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ABSTRACT

The success of deep learning has brought forth a wave of interest in computer
hardware design to better meet the high demands of neural network inference. In
particular, analog computing hardware has been heavily motivated specifically for
accelerating neural networks, based on either electronic, optical or photonic de-
vices, which may well achieve lower power consumption than conventional digital
electronics. However, these proposed analog accelerators suffer from the intrin-
sic noise generated by their physical components, which makes it challenging to
achieve high accuracy on deep neural networks. Hence, for successful deploy-
ment on analog accelerators, it is essential to be able to train deep neural net-
works to be robust to random continuous noise in the network weights, which is
a somewhat new challenge in machine learning. In this paper, we advance the
understanding of noisy neural networks. We outline how a noisy neural network
has reduced learning capacity as a result of loss of mutual information between its
input and output. To combat this, we propose using knowledge distillation com-
bined with noise injection during training to achieve more noise robust networks,
which is demonstrated experimentally across different networks and datasets, in-
cluding ImageNet. Our method achieves models with as much as ∼ 2× greater
noise tolerance compared with the previous best attempts, which is a significant
step towards making analog hardware practical for deep learning.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved unprecedented performance over a wide variety of
tasks such as computer vision, speech recognition, and natural language processing. However, DNN
inference is typically very demanding in terms of compute and memory resources. Consequently,
larger models are often not well suited for large-scale deployment on edge devices, which typically
have meagre performance and power budgets, especially battery powered mobile and IoT devices.
To address these issues, the design of specialized hardware for DNN inference has drawn great
interest, and is an extremely active area of research. To date, a plethora of techniques have been
proposed for designing efficient neural network hardware (Sze et al., 2017).

In contrast to the current status quo of predominantly digital hardware, there is significant research
interest in analog hardware for DNN inference. In this approach, digital values are represented
by analog quantities such as electrical voltages or light pulses, and the computation itself (e.g.,
multiplication and addition) proceeds in the analog domain, before eventually being converted back
to digital. Analog accelerators take advantage of particular efficiencies of analog computation in
exchange for losing the bit-exact precision of digital. In other words, analog compute is cheap but
somewhat imprecise. Analog computation has been demonstrated in the context of DNN inference
in both electronic (Binas et al., 2016), photonic (Shen et al., 2017) and optical (Lin et al., 2018)
systems. Analog accelerators promise to deliver at least two orders of magnitude better performance
over a conventional digital processor for deep learning workloads in both speed (Shen et al., 2017)
and energy efficiency (Ni et al., 2017). Electronic analog DNN accelerators are arguably the most
mature technology and hence will be our focus in this work.
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The most common approach to electronic analog DNN accelerator is in-memory computing, which
typically uses non-volatile memory (NVM) crossbar arrays to encode the network weights as analog
values. The NVM itself can be implemented with memristive devices, such as metal-oxide resis-
tive random-access memory (ReRAM) (Hu et al., 2018) or phase-change memory (PCM) (Le Gallo
et al., 2018; Boybat et al., 2018; Ambrogio et al., 2018). The matrix-vector operations computed
during inference are then performed in parallel inside the crossbar array, operating on analog quan-
tities for weights and activations. For example, addition of two quantities encoded as electrical
currents can be achieved by simply connecting the two wires together, whereby the currents will add
linearly according to Kirchhoff’s current law. In this case, there is almost zero latency or energy
dissipation for this operation.

Similarly, multiplication with a weight can be achieved by programming the NVM cell conduc-
tance to the weight value, which is then used to convert an input activation encoded as a voltage
into a scaled current, following Ohm’s law. Therefore, the analog approach promises significantly
improved throughput and energy efficiency. However, the analog nature of the weights makes the
compute noisy, which can limit inference accuracy. For example, a simple two-layer fully-connected
network with a baseline accuracy of 91.7% on digital hardware, achieves only 76.7% when imple-
mented on an analog photonic array (Shen et al., 2017). This kind of accuracy degradation is not
acceptable for most deep learning applications. Therefore, the challenge of imprecise analog hard-
ware motivates us to study and understand noisy neural networks, in order to maintain inference
accuracy under noisy analog computation.

