Learning Cancer Outcomes from Heterogeneous Genomic Data Sources: An
Adversarial Multi-task Learning Approach

Safoora Yousefi! Amirreza Shaban

Abstract

Translating the high-dimensional data generated
by genomic platforms into reliable predictions of
clinical outcomes remains a critical challenge in
realizing the promise of genomic medicine largely
due to small number of independent samples. We
show that neural networks can be trained to pre-
dict clinical outcomes using heterogeneous ge-
nomic data sources via multi-task learning and ad-
versarial representation learning, allowing one to
combine multiple cohorts and outcomes in train-
ing. Experiments demonstrate that the proposed
method helps mitigate data scarcity and outcome
censorship in cancer genomics learning problems.

1. Introduction

Since the emergence of high throughput experiments such
as Next Generation Sequencing, the volume of genomic
data produced has been increasing exponentially (Stephens
et al., 2015). A single biopsy can generate tens of thousands
of transcriptomic, proteomic, or epigenetic features. The
ability to generate genomic data has far outpaced the ability
to translate these data into clinically-actionable information,
as typically only a handful of molecular features are used in
diagnostics or in determining prognosis (Bailey et al., 2018;
Van De Vijver et al., 2002; Network, 2015).

Cancer genomic datasets often have small sample size (hun-
dreds of samples), and much larger dimensionality (tens
of thousands of features), making it difficult to train com-
plex models such as neural networks (Abu-Mostafa, 1989).
Furthermore, of those available samples, often large pro-
portions have censored outcomes. Several approaches have
been employed to alleviate this data insufficiency including
dimensionality reduction, feature selection, data augmenta-
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tion, and transfer learning (Ching et al., 2018).

An alternative approach is to integrate genomic data from
multiple studies and hospitals to increase training set size.
Heterogeneity of available genomic datasets due to tech-
nical and sample biases poses challenges to this approach.
Cohorts from different sources typically have difference
demographic or disease stage distributions, may be subject
to different signal capture calibration and post-processing
artifacts. This means that naively combining heterogeneous
cohorts is both difficult and may degrade model accuracy
due to batch effects (Tom et al., 2017).

Building upon SurvivalNet (Yousefi et al., 2016; 2017) -
a neural network model for survival prediction- we pro-
pose a multi-task learning approach that enables: a) train-
ing SurvivalNet on multiple heterogeneous data sources
while avoiding the issues that arise from naively combining
datasets, and b) training on multiple clinical outcomes from
the same cohort, thus helping to address the issue of cen-
sorship often encountered in clinical datasets. We further
enhance our proposed method by introducing an adversar-
ial cohort classification loss that prevents the model from
learning cohort-specific noise, thus enabling task-invariant
representation learning. Experiments demonstrate that our
proposed methods can be used to alleviate data scarcity and
outcome censorship in several cancer genomics learning
problems, leading to superior performance on target cohorts
and outperforming previous multi-task survival analysis
methods.

2. Background and Related Work

Survival analysis with Cox proportional hazards model:
Survival analysis refers to any problem where the variable
of interest is time to some event, which in cancer is often
death or progression of disease. Time-to-event modelling is
different from ordinary regression due to a specific type of
missing data problem known as censoring. Incomplete or
censored observations are important to incorporate into the
model since they could provide critical information about
long-term survivors (Harrell Jr, 2015). The most widely
used approach to survival analysis is the semi-parametric
Cox proportional hazards model (Cox, 1972). It models the
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hazard function at time s given the predictors z; of the ith
sample as:

h(s|zi, B) = ho(s)e? (1)

The model parameters /3 are estimated by minimizing Cox’s
negative partial log-likelihood:
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where X = {1, ...,z } are the samples, and Y = {E, S}
represents label vectors of event or last follow-up times
S = {s1,...,sn} and event status F = {ey,...,en}. For
censored samples (e = 0), s represents time of last follow-
up while for observed samples (e = 1), it represents event
time. The outer sum is over the set of uncensored samples
U and R; is the set of at-risk samples with s; > s;. The
baseline hazard hg(t) is cancelled out of the likelihood and
can remain unspecified.

