALITATIVE ANALYSIS

Table 3 presents the transferred outcomes of different models on four exemplary sentences. The
results basically correspond to observations from the quantitative evaluation. On one hand, the im-
plicit disentanglement based CrossAligned and MultiDecoder, tend to alter the original meaning of
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the input. On the other hand, the explicit disentanglement based CycleRL, TemplateBased, and Del-
Ret-Gen, and the non-disentanglement based DualRL either lose some content or make incomplete
changes or produce some incompatible words. Our multi-task learning based SAST can generate
outputs with better quality. As shown in the first example of Table 3, the outputs of CrossAligned
and MultiDecoder significantly deviates from the original content; although the results of CycleRL,
TemplateBased, Del-Ret-Gen, and DualRL change the appropriate position (i.e., essentially wasted
my money) and reflect the positive sentiment, their coherence with the remaining content is not sat-
isfying enough. In comparison, the result of our SAST, rewriting the wasted my money to love this
place, is syntactically reasonable besides successful sentiment conversion and content preservation,
proving the efficacy of modeling syntactic knowledge as an auxiliary task. The generated POS tags
for the second example of Table 3 have been shown in Figure 1.

4.7 ABLATION STUDY

To provide more insights into different components of our SAST framework, we evaluate several ab-
lated variants on the YELP dataset: (1) NoSyntax which eliminates the syntactic label prediction task
and syntax related losses; (2) SAST−Ldis which eliminates the discrimination loss; (3) SAST−Lback
which eliminates the back-translation loss; and (4) SAST − Lcons which eliminates the consistency
loss. The automatic evaluation results are shown in Table 4. Comparing SAST and NoSyntax, we
can conclude modeling the syntactical information mainly improves content preservation. As for the
different losses, we can observe: the discrimination loss has an important influence on the transfer
accuracy; the back-translation loss is responsible for keeping the style-independent content; and the
consistency loss further improves the content preservation. Furthermore, Table 4 shows the outputs
of different ablated variants for transferring a negative sentence to a positive one. We can see SAST
can generate the most reasonable result, while other variants can suffer from content loss, incomplete
changes, or syntax errors.

ACC (%) ↑ BLEU ↑ PPL ↑ Input: do n’t go here unless you want to pay for crap .

SAST 98.3 60.2 37.5 highly recommend this place if you want to pay for perfection .
NoSyntax 98.5 54.4 38.8 do n’t go here and you want to pay for gifts .
SAST− Ldis 72.4 59.3 37.3 do n’t go here unless you want to pay for perfect food .
SAST− Lback 99.8 1.4 310.1 definitely definitely definitely definitely good
SAST− Lcons 98.1 57.5 38.2 recommend here and you want to pay for amazing .

Table 4: Ablation study on the YELP dataset.

5 CONCLUSIONS

In this paper, we propose a multi-task learning based syntax-aware approach for the unsupervised
text style transfer task. By jointly generating aligned words and syntactic labels, our SAST model
learns more generalized latent representations explaining both lexical and syntactic knowledge, thus
avoiding overfitting on the observed words. Quantitative and qualitative results on the two bench-
mark datasets demonstrate the benefits of our approach in terms of style conversion, content preser-
vation, as well as fluency. Currently, we only use the shallow syntax, i.e., POS tags, as the syntactic
labels, and it is promising to further explore other kinds of syntactic information (such as chunking
labels and dependency labels) and investigate integrating multiple different syntactic labels. How-
ever, our SAST framework is limited to syntactic labels with a one-to-one correspondence to the
words, unable to handle more complex syntax such as constituency/dependency parsing. Therefore,
we would like to adapt our framework to address this limitation in our future research.
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