The question of how to effectively learn and compute with a noisy machine is a long-standing prob-
lem of interest in machine learning and computer science (Stevenson et al., 1990; Von Neumann,
1956). In this paper, we study noisy neural networks to understand their inference performance. We
also demonstrate how to train a neural network with distillation and noise injection to make it more
resilient to computation noise, enabling higher inference accuracy for models deployed on analog
hardware. We present empirical results that demonstrate state-of-the-art noise tolerance on multiple
datasets, including ImageNet.

The remainder of the paper is organized as follows. Section 2 gives an overview of related work.
Section 3 outlines the problem statement. Section 4 presents a more formal analysis of noisy neural
networks. Section 5 gives a distillation methodology for training noisy neural networks, with exper-
imental results. Finally, Section 6 provides a brief discussion and Section 7 closes with concluding
remarks.

2 RELATED WORK

Previous work broadly falls under the following categories: studying the effect of analog computa-
tion noise, analysis of noise-injection for DNNs, and use of distillation in model training.

Analog Computation Noise Models In Rekhi et al. (2019), the noise due to analog computa-
tion is modeled as additive parameter noise with zero-mean Gaussian distribution. The variance of
this Gaussian is a function of the effective number of bits of the output of an analog computation.
Similarly, the authors in Joshi et al. (2019) also model analog computation noise as additive Gaus-
sian noise on the parameters, where the variance is proportional to the range of values that their
PCM device can represent. Some noise models presented have included a more detailed account of
device-level interactions, such as voltage drop across the analog array (Jain et al., 2018; Feinberg
et al., 2018), but are beyond the scope of this paper. In this work, we consider an additive Gaussian
noise model on the weights, similar to Rekhi et al. (2019); Joshi et al. (2019) and present a novel
training method that outperforms the previous work in model noise resilience.

Noise Injection for Neural Networks Several stochastic regularization techniques based on
noise-injection and dropout (Srivastava et al., 2014; Noh et al., 2017; Li & Liu, 2016) have been
demonstrated to be highly effective at reducing overfitting. For generalized linear models, dropout
and additive noise have been shown to be equivalent to adaptive L2 regularization to a first order
(Wager et al., 2013). Training networks with Gaussian noise added to the weights or activations
can also increase robustness to variety of adversarial attacks (Rakin et al., 2018). Bayesian neural
networks replace deterministic weights with distributions in order to optimize over the posterior
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distribution of the weights (Kingma & Welling, 2013). Many of these methods use noise injection
at inference time to approximate weight distribution; in Gal & Ghahramani (2016) a link between
Gaussian processes and dropout is established in an effort to model the uncertainty of the output of
a network. A theoretical analysis by Stevenson et al. (1990) has shown that for neural networks with
adaptive linear neurons, the probability of error of a noisy neural network classifier with weight
noise increases with the number of layers, but largely independent of the number of weights per
neuron or neurons per layer.

Distillation in Training Knowledge distillation (Hinton et al., 2015) is a well known technique
in which the soft labels produced by a teacher model are used to train a student model which typ-
ically has reduced capacity. Distillation has shown merit for improving model performance across
a range of scenarios, including student models lacking access to portions of training data (Micaelli
& Storkey, 2019), quantized low-precision networks (Polino et al., 2018; Mishra & Marr, 2017),
protection against adversarial attacks (Papernot et al., 2016; Goldblum et al., 2019), and in avoiding
catastrophic forgetting for multi-task learning (Schwarz et al., 2018). To the best of our knowledge,
our work is the first to combine distillation with noise injection in training to enhance model noise
robustness.

3 PROBLEM STATEMENT
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Figure 1: Deploying a neural network layer, l, on an analog in-memory crossbar involves first flat-
tening the filters for a given layer into weight matrix Wl, which is then programmed into an array
of NVM devices which provide differential conductances Gl for analog multiplication. A random
Gaussian ∆Wl is used to model the inherent imprecision in analog computation.

Without loss of generality, we model a general noisy machine after a simple memristive crossbar
array, similar to Shafiee et al. (2016). Figure 1 illustrates how an arbitrary neural network layer, l,
such as a typical 3× 3 convolution, can be mapped to this hardware substrate by first flattening the
weights into a single large 2D matrix, Wl, and then programming each element of this matrix into
a memristive cell in the crossbar array, which provides the required conductances Gl (the reciprocal
of resistance) to perform analog multiplication following Ohm’s law, iout = vinG. Note that a
pair of differential pair of NVM devices are typically used to represent a signed quantity in Gl.
Subsequently, input activations, xl converted into continuous voltages, v(xl), are streamed into the
array rows from the left-hand side. The memristive devices connect row with columns, where the
row voltages are converted into currents scaled by the programmed conductance, G, to generate the
currents i(yl), which are differential in order to represent both positive and negative quantites with
unipolar signals. The currents from each memristive device essentially add up for free where they
are connected in the columns, according to Kirchhoff’s current law. Finally, the differential currents
are converted to bipolar voltages, v(yl), which are they digitized before adding bias, and performing
batch normalization and ReLU operations, which are not shown in Figure 1.

