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ABSTRACT

Recent studies show that machine learning models are vulnerable to adversarial
examples. In 2D image domain, these examples are obtained by adding impercep-
tible noises to natural images. This paper studies adversarial generation of point
clouds by learning to deform those approximating object surfaces of certain cat-
egories. As 2D manifolds embedded in the 3D Euclidean space, object surfaces
enjoy the general properties of smoothness and fairness. We thus argue that in or-
der to achieve imperceptible surface shape deformations, adversarial point clouds
should have the same properties with similar degrees of smoothness/fairness to the
benign ones, while being close to the benign ones as well when measured under
certain distance metrics of point clouds. To this end, we propose a novel loss func-
tion to account for imperceptible, geometry-aware deformations of point clouds,
and use the proposed loss in an adversarial objective to attack representative mod-
els of point set classifiers. Experiments show that our proposed method achieves
stronger attacks than existing methods, without introduction of noticeable outliers
and surface irregularities. In this work, we also investigate an opposite direction
that learns to deform point clouds of object surfaces in the same geometry-aware,
but cooperative manner. Cooperatively generated point clouds are more favored
by machine learning models in terms of improved classification confidence or ac-
curacy. We present experiments verifying that our proposed objective succeeds in
learning cooperative shape deformations.

1 INTRODUCTION

The existence of adversarial examples shows the vulnerability of machine learning models, and
triggers a great amount of research attention paid to either attacking and defense studies for safety-
critical issues, or robustness analysis on machine learning models themselves. In existing literature,
adversarial examples generally satisfy two key properties: visually imperceptible by humans and
capable to mislead machine learning models. For 2D adversarial images (Szegedy et al., 2013;
Carlini & Wagner, 2017; Madry et al., 2017), their imperceptible nature indicates less sensitivity
by humans to the texture changes of the original images, which can be viewed as noises with small
magnitudes anchored on RGB values of pixels.

Different from texture changes in adversarial images, adversarial point clouds as approximate shape
representations of object surface demand imperceptible shape deformations. Heuristic manners of
existing several works are taken to allow shape deformations in arbitrary directions for adversarial
attack effects. Consequently, they produce adversarial examples that contain obvious point outliers
(Xiang et al., 2019; Liu et al., 2019a), which can thus be easily defended by simple outlier removal
method such as SOR (Zhou et al., 2018).

In this work, we aim to adversarially perturbing benign point clouds with awareness of the underly-
ing geometric properties, which can be generally described as some sort of approximate geometric
smoothness, e.g., point-wise normals (Wang et al., 2018), curvatures (Bae, 2006), or geodesics for
pairs of points (He et al., 2019), in view of the nature of object surface as 2-manifold embedded
in the 3D space. To this end, we propose a novel geometry-aware loss in combination with the
attack one. Our proposed geometry-aware loss is composed of three terms: the Chamfer Distance
(CD) and Hausdorff Distance (HD) terms prevent geometric/topological changes of global shape via
constraining point-wise perturbations, while the term encouraging consistency of local curvatures
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between the adversarial and benign point clouds achieves smooth local surface deformations. Ex-
tensive experiments on the ModelNet40 dataset (Wu et al., 2015) can verify the imperceptibility and
effectiveness of geometry-aware adversaries.

Our success in generating less noticeable point clouds inspires us to think of an opposite direction:
is it possible to perturb raw point clouds in a cooperative, geometry-aware manner such that the
resulting imperceptible perturbations of point clouds can improve classification performance with
existing machine learning models? To the best of our knowledge, very few existing works are
pursuing this direction, at least in the domain of 3D shape analysis. Technically, the objective
of cooperative generation on point clouds is achieved by learning point perturbations in favor of
either improved classification confidence or corrected class predictions. In view of their geometry-
aware nature, our cooperative point clouds could be practically meaningful in terms of guiding
design of certain objects such that they can be better perceived by in-built machine learning systems
in physical world. Experiments on the ModelNet40 again verify our motivation on cooperative
generation of point clouds.

