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Abstract

Transfer learning is a powerful tool to adapt trained neural networks to new tasks.
Depending on the similarity of the original task to the new task, the selection of
the cut-off layer is critical. For medical applications like tissue classification, the
last layers of an object classification network might not be optimal. We found
that on real data of human corneal tissues the best feature representation can be
found in the middle layers of the Inception-v3 and in the rear layers of the VGG-19
architecture.

1 Introduction

Deep neural networks (DNN) trained on large datasets like ImageNet [6] provide high performance
in transfer learning tasks for medical applications even for small training datasets [4, 5]. In general,
the trained basis networks can be used either for feature extraction or fine-tuned to perform new tasks.

If the network is used for feature extraction, usually the last fully connected layers are cut off and
replaced by new layers or a classifier like a support vector machine, which is trained on the output of
the network. However, the layer with the most discriminant features should be used to get the best
performance.

Analysis of DNN shows that the first layer performs a class agnostic feature extraction (e.g. Gabor or
RGB related filters) and the last layer learns highly class-specific representations. The intermediate
layers are expected to create different levels of abstractions to connect these two extreme cases [2, 9].
Depending on the similarity of the new task to the original task, the level of abstraction must be
chosen and therefore the layer where the network is cut off.

Especially for medical applications, where transfer learning can be used to classify homogeneous
areas of specific tissues, the choice of the cut-off layer is an important parameter. Since the original
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network is trained for object classification, not only the last layer might be involved in the creation
of class-specific features. Hence, the more generic middle layers might provide a preferable fea-
ture representation for the new task. For the training of the new layers, no regularization or data
augmentation is applied.

This abstract presents a study on transfer learning for corneal tissue classification with tissue layers
of epithelium, sub-basal nerve plexus (SNP) and stroma images. The images are acquired by a
laser scanning confocal microscope [1] previously analyzed with a Bag-of-Words approach [3]. We
analyze the impact of the cut-off layer with the VGG-19 [7] and the Inception-v3 [8] architectures,
both trained on the ImageNet dataset.

2 Methods

For the analysis of the optimal cut-off layer of the networks, multiple layers are analyzed. For the
VGG-19 architecture, we investigated four layers (AV -DV ) in front of the max-pooling layer as well
as a fully connected layer at the end (EV ) as shown in Figure 1. The Inception-v3 model combines
two blocks of convolutions followed by max-pooling, as well as three blocks of inception modules [8].
We investigated four layers, the first layer (AI ) is the last convolution layer in front of the inception
modules and the next three layers (BI -DI ) are taken at the end of the inception module blocks.

Figure 1: VGG-19 architecture with marked cut-off layers used for transfer learning.

Based on the size of the output tensor, we perform a downsampling with a max-pooling layer to
represent every input image with less than 8000 values. After flattening this tensor, a fully connected
layer is trained with a softmax approach for the new classification task.

The dataset with 5597 images from eleven healthy human volunteers is divided into a training, an
evaluation and a test set. Since the images from a single volunteer might have overlapping regions,
this separation was done manually to avoid similar pictures in the different datasets. The training set
consists of about 83% of the data, the evaluation and the test set consist of 7% and 10%.

3 Results

Figure 2 shows the achieved accuracy with different cut-off layers of VGG-19 and Inception-v3
for ten runs for each layer. For the VGG-19 model, the cut off at layer DV leads to the best mean
accuracy of 98.9% followed by layer CV . Thus, using the fully connected layer at the end reduces the
transfer learning performance for the given task. This effect is even more notable in the Inception-v3
model. Here, layer BI leads to the best result with a mean accuracy of 97.1% while the accuracy
is decreasing with each additional layer. Meaning the feature representation of the first inception
module block is best for to the investigated task and the embedding gets worse with further inception
blocks. Hence, for the given task the Inception-v3 architecture can be reduced to less than 10% of its
parameters with better accuracy and a significant reduction of computation time.

4 Conclusion

We investigated the classification performance for transfer learning with the Inception-v3 and VGG-19
architectures for the classification of corneal tissues. Both architectures were trained on the ImageNet

2



AV BV CV DV EV

Cut Off Layer

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

u
ra

cy
%

VGG-19

AI BI CI DI

Cut Off Layer

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

u
ra

cy
%

Inception-v3

Figure 2: Classification accuracy for different cut-off layers with the VGG-19 (left) and the Inception-
v3 architecture (right).

dataset. Since the medical images do not contain single objects but show a homogeneous tissue over
the whole image, the new classification task differs significantly from the original.

We analyzed the performance of different layers for transfer learning and found that the optimal
feature representation for medical images can be found in the middle of the investigated networks,
since the last layers are too specialized for the original task. On the other hand, a complete retraining
including the first layer is inefficient for the relatively small dataset.

Further investigations of the feature representation might be useful to find metrics correlated to the
classification accuracy to select the optimal cut-off layer fast and without the training of a classifier.
Moreover, the accuracy might be increased by using combinations of different layers or different
dimensionality reduction techniques as important factors of the classification performance.
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