However, the analog inference hardware of Figure 1 is subject to real-world non-idealities, typically
attributed to variations in: 1) manufacturing process, 2) supply voltage and 3) temperature, PVT
variation collectively, all of which result in noise in the system. Below we discuss the two key
components in terms of analog noise modeling.
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Data Converters. Digital-to-analog converter (DAC) and analog-to-digital converter (ADC) cir-
cuits are designed to be robust to PVT variation, but in practice these effects do degrade the reso-
lution (i.e. number of bits). Therefore, we consider effective number of bits (ENOB), which is a
lower bound on resolution in the presence of non-idealities. Hence, we use activation and weight
quantization with ENOB data converters and no additional converter noise modeling.

NVM cells. Due to their analog nature, memristive NVM cells have limited precision, due to the
read and write circuitry (Joshi et al., 2019). In between write and read operations, their stored value
is prone to drift over time. Long-term drift can be corrected with periodic refresh operations. At
shorter timescales, time-varying noise may be encountered. For most of the experiments in this
paper, we model generic NVM cell noise as an additive zero-mean i.i.d. Gaussian error term on
the weights of the model in each particular layer ∆Wl ∼ N (∆Wl; 0, σ2

N,lI). This simple model,
described more concretely in Section 5, is similar to that used by Joshi et al. (2019) which was
verified on real hardware. In addition, we also investigate spatially-varying and time-varying noise
models in Section 5.2 (Table 1).

4 ANALYSIS OF NOISY NEURAL NETWORKS

4.1 BIAS VARIANCE DECOMPOSITION FOR NOISY WEIGHTS

Naively deploying an off-the-shelf pretrained model on a noisy accelerator will yield poor accuracy
for a fundamental reason. Consider a neural network f(W;x) with weights W that maps an input
x ∈ Rn to an output y ∈ R. In the framework of statistical learning, x and y are considered to be
randomly distributed following a joint probability distribution p(x, y). In a noisy neural network,
the weights W are also randomly distributed, with distribution p(W). The expected Mean Squared
Error (MSE) of this noisy neural network can be decomposed as

E(x,y)∼p(x,y),W∼p(W)[(f(W;x)− y)2]

=E(x,y)∼p(x,y),W∼p(W)[(f(W;x)− EW∼p(W)[f(W;x)] + EW∼p(W)[f(W;x)]− y)2]

=Ex∼p(x)[EW∼p(W)[(f(W;x)− EW∼p(W)[f(W;x)])2]]

+ E(x,y)∼p(x,y)[(EW∼p(W)[f(W;x)]− y)2]. (1)

The first term on the right hand side of Equation 1 is a variance loss term due to randomness in
the weights and is denoted as lvar. The second term is a squared bias loss term which we call
lbias. However, typically a model is trained to minimize the empirical version of expected loss
lpretrained = E(x,y)∼p(x,y)[(f(E[W];x) − y)2]. We assume that the noise is centered such that
pretrained weights are equal to E[W]. A pretrained model is therefore optimized for the wrong loss
function when deployed on a noisy accelerator. To show this in a more concrete way, a baseline
LeNet model (32 filters in the first convolutional layer, 64 filters in the second convolutional layer
and 1024 neurons in the fully-connected layer) (LeCun et al., 1998) is trained on MNIST dataset
to 99.19% accuracy and then exposed to Gaussian noise in its weights, numerical values of these
loss terms can be estimated. The expected value of the network output EW[f(W;x)] is estimated
by averaging over outputs of different instances of the network for the same input x. We perform
inference on n = 100 different instances of the network and estimate the loss terms as

f(W;x) = EW∼p(W)[f(W;x)] ' 1

n

n∑
i=1

f(Wi;x), (2)

l̂var =
1

N

N∑
j=1

1

n

n∑
i=1

(f(Wi;xj)− f(W;xj))
2, (3)

l̂bias =
1

N

N∑
j=1

(f(W;xj)− yj)2, (4)

l̂pretrained =
1

N

N∑
j=1

(f(E[W];xj)− yj)2. (5)
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The above formulas are for a network with a scalar output. They can be easily extended to the vector
output case by averaging over all outputs. In the LeNet example, we take the output of softmax
layer to calculate squared losses. The noise is assumed i.i.d. Gaussian centered around zero with a
fixed SNR σ2