2 RELATED WORKS

A number of adversarial attack algorithms have been proposed on 3D semantic analysis (Xiao
et al., 2019; Liu et al., 2019a; Xiang et al., 2019; Yang et al., 2019; Zheng et al., 2018; Wicker
& Kwiatkowska, 2019; Liu et al., 2019b). Beyond (Xiao et al., 2019) manipulating both texture and
shape on the mesh level to attack image classifiers and detectors, most of adversarial algorithms on
point clouds attack 3D classifiers via points attachment (Xiang et al., 2019; Yang et al., 2019), point
detachment (Yang et al., 2019; Zheng et al., 2018; Wicker & Kwiatkowska, 2019) or point-wise
perturbation (Xiang et al., 2019; Liu et al., 2019a; Yang et al., 2019; Liu et al., 2019b). Existing
methods fail to exploit geometric properties during adversarial example generation, and thus have
evident outliers and can be easily defended by SOR defense (Zhou et al., 2018), which encourage
our adversaries (see Figure 2 and Table 1).

A number of deep models have been proposed for point-based surface reconstruction such as Point
Set Generation (PSG) (Fan et al., 2017), the AtlasNet (Groueix et al., 2018b), and Deep Cascade
Generation (DCG) (Wang et al., 2019a) from 2D images. These methods exploiting local mesh
structure into point clouds generation have inspired our geometry-aware concept, but they are di-
rectly regressing from the latent vector encoded from images rather than point-wise deformations in
the proposed method.

Data argumentation on point clouds such as jittering, rotation and random scale firstly introduced
in (Qi et al., 2017a) shares similar concept as our cooperative deformations, both of which generate
new data to boost classification. However, the key differences between our cooperative learning
and data argumentation lie in two folds: 1) optimization based vs. simple physical processing; and
2) deformations on the underlying shape vs. point density changes. Simply put, the proposed
cooperative deformation can be a promising learning paradigm, while data argumentation is an
effective pre-processing step to mitigate sparse sample distributions.

3 METHODOLOGY

Our problem setting assumes the availability of a collection of point clouds in the input space X ,
which are approximate shape representations of object surfaces of certain categories. Each point
cloud P ∈ X contains an orderless set of n points {pi}ni=1, with the corresponding label y ∈ Y of
object category, where any p denotes the coordinates (x, y, z) in the 3D Euclidean space. In this
work, we focus on machine learning models of 3D point set classification (Qi et al., 2017a;b; Wang
et al., 2019b), which learn a classifier f : X → Y and expect f(P) = y for any input P with the
true label y.

P is a discrete approximation of an object surface that satisfies the general properties of smooth-
ness and fairness (Botsch et al., 2010), which concern with the continuity and variation of (partial)
derivatives of a parametric surface function; or in a more intuitive way, the properties concern with
the curvatures of local surface patches. Our objective in this work is to obtain from P a deformed
point cloud P ′ via learning to perturb individual points {pi}ni=1 of P . Since the deformation is
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expected to be imperceptible by humans, we argue that P ′ should have the aforementioned surface
properties with similar degrees of smoothness/fairness to local surface patches of P , while being
globally close to P as well, measured by certain distance metrics of point sets; otherwise, humans
would notice either the global, possibly topological changes of part configuration of the object sur-
face, or those of local surface details. We present shortly in section 3.1 our technical solutions to the
above objective of geometry-aware point perturbations, and discuss how such solutions can be used
to generate either adversarial or cooperative point clouds in sections 3.2 and 3.3 respectively.

3.1 GEOMETRY-AWARE POINT PERTURBATIONS

In 2D image domain, pixel-wise lp-norms are usually used to constrain the noise magnitudes of
adversarial examples (Carlini & Wagner, 2017; Madry et al., 2017). Due to the sharply different
data nature of point clouds, we consider the following learning criteria to perturb points {pi}ni=1
of P in a geometry-aware manner. These criteria are to constrain the deformation magnitudes of
the resulting P ′, while taking into account prevention of point outliers and smooth regularization of
local point neighborhoods. Combined use of these criteria leads to point cloud deformations that are
less noticeable by humans, as verified in the comparative experiments in section 4.