A non-linear alternative to Cox regression is SurvivalNet
(Yousefi et al., 2016; 2017), a fully connected artificial
neural network fyy with parameters W that replaces X
in Equation 2 with its non-linear transformation fy (X).
SurvivalNet has been shown to outperform other common
survival analysis techniques such as random survival forests
(Ishwaran et al., 2008) and Cox-ElasticNet (Park & Hastie,
2007) in learning from high-dimensional genomic data.

Multi-task learning for survival analysis: Both theoreti-
cal and empirical studies show that learning multiple related
tasks simultaneously often significantly improves perfor-
mance relative to learning each task independently (Baxter,
2000; Ben-David & Schuller, 2003; Caruana, 1997). This is
particularly the case when only a few samples per task are
available, since with multi-task learning, each task has more
data to learn from.

The general form of the loss function when learning 7" tasks
simultaneously is:

T
LY, X,W) =Y Ly, g" (W' X)) + 7Y, X, W) (3)

t=1

L; and W, respectively, are the loss function and the param-
etersof taskt. Y = {Y!' ... YT} and X = {X!, ..., XT}
are the combined input data of all ¢ tasks. ¢* indicates
the prediction function corresponding to task ¢, and A is a
regularization or auxiliary function that captures task relat-
edness assumptions, examples of which include £ ; norm
(Argyriou et al., 2007), and cluster norm (Jacob et al., 2009).
v is a weight parameter controlling the importance of the
auxiliary function.

Previous work has applied multi-task learning under differ-
ent task relatedness assumptions to train Cox’s proportional
hazards model using multiple genomic data sources (Wang
etal., 2017; Li et al., 2016).

In this paper, our main assumption is that gene expression
data lies on a lower dimensional subspace that can be uti-
lized in several prognostic tasks. We will enforce this as-
sumption via hard parameter sharing among tasks and the
bottleneck architecture of our models. Moreover, In section
3 we describe how an adversarial classification objective can
be used as auxiliary function )\ to encourage task-invariant
representation learning. We compare our proposed method
to multi-task Cox model with {5 ; regularization (Li et al.,
2016).

Adversarial representation learning: The idea of using
adversarial learning to match two distributions was first pro-
posed by (Goodfellow et al., 2014) for training generative
models. This idea has been applied to unsupervised domain
adaptation for natural language processing and computer
vision, with varying design choices including parameter
sharing, type of adversarial loss, and discriminative vs. gen-
erative base model (Ganin & Lempitsky, 2015; Ganin et al.,
2016; Tzeng et al., 2015; Liu & Tuzel, 2016; Tzeng et al.,
2017).

We adapt this idea to multi-task learning to encourage our
proposed model to learn task-invariant genomic representa-
tions. A cohort discriminator is trained to assign samples to
their cohort. Simultaneously, a SurvivalNet is adversarially
trained to confuse the discriminator by learning a repre-
sentation of data where samples from different cohorts are
indistinguishable (in addition to learning to predict survival).

3. Methods

In cases where all tasks are similar and their corresponding
samples come from similar distributions, a natural approach
is to simply combine the datasets and train a single-task
model on the combined training data, as done in (Yousefi
etal., 2017). We implement this approach using SurvivalNet
to provide a performance baseline.

But the assumption that the datasets come from the same dis-
tribution rarely holds and this could be problematic in train-
ing a Cox-based model. Comparisons of survival time be-
tween pairs of samples are integral to the Cox log-likelihood
loss function. When one naively combines datasets to train
a model with a single Cox loss, in addition to comparisons
within each cohort, comparisons between these cohorts con-
tribute to the loss. Since the difference between distributions
of these cohorts could be due to clinically insignificant fac-
tors such as batch effects, these between-cohort comparisons
could be misleading in training. Our first proposed model
aims to eliminate this potentially misleading signal from the
training process via multi-task learning:

Multi-task learning (MTL): This proposed extension of
SurvivalNet model comprises one Cox loss node per each
task, so that only within-cohort comparisons contribute to
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the loss. The objective function of the MTL model is the

sum of all Cox losses:
T

Luyrr =Y Looa(fw (X1), Y, B) )

t=1

where fyy is the SurvivalNet model. All parameters of MTL,
[ and W, are shared among tasks.

Although we are encouraging sparse representation learning
via the bottleneck architecture of the MTL model, that does
not force the model to learn a task invariant representation.
The model may learn a sparse representation, but still have
enough parameters to be able to discriminate between sam-
ples from different cohorts and process them differently. The
adversarial model described below addresses this limitation.