W,l/σ
2
N,l in each layer l. The numerical values of the above losses are estimated using

the entire test dataset for different noise levels. Results are shown in Figure 2(a). l̂bias is initially
equal to l̂pretrained and l̂var = 0 when there is no noise. However, as noise level rises, they increase
in magnitude and become much more important than l̂pretrained. l̂var overtakes l̂bias to become the
predominant loss term in a noisy LeNet at σN/σW ' 0.6. It is useful to note that lbias increases
with noise entirely due to nonlinearity in the network, which is ReLU in the case of LeNet. In a
linear model, lbias should be equal to lpretrained as we would have f(E[W];x) = E[f(W;x)]. A
model trained in a conventional manner is thus not optimized for the real loss it is going to encounter
on a noisy accelerator. Special retraining is required to improve its noise tolerance. In Figure 2(a),
we show how the model accuracy degrades with a rising noise level for the baseline LeNet and its
deeper and wider variants. The deeper network is obtained by stacking two more convolutional
layers of width 16 in front of the baseline network and the wider network is obtained by increasing
the widths of each layer in the baseline to 128, 256, 2048 respectively. Performance degradation due
to noise is worse for the deeper variant and less severe for the wider one. A more detailed discussion
of the network architecture effect on its performance under noise is offered in Section 4.2
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a) Loss decomposition for noisy LeNet
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Figure 2: (a) Different loss terms on the test dataset and model test accuracy as a function of noise
standard deviation, the losses are normalized to the pretrained model loss l̂pretrained, calculated
using clean weights. Accuracy is calculated by performing the inference 100 times on the test set,
error bars show the standard deviation.(b) Estimate of normalized mutual information between the
input and output of the baseline LeNet and its variants as a function of noise standard deviation. A
random subset of 200 training images are used for this estimate, with each inference repeated 100
times on a random realization of the network to estimate H(Y |X). Mutual information decays with
rising noise, deeper and narrower networks are more susceptible to this decay.

4.2 LOSS OF INFORMATION IN A NOISY NEURAL NETWORK

Information theory offers useful tools to study noise in neural networks. Mutual information
I(X;Y ) characterizes the amount of information obtained on random variable X by observing
another random variable Y . The mutual information between X and Y can be related to Shannon
entropy by

I(X;Y ) = H(Y )−H(Y |X). (6)
Mutual information has been used to understand DNNs (Tishby & Zaslavsky, 2015; Saxe et al.,
2018). Treating a noisy neural network as a noisy information channel, we can show how informa-
tion about the input to the neural network diminishes as it propagates through the noisy computation.
In this subsection, X is the input to the neural network and Y is the output. Mutual information is
estimated for the baseline LeNet model and its variants using Equation 6. When there is no noise,
the term H(Y |X) is zero as Y is deterministic once the input to the network X is known, therefore
I(X;Y ) is just H(Y ) in this case. Shannon entropy H(Y ) can be estimated using a standard dis-
crete binning approach (Saxe et al., 2018). In our experiment, Y is the output of the softmax layer
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which is a vector of length 10. Entropy H(Y ) is estimated using four bins per coordinate of Y by

Ĥ(Y ) = −
N∑
i=1

pi log(pi), (7)

where pi is the probability that an output falls in the bin i. When noise is introduced to the weights,
the conditional entropy H(Y |X) is estimated by fixing the input X = x and performing multiple
noisy inferences to calculate Ĥ(Y |X = x) with the above binning approach. Ĥ(Y |X = x) is then
averaged over different input x to obtain Ĥ(Y |X). This estimate is performed for LeNet and its
variants with different noise levels. Results are shown in Figure 2(b). The values are normalized to
the estimate of I(X;Y ) at zero noise. Mutual information between the input and the output decays
towards zero with increasing noise in network weights. Furthermore, mutual information in a deeper
and narrower network decays faster than in a shallower and wider network. Intuitively, information
from the input undergoes more noisy compute when more layers are added to the network, while a
wider network has more redundant paths for the information to flow, thus better preserving it. An
information theoretic bound of mutual information decay as a function of network depth and width
in a noisy neural network will be treated in our follow-up work. Overall, noise is damaging the
learning capacity of the network. When the output of the model contains no information from its
input, the network loses all ability to learn. For a noise level that is not so extreme, a significant
amount of mutual information remains, which indicates that useful learning is possible even with a
noisy model.