Chamfer Distance Given two point sets P and P ′, the Chamfer distance computes

CChamfer(P ′,P) =
1

n

∑
p′∈P′

min
p∈P
‖p′ − p‖22 +

1

n

∑
p∈P

min
p′∈P′

‖p− p′‖22, (1)

which shows that Chamfer distance is symmetric w.r.t. P andP ′. Although the Chamfer distance (1)
is not a strict distance function, since the triangle inequality does not hold, it is popularly used in the
recent literature of learning based 3D shape generation (Yang et al., 2018; Groueix et al., 2018a; Fan
et al., 2017). It measures the distance between the two point sets by averaging over the individual
deviation of any p ∈ P from P ′ and that of any p′ ∈ P ′ from P . However, Chamfer distance is less
effective in prevention of outlier points in P ′, since a small portion of outliers in P ′ increases the
distance (1) negligibly — one can intuitively think of outliers of a point cloud as those away from
the object surface, represented by the point cloud, with relatively large distances. This shortcoming
of Chamfer distance motivates us to additionally use the Hausdorff distance as introduced below.

Hausdorff Distance In this work, we use a non-symmetric Hausdorff distance between the two
point sets P and P ′ that computes

CHausdorff(P ′,P) = max
p′∈P′

min
p∈P
‖p′ − p‖22, (2)

since only the deformation of P ′ is concerned. As (2) indicates, the Hausdorff distance finds the
largest one among the smallest distances of individual p′ ∈ P ′ from P . It is thus sensitive to
generation of outliers in the resulting P ′.

Distances computed by the functions (1) and (2) rely on those between the individual points {p′
i}ni=1

and {pi}ni=1, which does not involve geometries of local surface patches associated with these indi-
vidual points; consequently, the resulting P ′ could be close to P when measured by (1) and/or (2),
but changes of geometric details at certain local patches could be clearly visible, causing failure to
achieve the objective of imperceptible deformation.

Consistency of Local Curvatures Our way of achieving geometry-aware imperceptibility is to
constrain the point cloud deformation such that local patches of the surface approximated by the
resulting P ′ have curvatures whose magnitudes are similar to those of the corresponding patches
of the surface approximated by P . Since computations in this work are conducted on the discrete
surface approximation of point clouds, we propose discrete notions that approximately characterize
curvatures of local surface patches.

More specifically, for any point p′ ∈ P ′, we find its closest point p ∈ P by p = arg minp∈P ‖p′ −
p‖2. There exist local point neighborhoods N ′

p′ ⊂ P ′ and Np ⊂ P respectively associated with
p′ and p, which are obtained in this work by searching k nearest neighbors, suggesting |N ′

p′ | =

|Np| = k. To capture the local geometry of Np, we rely on the following discrete notion

κ(p;P) =
1

k

∑
q∈Np

|〈(q − p)/‖q − p‖2,np〉| , (3)
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where np denotes the unit normal vector of the surface at p. The term (3) intuitively measures the
averaged angles between the normal vector and the vector defined by pointing p towards each q
of its neighboring points. Indeed, since the normal vector np is orthogonal to the tangent plane
of the surface at p, each inner product in (3) characterizes how the normals vary directionally in
the local neighborhood Np, thus approximately measuring the local, directional curvature, and an
average of |Np| inner products in (3) approximately measures the local, mean curvature. Note that
unit normal vector np in (3) can be computed from Np via eigen-decomposition of the set N (p)
(Hoppe et al., 1992). We compute κ′(p′;P ′) in the same way as (3), with a subtle difference that
instead of computing n′

p′ from N ′
p′ , we directly use np, i.e., the unit normal vector of the point in

P that is closest to p′, as a surrogate of n′
p′ , since normal vectors of P can be pre-computed and

efficiently retrieved during the deformation learning.

Given κ′(p′;P ′,P) and κ(p;P), we use the following criterion to encourage the consistency of
local geometries between any p′ ∈ P ′ and its closest point p ∈ P

CCurvature(P ′,P) =
1

n

∑
p′∈P′

‖κ′(p′;P ′,P)− κ(p;P)‖22 s.t. p = arg min
p∈P
‖p′ − p‖2.

(4)

where we write κ′(p′;P ′,P) since the normal vector involved in its computation is from the corre-
sponding one of P . Note that terms similar to (3) are also used in (Wang et al., 2018; Tang et al.,
2019) for single-view surface reconstruction. Our use of the term (3) in (4) is to encourage the
consistency of local surface geometries between P ′ and P , rather than to directly minimize (3) as in
(Wang et al., 2018; Tang et al., 2019).