Adversarial multi-task model (ADV-MTL): This mod-
els extends SurvivalNet by addition of an adversarial co-
hort classification loss. Let Xcoms = {z1,...,2p} and
Yeomb = {¥y1,---,yn} denote the combination of all X*
and Y, respectively, including M samples in total. A set
of one-hot vectors Yp = {dy, ..., dps} indicate cohort mem-
bership, so that d;; = 1 means that the ith sample belongs to
the tth cohort. A cohort discriminator is trained to assign the
transformed samples z; = fy (x;) to the cohort they belong
to. This component of the model is a multi-class logistic
regression with a softmax cross-entropy loss. It comprises
a simple neural network gg mapping z; to a T-dimensional
vector, where T is the number of tasks, and a softmax func-
tion that transforms the result to a T-dimensional vector
of probabilities. The predicted probability that sample ¢
belongs to cohort ¢ is given by:

ege(zi)t

- 2521 (e90(zi)r) ’

and the objective function of the discriminator Lp is the
cross-entropy between predicted probabilities and cohort
labels:

M T
Lp(fw(Xeomn); YD,0) =Y > —dilogdir  (5)

i=1 t=1

d;y

This loss function only trains the parameters of the discrimi-
nator, namely 6 the parameters of the function gg.

Simultaneously, a multi-task risk predictor component is
adversarially trained with the following objective:

T
Lr = Leoa(fw(X"),Y", 8)=vLp(fw(Xc), Y, 0) (6)

t=1

L trains the parameters of the risk predictor 3 as well as
W. By updating W with an objective function that is the
opposite of that of the discriminator, we encourage learning
a representation of data in which samples from different
cohorts are indistinguishable. v controls the contribution of
the adversarial loss to representation learning.

4. Results

Datasets: We use several publicly available benchmark
survival analysis datasets from The Cancer Genome Atlas
(TCGA) and METABRIC (Molecular Taxonomy of Breast
Cancer International Consortium) (Curtis et al., 2012). Both
of these sources provide gene expression data (over 20K
features) and clinical outcome labels. TCGA clinical data
contains overall survival (OS) and progression free interval
(PFI) outcome labels (Liu et al., 2018) while METABRIC
only contains OS labels. For details about datasets and
preprocessing, refer to supplementary materials.

Model selection and training: In each experiment, we pick
a target task and use auxiliary tasks to improve performance
on the target task. We use random stratified sampling to
sample 60% of target data as training and use the remaining
40% as hold-out testing data. Stratified sampling ensures
similar event rates in training and testing sets. Training set
is augmented with any auxiliary data at this stage if the
experiment calls for it. For model selection, grid search
with 5—fold cross validation is performed on the training
set and the selected model is then evaluated on the hold-
out testing data. We repeat this procedure on 30 randomly
sampled training and testing sets and use re-sampled t-test
and paired re-sampled t-test (Dietterich, 1998) to provide
confidence intervals and significance analysis. In visualizing
the results, we use shaded areas or error bars to depict the
95% confidence intervals of the mean c-index.

A single hidden layer with 50 ReL.U hidden units was used
in all risk prediction neural networks. Discriminators were
fixed to a single-layer design with 20 ReLU hidden units.
Learning rate, drop-out regularization rate, and L2 regular-
ization rate of neural network parameters W, and the weight
of the discriminator loss v were tuned via grid search.

The same sampling, training, model selection and evaluation
procedures was used in all experiments with all methods.
All software to reproduce the results presented in this section
is available at [GITHUB LINK]. For Cox-/5 1, we used the
authors’ open-source implementation (Li et al., 2016).

Evaluation Metric: We measured model performance us-
ing concordance index (c—index) that captures the rank cor-
relation of predicted and actual survival (Harrell Jr et al.,
1982), and is given by:

I, x) = (7)

. P
1, ifr; >r;andt; > t;
16, 5) :{ itr; > r;and t; i

0, otherwise ®
Where P is the set of orderable pairs. A pair of samples (z;,
;) is orderable if either the event is observed for both x; and
x;, or z; is censored and ¢; > ¢;. Optimizing Cox’s partial
likelihood (Equation 2) has been shown to be equivalent to
optimizing c—index (Steck et al., 2008).
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Figure 1. METABRIC and TCGA breast cancer datasets were combined to im-
prove performance on TCGA, using the proposed and baseline methods. *x indi-
cates significant improvement over both Cox—¢3,1 and single—task models. * indi-

cates significant improvement over single—task models.