5 COMBINING NOISE INJECTION AND KNOWLEDGE DISTILLATION

5.1 METHODOLOGY

Noise injection during training is one way of exposing network training to a more realistic loss as
randomly perturbing weights simulates what happens in a real noisy analog device, and forces the
network to adapt to noise during training. Noise injection only happens in training during forward
propagation, which can be considered as an approximation for calculating weight gradients with a
straight-through-estimator (STE) (Bengio et al., 2013). At each forward pass, the weight Wl of
layer l is drawn from an i.i.d. Gaussian distribution N (Wl;Wl

0, σ
2
N,lI). The noise is referenced to

the range of representable weights W l
max −W l

min in that particular layer

σN,l = η(W l
max −W l

min), (8)

where η is a coefficient characterizing the noise level. During back propagation, gradients are calcu-
lated with clean weights Wl

0, and only Wl
0 gets updated by applying the gradient. W l

max and W l
min

are hyperparameters which can be chosen with information on the weight distributions.

Knowledge distillation was introduced by Hinton et al. (2015) as a way for training a smaller student
model using a larger model as the teacher. For an input to the neural network x, the teacher model
generates logits zTi , which are then turned into a probability vector by the softmax layer

qTi = σ(zTi ;T ) =
exp(zTi /T )∑
j exp(zTj /T )

. (9)

The temperature, T , controls the softness of the probabilities. The teacher network can generate
softer labels for the student network by raising the temperature T . We propose to use a noise free
clean model as the teacher to train a noisy student network. The student network is trained with noise
injection to match a mix of hard targets and soft targets generated by the teacher. Logits generated
by the student network are denoted as zSi . A loss function with distillation for the student model can
be written as

L(x;WS;T ) = H(σ(zSi ;T = 1), ytrue) + αT 2H(σ(zSi ;T ), qTi ) +R(WS
0). (10)

Here H is cross-entropy loss, ytrue is the one-hot encoding of the ground truth, and R is the L2-
regularization term. Parameter α balances relative strength between hard and soft targets. We follow
the original implementation in Hinton et al. (2015), which includes a T 2 factor in front of the soft
target loss to balance gradients generated from different targets. The student model is then trained
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with Gaussian noise injection using this distillation loss function. The vanilla noise injection training
corresponds to the case where α = 0. If the range of weights is not constrained and the noise
reference is fixed, the network soon learns that the most effective way to decrease the loss is to
increase the amplitude of the weights, which increases the effective SNR. There are two possible
ways to deal with this problem. Firstly, the noise reference could be re-calculated after each weight
update, thus updating the noise power. Secondly, we can constrain the range of weights by clipping
them to the range [W l

min,W
l
max], and use a fixed noise model during training. We found that in

general the second method of fixing the range of weights and training for a specific noise yields
more stable training and better results. Therefore, this is the training method that we adopt in this
paper. A schematic of our proposed method is shown in Figure 5 of the Appendix.

During training, a clean model is first trained to its full accuracy and then weight clipping is applied
to clip weights in the range [W l

min,W
l
max]. The specific range is chosen based on statistics of the

weights. Fine-tuning is then applied to bring the weight-clipped clean model back to full accuracy.
This model is then used as the teacher to generate soft targets. The noisy student network is ini-
tialized with the same weights as the teacher. This can be considered as a warm start to accelerate
retraining. As we discussed earlier, the range of weights is fixed during training, and the noise
injected into the student model is referenced to this range.

Our method also supports training for low precision noisy models. Quantization reflects finite preci-
sion conversion between analog and digital domains in an analog accelerator. Weights are uniformly
quantized in the range [W l

min,W
l
max] before being exposed to noise. In a given layer, the input ac-

tivations are quantized before being multiplied by noisy weights. The output results of the matrix
multiplication are also quantized before adding biases and performing batch normalization, which
are considered to happen in digital domain. When training with quantization, the straight-through-
estimator is assumed when calculating gradients with back propagation.