The Combined Geometry-aware Objective We use the following combined objective to learn the
deformed P ′ by either adversarial or cooperative perturbations of individual points of P

CGeometry(P ′,P) = CChamfer(P ′,P) + α · CHausdorff(P ′,P) + β · CCurvature(P ′,P), (5)

where α and β are the weighting parameters.

3.2 GENERATION OF ADVERSARIAL POINT CLOUDS

Assume a point cloud classification model f : X → Y . An adversarial example of a point cloud
P is a crafted malicious input P ′ to the model f(·), with imperceptible deformation, such that
P ′ is misclassified by the model. Let the true label of P be y ∈ Y , it means that f(P ′) 6= y.
Adversarial examples can be generated either by untargeted or targeted attacks. Similar to (Xiang
et al., 2019), we focus in this work on the more difficult task of targeted attack for point cloud data,
which generates P ′ such that it is classified as a specified class y′ 6= y, i.e., f(P ′) = y′.

Among various attack models proposed for 2D image classification (Madry et al., 2017; Carlini &
Wagner, 2017), we adopt the state-of-the-art framework of C&W attack (Carlini & Wagner, 2017).
Its objective can be generally written as

min
x′

CAdv(x′) + λ · ‖x′ − x‖p, (6)

where x is the benign signal (e.g., an image) and x′ is the adversarial example to be optimized.
The misclassification loss CAdv(x′) is regularized by a λ weighted, lp-norm based term that con-
strains the noise magnitude of adversarial x′. To specify CAdv(x′), we assume a classification
model f(·) be implemented as a deep network, and denote as g(·) the function that outputs the
network logits, i.e., g(·) includes all layers of the network except the final softmax. Let the
targeted label attacking x as y′, C&W attack commonly uses a margin based loss function as
CAdv(x′) = max{maxi 6=y′ gi(x

′)− gy′(x′), 0}.
In this work, we adopt the C&W attack framework, and propose to replace the term of lp-norm
in (6) with our geometry-aware objective (5), in order to generate adversarial point clouds with
imperceptible shape deformations, giving

min
P′

CAdv(P ′) + λ · CGeo(P ′,P). (7)

The original choice of margin based CAdv(P ′) in C&W attack ceases pursuing more adversarial
examples once maxi 6=y′ gi(P ′) − gy′(P ′) ≤ 0, assuming that further optimization would reduce
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the imperceptibility of the resulting P ′. Our proposed geometry-aware (5) allows us to take a more
aggressive strategy, and we propose to use the following term as our misclassification loss

CAdv(P ′) = − log

(
exp(gy′(P ′))/

∑
i

exp(gi(P ′))

)
. (8)

Our proposed objective (7) with term (8) continues to pursue more adversarial, arguably less defend-
able, point clouds without introducing noticeable shape deformations, as empirically verified by our
experiments in section 4.

3.3 GENERATION OF COOPERATIVE POINT CLOUDS

The adversarial objective (7) motivates us to think of an opposite direction of geometry-aware point
cloud deformations that are less noticable by humans. Specifically, is it possible to perturb points
of any P in a cooperative, geometry-aware manner such that the resulting P ′ is more favored by
machine learning models in terms of improved classification confidence/accuracy? Technically, for
a given classifier f(·), this seems to be achieved trivially by optimizing

min
P′

CCoop(P ′) + λ · CGeo(P ′,P), (9)

with the cooperative loss term as

CCoop(P ′) = − log

(
exp(gy(P ′))/

∑
i

exp(gi(P ′))

)
, (10)

where we simply use the true label y of P to replace the targeted attack label y′ 6= y in (8).

Given knowledge of the true label y of P , the objective (9) seems only learn a deformed P ′ that
overfits the classifier f(·), which could be practically less meaningful. In this work, we present
the following interesting, but less explored investigation based on (9), which suggests that subtle
deformations of shape instances of common object categories (e.g., those in ShapeNet (Chang et al.,
2015)) could lead to practical meanings in terms of being better perceived by existing 3D point set
classification models (Qi et al., 2017a;b; Wang et al., 2019b).