4.1. Combining two breast cancer cohorts

This section investigates the integration of two breast cancer
cohorts from independent studies. We use TCGA BRCA as
target, and METABRIC as auxiliary cohort. Both cohorts
are diagnosed with breast cancer. In such cases where simi-
lar biological processes determine the outcomes, one would
expect naively pooling cohorts together to lead to better
predictions on each of the cohorts. This is the expectation
particularly in this case where the auxiliary cohort has twice
the number of samples as almost the target cohort (1903 vs.
1094) and three times the event rate (33% vs. 13%).

Surprisingly, we observe that simply adding METABRIC
to training data (SurvivalNet TCGA+MB) does notim-
prove prediction of c-index on TCGA (p=0.1). See Fig-
ure 1. MTL model achieves a significant improvement
(p=3e-4) over SurvivalNet trained on target data only
(SurvivalNet TCGA-only), and ADV-MTL signifi-
cantly outperforms all other methods. Cox-{5 ; achieves a
significant improvement over single-task SurvivalNet meth-
ods, but is significantly outperformed by ADV-MTL (p=1le-
6) and MTL (p=0.01).

4.2. Combining multiple outcome labels

As shown in Table 1, for some patients, a progression event
is never observed (or recorded) during the study (censored
PFI), while their overall survival outcome is observed (de-
ceased by end of study). In such cases, overall survival could
provide an extra supervision signal in training a predictive
model that originally targets PFI prediction.

We use the MTL model to simultaneously use PFI and OS
outcomes in training. In our experiments with five differ-
ent TCGA cancer types, multi-task learning with PFI and
OS always leads to improved PFI prediction performance
compared to single-task SurvivalNet trained with PFI labels
only (see Table 1 and Figure 2).
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Figure 2. Progression-free interval (PFI) prediction performance with and without

multi-task learning with overall survival (OS) labels.

Cancer type Number of PF_I+OS Improvement  Censored PFI
Samples c-index on PFI-only Observed OS
CESC 304 65.83 1.69% 5.26%
KIRC 533 76.55 2.12% 11.81%
KIRP 514 76.55 1.35% 5.19%
LGG 288 72.15 1.75% 1.75%
PAAD 178 65.12 1.34% 9.55%

Table 1. Progression-free survival (PFI) prediction performance with multi-task
learning with overall survival (OS). Percent of samples in each cohort with censored

PFI and observed OS is given in the last column.

4.3. Discussion

To provide an insight into the significance of the improve-
ment achieved by our models, we look at the learning curves
of SurvivalNet and ADV-MTL evaluated on TCGA-BRCA.
Learning curves were obtained by training the models on
incrementally more training samples from the target task,
and testing on a fixed sized test set (40% of target data, con-
sistent with the rest of experiments). As shown in Figure 3,
the performance improvement achieved by ADV-MTL over
SurvivalNet (a 10% improvement, see Fig. 1) exceeds the
improvement resulting from tripling the size of target train-
ing data from 30% to 100% in SurvivalNet. This shows that
the integration of heterogeneous datasets using the proposed
method is a reasonable alternative to acquisition of new train-
ing data from the target distribution which may be expensive
or impossible. The ideal solution to any data insufficiency
issue is enhanced data collection and standardization efforts.
However, in settings where this is impractical, employing
techniques like ADV-MTL and MTL can help address this
at no extra cost.

c-index

= TCGA+MB ADV_MTL
—— TCGA only

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Amount of Training Data

Figure 3. Learning curves of SurvivalNet and ADV-MTL (target: TCGA BRCA.
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Supplementary Materials

1. Data Description

The Cancer Genome Atlas (TCGA) provides publicly avail-
able clinical and molecular data for 33 cancer types. TCGA
gene expression features were taken from the Illumina
HiSeq 2000 RNA Sequencing V2 platform. TCGA clin-
ical data contains overall survival (OS) and progression free
interval (PFI) labels, with varying degrees of availability for
different primary cancer sites (Liu et al., 2018). This data
has been obtained from multiple hospitals and health-care
centers, so a considerable degree of heterogeneity exists
within the TCGA.