5.2 EXPERIMENTAL RESULTS

In order to establish the effectiveness of our proposed method, experiments are performed for dif-
ferent networks and datasets. In this section we mainly focus on bigger datasets and models, while
results on LeNet and its variants with some discussion of network architecture effect can be found
in Figure 6 of the Appendix. ResNets are a family of convolutional neural networks proposed by He
et al. (2016), which have gained great popularity in computer vision applications. In fact, many other
deep neural networks also use ResNet-like cells as their building blocks. ResNets are often used as
industry standard benchmark models to test hardware performance. The first set of experiments we
present consist of a ResNet-32 model trained on the CIFAR10 dataset. In order to compare fairly
with the previous work, we follow the implementation in Joshi et al. (2019), and consider a ResNet-
32(v1) model on CIFAR10 with weight clipping in the range [−2σW,l, 2σW,l]. The teacher model
is trained to an accuracy of 93.845% using stochastic gradient descent with cosine learning rate de-
cay (Loshchilov & Hutter, 2016), and an initial learning rate of 0.1 (batch size is 128). The network
is then retrained with noise injection to make it robust against noise. Retraining takes place for 150
epochs, the initial learning rate is 0.01 and decays with the same cosine profile. We performed two
sets of retraining, one without distillation in the loss (α = 0), and another with distillation loss
(α = 1). Everything else was kept equal in these retraining runs. Five different noise levels are
tested with five different values of η: {0.02, 0.04, 0.057, 0.073, 0.11}.
Results are shown in Figure 3(a). Every retraining run was performed twice and inference was
performed 50 times on the test dataset for one model, to generate statistically significant results.
Temperature was set to T = 6 for the runs with distillation. We found that an intermediate tempera-
ture between 2 and 10 produces better results. The pretrained model without any retraining performs
very poorly at inference time when noise is present. Retraining with Gaussian noise injection can
effectively recover some accuracy, which we confirm as reported in Joshi et al. (2019). Our method
of combining noise injection with knowledge distillation from the clean model further improves
noise resilience by about 40% in terms of η, which is an improvement of almost 2× in terms of
noise power σ2

N .

The actual noise level in a given device can only be estimated, and will vary from one device to
another and even fluctuate depending on the physical environment in which it operates (Section 3).
Therefore, it is important that any method to enhance noise robustness can tolerate a range of noise
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Figure 3: (a) Test accuracy as a function of noise level, here we have ηtr = ηinf , error bars show the
standard deviation of different training and inference runs. Our method with distillation achieves
the best robustness. (b) Comparison of model performance at noise levels different from the training
level.

levels. Our method offers improved noise robustness, even when the actual noise at inference time
is different from that injected at training time. It is shown in Figure 3(b) that the model obtained
from distillation is more accurate and less sensitive to noise level differences between training and
inference time. This holds for a range of different inference noise levels around the training level.
In the previous experiments, we assume a fixed noise level parameterized by η. On real analog
hardware, there could be additional non-idealities such as variation in noise level due to temperature
fluctuation and nonuniform noise profile on different NVM cells due to statistical variation in the
manufacturing process. We have conducted additional experiments to account for these effects.

Results from the experiments are shown in Table 1. Temporal fluctuation represents noise level
variation over time. Noise η is randomly sampled from N (η; η0, σ

2
η) for each inference batch. A

noise temporal fluctuation level of 10% means that ση = 0.1η0. Spatial noise level fluctuation
introduces nonuniform diagonal terms in the noise covariance matrix. More concretely, each weight
noise in our previous model is multiplied by a scale factor λw with λw drawn from a Gaussian
distribution N (λw; 1, σ2

λ). A noise spatial fluctuation level of 10% means that σλ = 0.1. The scale
factors are generated and then fixed when the network is instantiated, therefore the noise during
network inference is non i.i.d. in this case. Results from our experiments show that there is no
significant deviation when a combination of these non-ideal noise effects are taken into account.

Table 1: ResNet-32 on CIFAR10 with analog non-idealities: our method of combining distillation
and noise injection consistently achieves the best accuracy under different analog non-ideal effects.