Assume we are given a set of m point clouds {Pi}mi=1 of different object categories. We take the
following procedure on {Pi}mi=1.

1. We divide {Pi}mi=1 evenly into s subsets, with consideration of class balance.
2. We use the first s−1 subsets as training data to train a classifier fs(·), and use the objective

(9) to cooperatively deform point clouds in the sth subset (the validation set) w.r.t. fs(·).
3. We perform s times of step 2 by using each of the s subsets as the validation set, obtaining
f i(·), i = 1, . . . , s, and the aggregated collection of deformed {P ′

i}mi=1.

The above procedure can optionally be conducted for multiple times to further increase the degree
of deformations, with awareness of geometric imperceptibility. We use the obtained {P ′

i}mi=1 in a
standard training-and-test setting of point set classification. That is, we split {P ′

i}mi=1 as training and
test data, whose indices are the same as those of the original {Pi}mi=1, and train a new classifier f̂(·)
to evaluate f̂(·) on the split test data.

The obtained {P ′
i}mi=1 are indeed cooperative when performance of f̂(·) is improved over that of

the original classifier f(·). In fact, we have further conducted cross-model experiments by learning
{P ′

i}mi=1 via the above procedure with PointNet (Qi et al., 2017a), and train and evaluate f̂(·) of
other representative point set classifiers (e.g., PointNet++ (Qi et al., 2017b) and DGCNN (Wang
et al., 2019b)). We have also conducted experiments by converting the obtained {P ′

i}mi=1 to their
mesh representations (Edelsbrunner et al., 1983), and uniformly re-sample points from the meshes
to form {P̃ ′

i}mi=1; classification performance again improves by training and testing on {P̃ ′
i}mi=1,

confirming that we are indeed cooperatively deforming the underlying object surfaces.

While our above investigations remain in the digital space, cooperative deformations of point clouds
could be physically achieved either by changes of shape design for common rigid objects, or by de-
signing special devices that actively control the reflections of laser pulses from LiDAR (Cao et al.,
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2019). Physical-world adversarial attacks (Athalye et al., 2017; Eykholt et al., 2018) are actively
pursued recently in the 2D image domain. Deformations of geometry-aware imperceptibility make
sense here since we are not to change the geometric and/or topological surface structures of the ob-
jects; otherwise the deformations would have influence on human perception or functional attributes
of the objects.

4 EXPERIMENTS

Dataset We use point clouds of object instances from ModelNet40 (Wu et al., 2015) to evaluate our
proposed algorithms. The dataset consists of 12, 311 CAD models belonging to 40 semantic cate-
gories. For each CAD model, 1, 024 points are uniformly sampled from its surface as the working
point clouds, which are re-scaled into a unit ball following (Qi et al., 2017b).

Models and Protocols We evaluate the adversarial and cooperative generation of point clouds based
on three representative classifiers, namely PointNet (Qi et al., 2017a), PointNet++ (Qi et al., 2017b),
and DGCNN (Wang et al., 2019b). More details of the networks please refer to A.6. In our ad-
versarial setting, we follow the official data split for 3D classification (Qi et al., 2017a;b) and use
9, 843 samples of point clouds for training classifiers that are to be attacked, and for testing, we fol-
low (Xiang et al., 2019) and randomly select 25 samples from each testing set of the top-10 object
classes (ordered by sample sizes of these classes, giving rise to airplane, bed, bookshelf, bottle, chair,
monitor, sofa, table, toilet, vase); all adversarial attack algorithms are evaluated with a white-box,
targeted attack protocol. In our cooperative setting, we set the subset number as s = 5.

Evaluation Metrics We respectively use the attack success rate (i.e., misclassification rate)
and classification accuracy to evaluate the algorithmic effectiveness in our adversarial and
cooperative settings. For both metrics, the higher, the better.

Implementation Details We set k = 16 to define local point neighborhoods for computation of
normals and approximate curvatures in (3). We fix α = 0.1 and β = 1.0 for our proposed geometry-
aware loss (5), and the trade-off parameter λ in (7) and (9) is optimized via 10-step binary search.
We use Adam optimizer (Kingma & Ba, 2014) to train networks, and set its learning rate as 0.01.