PFI is defined as the period from the date of diagnosis until
the date of the first occurrence of a new tumor-related event,
which includes progression of the disease, locoregional re-
currence, distant metastasis, new primary tumor, or death
with tumor. OS is the period from the date of diagnosis until
the date of death from any cause. Since patients generally
suffer from disease progression or recurrence before dying,
PFI requires shorter follow-up times and has higher event
rate. Additionally, OS is a noisy signal due to deaths from
non-cancer causes. Therefore, wherever possible, PFI is
used as the outcome variable.

We used METABRIC (Molecular Taxonomy of Breast Can-
cer International Consortium) (Curtis et al., 2012) gene ex-
pression and clinical data in section 4.1. Since METABRIC
comes with OS labels only, OS was used as the outcome
variable in this section. TCGA breast invasive carcinoma
(BRCA) was used in this section as target cohort.

In section 4.2 of the main paper and section 2 of supple-
mentary materials, we perform experiments on a subset of
TCGA cancer types. Out of the 33 TCGA cancer types, we
selected those with PFI event rate higher than 20%. We used
the performance of Cox-ElasticNet (Park & Hastie, 2007)
on each of these cancer types as a measure of outcome
label quality, and used only those cancer types where Cox-
ElasticNet achieved a c-index of 60% and higher, leaving us
with adrenocortical carcinoma (ACC), cervical squamous
cell carcinoma (CESC), lower-grade glioma (LGG), kidney
renal clear cell carcinoma (KIRC), kidney renal papillary
cell carcinoma (KIRP), mesothelioma (MESO), and pancre-
atic adenocarcinoma (PAAD). ACC and MESO could not be
used as target cohorts since their small sample sizes did not
allow for reliable model evaluation. All of the mentioned
cancer types were used as auxiliary cohorts in section 2 of
supplemental materials.

We discarded samples that did not have gene expression
data or outcome labels. A summary of sample sizes and
event rates of datasets after this preprocessing step is given
in Table S1. Z-score normalization and 3-NN missing data

Number of Number of Event Event
Dataset Name
Samples Features Rate Type
ACC 79 20531 52% PFI
CESC 304 20531 23% PFI
KIRC 533 20531 30% PFI
KIRP 514 20531 37% PFI
LGG 288 20531 20% PFI
MESO 84 20531 70% PFI
PAAD 178 20531 58% PFI
BRCA 1094 20531 13% (N
METABRIC 1903 24368 33% oS

Table S1. Summary of datasets.

imputation were performed on gene expression data. No
further feature selection or dimensionality reduction was
performed. In section 4.1, we found the intersection of
Hugo IDs present in both BRCA and METABRIC datasets
(17272 genes), and discarded the genes that were absent in
either dataset.

2. Additional Experiments

In addition to integrating data from studies involving the
same primary cancer site as in section 4.1, we may ben-
efit from pooling cohorts diagnosed with different cancer
types together to increase training size. Cancers that orig-
inate from different primary sites are known to have large
differences in genetic markup, although there are some
remarkable similarities that seem to play a fundamental
role in carcinogenesis (Hoadley et al., 2018; Bailey et al.,
2018; Hanahan & Weinberg, 2011). The idea of combin-
ing multiple cancer types relies on the premise that models
of sufficient complexity and constraints can exploit these
similarities to improve outcome prediction.

We repeat the experiments of section 4.1 this time using
TCGA cohorts diagnosed with different cancer types. In
each experiment, one cancer type is chosen as target and all
others are used as auxiliary data. Results of these experi-
ments are shown in Figure S1 in terms of c-index achieved
on target test set. In 3 out of five 5, training on the com-
bination of heterogeneous TCGA datasets with ADV-MTL
model leads to significant improvement over single-task
training of SurvivalNet with target training data only. Cox-
¢3,1 achieves the same in 2 out of 5 cases. We did not
observe any significant difference between ADV-MTL and
Cox-{ 1 in this set of experiments, except in experiments
with PAAD where ADV-MTL significantly outperforms
Cox-l2 1 (p=Te-3).
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Figure S1. Survival prediction accuracy was improved by multi-task learning and adversarial representation learning on several benchmark
datasets. % indicate significant improvement (p <0.05) of multi-task methods over target—only setting.