Noise level η = 0.05

Non-ideal fluctuation type Temporal 10%
Spatial 0%

Temporal 20%
Spatial 0%

Temporal 0%
Spatial 10%

Temporal 0%
Spatial 20%

Temporal 20%
Spatial 20%

No retraining 93%
+/- 0.14%

92.98%
+/- 0.18%

92.98%
+/- 0.15%

92.95%
+/- 0.15%

92.94%
+/- 0.15%

Noise injection 93.18%
+/- 0.13%

93.03%
+/- 0.15%

93.1%
+/- 0.14%

93.15%
+/- 0.15%

93.11%
+/- 0.13%

Distillation and noise injection 93.56%
+/- 0.12%

93.55%
+/- 0.11%

93.55%
+/- 0.13%

93.51%
+/- 0.12%

93.53%
+/- 0.12%

Noise level η = 0.1

No retraining 90.46%
+/- 0.19%

90.22%
+/- 0.27%

90.5%
+/- 0.2%

90.4%
+/- 0.23%

90.1%
+/- 0.3%

Noise injection 91.87%
+/- 0.17%

91.93%
+/- 0.2%

91.91%
+/- 0.2%

91.79%
+/- 0.18%

91.81%
+/- 0.17%

Distillation and noise injection 92.83%
+/- 0.18%

92.77%
+/- 0.14%

92.88%
+/- 0.14%

92.89%
+/- 0.14%

92.86%
+/- 0.15%

The performance of our training method is also validated with quantization. A ResNet-18(v2) model
is trained with quantization to 4-bit precision (ENOB) for both weights and activations. This cor-
responds to 4-bit precision conversions between digital and analog domains. A subset of training
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data is passed through the full precision model to calibrate the range for quantization – we choose
the 0.1% and 99.9% percentiles as qmin and qmax for the quantizer. This range of quantization is
fixed throughout training. The quantized model achieves an accuracy of 92.91% on the test dataset
when no noise is present. The model is then re-trained for noise robustness. The noise level is ref-
erenced to the range of quantization of weights in one particular layer, such that W l

min = qmin,l and
W l

max = qmax,l. Results are shown for the same set of η values in Figure 4(a). In the distillation
retraining runs, the full-precision clean model with an accuracy of 93.87% is used as the teacher and
temperature is set to T = 6. Due to extra loss in precision imposed by aggressive quantization, accu-
racy of the pretrained quantized model drops sharply with noise. At η = 0.057, the model accuracy
drops to 87.5% without retraining and further down to 80.9% at η = 0.073. Even retraining with
noise injection struggles, and the model retrained with only noise injection achieves an accuracy
of 90.34% at η = 0.073. Our method of combining noise injection and distillation stands out by
keeping the accuracy loss within 1% from the baseline up to a noise level of η ' 0.07.

0.00 0.02 0.04 0.06 0.08 0.10 0.12
tr = inf

87

88

89

90

91

92

93

CI
FA

R1
0 

Te
st

 A
cc

ur
ac

y 
(%

)

a)

Quantized ResNet-18 (4-bit Weight and Activation) on CIFAR10

Baseline
Gaussian noise injection
Noise injection and distillation T=6 (ours)
No retraining

0 20 40 60 80 100
Epochs

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

CI
FA

R1
0 

Te
st

 A
cc

ur
ac

y 
(%

)

b)
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Figure 4: (a) Test accuracy as a function of noise level for 4-bit ResNet-18, here we have ηtr = ηinf ,
error bars show the standard deviation of different training and inference runs. Retraining with
distillation and noise injection achieves the best results with quantization. (b) Test accuracy of
different models during retraining with noise level η = 0.057.

One interesting aspect of using distillation loss during retraining with noise can be seen in Figure
4(b). The evolution of model accuracy on the test dataset is shown. When no distillation loss
is used, the model suffers an accuracy drop (difference between blue and orange curves) around
2.08% when tested with noise. The drop (difference between green and red curves) is significantly
reduced to around 0.6% when distillation loss is used. This observation indicates that training with
distillation favors solutions that are less sensitive to noise. The final model obtained with distillation
is actually slightly worse when there is no noise at inference time but becomes superior when noise
is present.