4.1 EVALUATION ON GENERATION OF ADVERSARIAL POINT CLOUDS

In this section, we evaluate the efficacy of our proposed geometry-aware objective (7) for generation
of adversarial point clouds. We dub our method as GeoAwareAdv and compare with the method
(Xiang et al., 2019), which is among the only few existing works (Liu et al., 2019a;b) addressing
adversarial point clouds and takes the same white-box, targeted attack as our method does. Objec-
tive of (Xiang et al., 2019) strictly follows the C&W attack (6) (Carlini & Wagner, 2017), with a
margin-based misclassification loss regularized by l2-norm constraining magnitude of point pertur-
bations. We also compare with a degenerate version of our method, dubbed GeoDegenerateAdv,
which replaces the geometry-aware term (5) with a similar l2-norm as in (Xiang et al., 2019). These
experiments are conducted using PointNet (Qi et al., 2017a) as the model of classifier.

Ablation Studies To investigate how different terms in our proposed geometry-aware loss (5), we
conduct ablation studies by removing each of them from (5), and use the remaining ones into the
adversarial objective (7) for point cloud generation. Figure 1) shows that these terms all together
contribute to smooth and outlier-free results. Without using CD, the shape deformations go to unex-
pected twists. The use of HD and curvature terms largely removes generation of outliers, with the
later one further improving the surface smoothness.

Comparative Results We report comparative results of our GeoAwareAdv, GeoDegenerateAdv,
and the method (Xiang et al., 2019) in Table 1 and Figure 2. Table 1 compares the attack success
rates under two defense methods of SOR (Zhou et al., 2018) and Random Romoval (RR). SOR is the
current state-of-the-art method to defend attacking of point clouds, which works by dropping certain
points from a point cloud based on statistical analysis. RR simply drops points from a point cloud
randomly. Based on our stronger adversarial term (8), both of our methods achieve better success
rates than those of (Xiang et al., 2019) under different dropping settings of the defenses SOR and
RR. More significantly, the stronger attacking effects of our GeoAwareAdv are achieved without
introduction of noticeable outliers and surface irregularities, as shown in Figure 2; in contrast, the
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Figure 1: Ablation studies on the effectiveness of different terms in our geometry-aware loss (5) for
generation of adversarial point clouds. See the main text for experiment settings of these results.
More quantitative results please refer to A.4.

Figure 2: Comparative quality results of different methods successfully attacking the classifier of
PointNet (Qi et al., 2017a).

use of simple l2 norm in (Xiang et al., 2019) produces its adversarial results with clear outliers.
Advantages of our GeoAwareAdv are essentially due to the use of HD and curvature terms in our
geometry-aware loss (5).

Table 1: Success rates (%) of different methods attacking the classifier of PointNet (Qi et al., 2017a)
under defenses of SOR (Zhou et al., 2018) and Random Romoval (RR). We report results with
different numbers of dropping points for the two defense methods. For all methods, attack success
rates are 100% without defense. More details of RR and SOR please refer to A.7.

Method Defense method
Attack success rate (%)

defense by dropping different numbers of points
1 2 4 8 16 32 64 128 256

The method (Xiang et al., 2019)
RR

91.78 87.02 80.71 70.44 58.31 47.07 34.89 23.82 16.00
GeoDegenerateAdv (our vairant) 98.17 96.63 94.61 90.06 84.89 76.65 61.32 38.64 17.38
GeoAwareAdv (our method) 99.87 99.78 99.60 99.38 98.57 97.77 94.65 79.97 47.48

The method (Xiang et al., 2019)
SOR

12.71 7.29 3.69 1.96 1.51 1.24 0.71 0.67 1.56
GeoDegenerateAdv (our vairant) 29.37 13.73 6.02 3.25 1.83 0.94 0.89 0.80 1.25
GeoAwareAdv (our method) 98.84 97.86 96.08 92.74 87.62 77.06 61.29 41.38 28.20
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Figure 3: Visualization of cooperative point clouds generated based on PointNet. (a) Vanilla point
clouds, (b) Cooperative point clouds, and (c) Uniformly re-sampling on the mesh surface of (b).

4.2 EVALUATION ON GENERATING GEOMETRY-AWARE COOPERATIVE POINT CLOUDS

Table 2: Classification accuracy (%) of different networks trained on different source of data, in-
cluding vanilla point clouds, cooperative point clouds and its variant generated based on PointNet.
The state-of-the-art Geo-CNN (Lan et al., 2019) achieves the classification accuracy of 93.90%.

Data Classification accuracy (%)
PointNet PointNet++ DGCNN

Vanilla point clouds 87.96 89.50 90.64

Cooperative point clouds (ours) 96.88 94.32 96.27
Re-sampling variant (ours) 94.81 92.78 94.12

Comparative Evaluation Cooperative point clouds are generated based on the PointNet via opti-
mizing objective function (9), and a variant can be re-sampled point clouds from its mesh surface.
A number of recent classifiers are trained and evaluated on vanilla and cooperative point clouds re-
spectively, whose results are reported in Figure 3 and Table 2. It can be observed from Table 2, both
cooperative point clouds significantly outperform the vanilla ones by a large margin, i.e., increase at
least 6% on classification accuracy. Moreover, performance gap between two types of cooperative
point clouds can be explained by both approximation errors of mesh reconstruction and the changes
on point distribution, which encourage us to consider adversarial shape deformations on the mesh
level.

Cross-model experiments We conduct one more cross-model experiment to test transferable char-
acteristics of cooperative point clouds across classifiers, i.e., generating cooperative examples on
PointNet, while train and evaluate other classifiers. Results in Table 2 show consistent improvement
on classification accuracy achieved for different neural classifiers, which reveal that cooperative
shape deformations on point clouds can capture discriminative geometric patterns favor for seman-
tic object classification, which are independent on neural models.

5 CONCLUSIONS

In this paper, we propose a compact geometry-aware loss to constrain point-wise imperceptible
perturbations to achieve similar geometric smoothness and fairness of local patches and their global
topological configuration in deformed point clouds as the original ones. Experiment results reveal
the rationale of three components in the proposed geometry-aware loss for generating adversaries
without evident outliers and shape irregularities, which can thus achieve adversarial effects even
confronting the SOR defense. Moreover, cooperative generation on point clouds also demonstrates
its positive effects on improving classification with aware of geometric properties.
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A APPENDIX

A.1 VISUALIZATION OF MORE GEOMETRY-AWARE ADVERSARIAL EXAMPLES.

Figure 4: Visualization of our proposed geometry-aware adversarial examples based on PointNet.
We show all kinds of our selected categories here targeted on all the other classes. The diagonal
examples are corresponding benign ones.
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A.2 VISUALIZATION OF MORE GEOMETRY-AWARE COOPERATIVE EXAMPLES.

Figure 5: Visualization of our proposed geometry-aware cooperative examples based on PointNet.
We show all kinds of categories in the dataset.

Figure 6: Visualization of our proposed resampling-after-reconstruction on geometry-aware coop-
erative examples based on PointNet. We show all kinds of categories in the dataset.
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A.3 ABLATION STUDY OF DIFFERENT α AND β .

Figure 7: Qualitative results of adopting different α and β. All the adversarial examples are gen-
erated via targeted attacked method to the same target. We fix all the other hyperparameters when
tuning one. The default parameters are α = 0.1 and β = 1.0. As can be seen in the figure, smaller
α leads to more obvious outliers; and larger α leads to the deformation of the point cloud, due to the
overwhelming focus on the outliers while ignoring the whole shape. On the other hand, smaller β
leads to high frequency outliers near the surface; and again, larger β leads to the deformation of the
whole point cloud.

A.4 QUANTITATIVE RESULTS FOR FIGURE 1.

It’s hard to define a metric evaluating geometrical smoothness of a point cloud directly due to its
irregularity and lacking of geometric topological connection. Hence, we introduce an approximation
metric mainly focuses on measuring the strength of isolated noisy points and the roughness of local
patches, which can be defined as:

S(P) = max
p∈P

∑
q∈Np

D(q,TNp) (11)

where estimated tangent plane of the k nearest neighbors Np of p is denoted by TNp, and D
denotes the distance function between the points and the tangent plane, where we use l2 norm in our
settings. Intuitively, we are calculating the residual of first-order Taylor expansion of the points we
estimate the first-order approximation of a point p, i.e., the tangent plane TNp, and then measures
how far its neighbor pointsNp are to this plane. Note that we set the |Np| = k to be small to reduce
approximation error, where in the following settings k = 16.