Results on the ImageNet dataset for a ResNet-50(v1) network are shown in Table 2 to demonstrate
that our proposed approach scales to a large-scale dataset and a deep model. A ResNet-50 model
is first trained to an accuracy of 74.942% with weight clipping in the range [−2σW,l, 2σW,l]. This
range is fixed as the reference for added noise. For ResNet-50 on ImageNet, only three different
noise levels are explored, and the accuracy degrades very quickly beyond the noise level η = 0.06,
as the model and the task are considerably more complex. Retraining runs for 30 epochs with an
initial learning rate of 0.001 and cosine learning rate decay with a batch size of 32. For distillation,
we used α = 1 and T = 6 as in previous experiments. Results are collected for two independent
training runs in each setting and 50 inference runs over the entire test dataset. The findings confirm
that training with distillation and noise injection consistently delivers more noise robust models. The
accuracy uplift benefit also markedly increases with noise.

6 DISCUSSION

Effects of distillation Knowledge distillation is a proven technique to transfer knowledge from a
larger teacher model to a smaller, lower capacity student model. This paper shows, for the first time,
that distillation is also an effective way to transfer knowledge between a clean model and its noisy

9
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Table 2: ResNet-50 on ImageNet at different noise levels, showing the Top-1 accuracy on the test
dataset, with no quantization applied. Uncertainty is the standard deviation of different training and
inference runs.

Training method
Noise level

η = 0 η = 0.02 η = 0.04 η = 0.06

No retraining 74.942% 72.975%
+/- 0.095%

64.382%
+/- 0.121%

46.284%
+/- 0.179%

Gaussian noise injection 74.942% 73.513%
+/- 0.091%

70.142%
+/- 0.129%

65.285%
+/- 0.168%

Distillation and noise injection 74.942% 74.005%
+/- 0.096%

71.442%
+/- 0.111%

67.525%
+/- 0.162%

counterpart, with the novel approach of combining distillation with noise injection during training.
We give some intuition for understanding this effect with the help of Section 4.2: a noisy neural
network can be viewed as a model with reduced learning capacity by the loss of mutual information
argument. Distillation is therefore acting to help reduce this capacity gap.

In our experiments, distillation shows great benefit in helping the network to converge to a good
solution, even with a high level of noise injected in the forward propagation step. Here, we attempt
to explain this effect by the reduced sensitivity of distillation loss. An influential work by Papernot
et al. (2016) shows that distillation can be used to reduce the model sensitivity with respect to its
input perturbations thus defending against some adversarial attacks. We argue that distillation can
achieve a similar effect for the weights of the network. Taking the derivative of the i-th output of the
student network qSi at temperature T with respect to a weight w yields

∂qSi
∂w

=
1

T

exp(zi/T )(∑
j exp(zj/T )

)2 ∑
j

exp(zj/T )

(
∂zi
∂w
− ∂zj
∂w

)
. (11)

The 1/T scaling makes the output less sensitive to weight perturbation at higher temperature, thus
potentially stabilizing the training when noise is injected into weights during forward propagation.
We plan to work on a more formal analysis of this argument in our future work.

Hardware Performance Benefits The improvements in noise tolerance of neural networks
demonstrated in this work have a potential impact on the design of practical analog hardware ac-
celerators for neural network inference. Increased robustness to noisy computation at the model
training level potentially means that the specification of the analog hardware can be relaxed. In
turn, this can make it easier to achieve the hardware specification, or even allow optimizations to
further reduce the energy consumption. An in-depth discussion of the trade-off between compute
noise performance and hardware energy dissipation is beyond the scope of this paper, but we refer
the interested reader to Rekhi et al. (2019) for more details. In summary, we believe that machine
learning research will be a key enabler for practical analog hardware accelerators.

7 CONCLUSION

Analog hardware holds the potential to significantly reduce the latency and energy consumption of
neural network inference. However, analog hardware is imprecise and introduces noise during com-
putation that limits accuracy in practice. This paper explored the training of noisy neural networks,
which suffer from reduced capacity leading to accuracy loss. We propose a training methodology
that trains neural networks via distillation and noise injection to increase the accuracy of models
under noisy computation. Experimental results across a range of models and datasets, including
ImageNet, demonstrate that this approach can almost double the network noise tolerance compared
with the previous best reported values, without any changes to the model itself beyond the training
method. With these improvements in the accuracy of noisy neural networks, we hope to enable the
implementation of analog inference hardware in the near future.
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Figure 5: Schematic of our retraining method combining distillation and noise injection.
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Figure 6: Results on LeNet and its variants show that our method of combining distillation and
noise injection improves noise robustness for different model architectures on MNIST. The benefit
of our method is the most significant when the network struggles to learn with vanilla noise injection
retraining method. This threshold noise level depends on the network architecture, as we have
remarked for mutual information decay.
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