We evaluate S(P) on the experiments of Figure 1, and the quantitative results are shown in the
following Table 3. As can be seen in the table, with all the losses, the geometry-aware adversarial
point clouds achieve the lowest S(P), where the point clouds are smoothest. And with many outliers,
the adversarial point clouds without Hausdorff Distance get the highest S(P). The quantitative
results of the point clouds without Chamfer Distance are a little higher than the point clouds without
Consistency of Local Curvatures, which is consistent with our perception the point clouds without
Consistency of Local Curvatures are also very smooth expect for some high frequency outliers near
their surfaces.
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Table 3: Quantitative results of the ablation study of Figure 1. We evaluate smoothness metric S(P)
with and without individual components. We take average over all the samples. Lower value means
smoother point clouds.

Methods Smoothness avg.

Whole geometry-aware loss 0.1047

Without Chamfer Distance 0.1214
Without Hausdorff Distance 0.1895

Without Consistency of Local Curvatures 0.1210

A.5 USER STUDY ON AMAZON MECHANICAL TURK (AMT).

We conducted a user study on Amazon Mechanical Turk (AMT) in order to verify the impercep-
tible quality of our adversarial examples. We upload the snapshots of three kinds of point clouds
including the benign point clouds, the adversarial point clouds generated via the method of Xiang
et al. (2019) and our geometry-aware adversarial ones. All the adversarial point clouds can suc-
cessfully mislead PointNet. Participants were asked to compare which one of the adversarial point
clouds are more geometrically similar to the original one. The order of two kinds of adversarial
point clouds was randomized and all the images appeared in the middle of the screen on each trial.
Each participant could conduct at most 30 trials and each adversarial images can be shown to 50
different participant at most. In total, we conduct 1500 trials among 128 participants. And our
geometry-aware adversarial point cloud are considered to be closer to the original ones in 82.06%
of the trials, which indicates that our geometry-aware point clouds are more imperceptible. We think
this experiment can further support our opinion that our geometry-aware adversarial examples are
more imperceptible to humans. And we will attach this experiments to the appendix of our revised
paper.

A.6 INTRODUCTION OF OUR POINT CLOUD CLASSIFIER.

The PointNet (Qi et al., 2017a) and Pointnet++ (Qi et al., 2017b) are the first attempts to explore
deep point cloud classification, with the permutation invariance of points in multi-layer perceptrons
(MLPs) and a symmetric function for aggregating features. Both methods can only implicitly model
global semantic patterns from 3D geometry. Another groups of algorithms design graph based
convolution operation on irregular distributed structure of points such as DGCNN (Wang et al.,
2019b). In DGCNN, an edge convolution operation is proposed on a dynamic graph to discover
local geometric manifolds.

We mainly focus on PointNet Qi et al. (2017a) as our baseline due to its simple structure and good
performance. The classier f can be formulated as f(P ) = γ(maxpi∈P {h(pi)}), where γ and h are
two learnable parameters of the neural network.

A.7 INTRODUCTION OF DEFENSIVE ALGORITHM

We adopt two kinds of defense method including random removal method (RR for short) and statistic
outlier removal method (SOR for short)Zhou et al. (2018) as the defensive method.

In RR, we randomly select a subset of points from the point cloud and drop it. And in SOR, we
calculate the average distance dp of a point p to its k-nearest neighbors, which can be denoted by

dp =
1

k

∑
q∈Np

‖p− q‖2 (12)

And then we calculate the mean d̄ and standard deviation σd over all the distance dp of points in the
point cloud p ∈ P . We remove all the points that fall outside d̄ ± a × σd, where a is set to be 1.1
in Zhou et al. (2018). According to our experiments, around 100 points will be dropped out of 1024
points when a is set to be 1.1.
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However, in our settings, we drop a fix number points with m-largest dp for fairer comparison
between different methods. We drop k = 1, 2, 4, 8, 16, 32, 64, 128, 256 respectively in Table 1.
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