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Abstract

To communicate with new partners in new con-
texts, humans rapidly form new linguistic con-
ventions. Recent language models trained with
deep neural networks are able to comprehend and
produce the existing conventions present in their
training data, but are not able to flexibly and in-
teractively adapt those conventions on the fly as
humans do. We introduce a repeated reference
task as a benchmark for models of adaptation in
communication and propose a regularized contin-
ual learning framework that allows an artificial
agent initialized with a generic language model to
more accurately and efficiently understand their
partner over time. We evaluate this framework
through simulations on COCO and in real-time
reference game experiments with human partners.

1. Introduction

Linguistic communication depends critically on shared
knowledge about the meanings of words (Lewis, 1969).
However, the real-world demands of communication often
require speakers and listeners to go beyond dictionary mean-
ings to understand one another (Clark, 1996; Stolk et al.,
2016). The social world continually presents new commu-
nicative challenges, and agents must continually coordinate
on new meanings to meet them.

For example, consider a nurse visiting a bed-ridden patient
in a cluttered home. The first time they ask the nurse to
retrieve a particular medication, the patient must painstak-
ingly refer to unfamiliar pills, e.g. “the vasoprex-tecnoblek
meds for my blood pressure, in a small bluish bottle, on the
bookcase in my bathroom.” After a week of care, however,
they may just ask for their “Vasotec.”

This type of flexible language use poses a challenge for
models of language in machine learning. Approaches based
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Figure 1. Task, architecture, and continual learning approach.

on deep neural networks typically learn a monolithic mean-
ing function during training, with fixed weights during use.
For an in-home robot to communicate as flexibly and effi-
ciently with patients as a human nurse, it must be equipped
with a continual learning mechanism. Such a mechanism
would present two specific advantages for interaction and
communication applications. First, to the extent that current
models have difficulty communicating in a new setting, an
adaptive approach can quickly improve performance on the
relevant subset of language. Second, for human-robot con-
texts, an adaptive model enables speakers to communicate
more efficiently as they build up common ground, remaining
understandable while expending significantly fewer words
as humans naturally do (Clark & Wilkes-Gibbs, 1986).

In this paper, we introduce a benchmark communication task
and general continual learning framework for transforming
neural language models into adaptive models that can be
deployed in real-time interactions with other agents.

Our key insight is that through continual interactions with
the same partner in a shared context, an adaptive listener
can more effectively communicate with its partner (Fig. 1).

We are motivated by hierarchical Bayesian approaches to
task-specific adaptation. Our approach integrates two core
components: (i) a loss function combining speaker and
listener information, and (ii) a regularization scheme for
fine-tuning model weights without overfitting.
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2. Approach

We begin by recasting communication as a multi-task prob-
lem for meta-learning. Each context and communicative
partner can be regarded as a related but distinct task making
its own demands on the agent’s language model. To be
effective across many such tasks, a communicative agent
must both (1) have a good prior representation they can
use to understand novel partners and contexts, and (2) have
a mechanism to rapidly update this representation from a
small number of interactions.

2.1. Repeated reference game task

As a benchmark for studying this problem, we introduce
the repeated reference game task (Fig. 1), which has been
widely used in cognitive science to study partner-specific
adaptation in communication (Krauss & Weinheimer, 1964;
Clark & Wilkes-Gibbs, 1986; Wilkes-Gibbs & Clark, 1992).
In this task, a speaker agent and a listener agent are shown a
context of images, C, and must collaborate on how to refer
to them. On each trial, one of these images is privately desig-
nated as the target object o for the speaker. The speaker thus
takes the pair (o0, C) as input and returns an utterance v that
will allow the listener to select the target. The listener agent
then takes (u, C) as input and returns a softmax probability
for each image, which it uses to make a selection. Both
agents then receive feedback about the listener’s response
and the identity of the target. Critically, the sequence of
trials is constructed so that each image repeatedly appears
as the target, allowing us to evaluate how communication
about each image changes over time.

2.2. Continual adaptation with Hierarchical Bayes

Before formalizing our algorithm as a generic update rule
for neural networks, we describe the theoretical Bayesian
foundations of our approach. At the core of any communica-
tion model is a notion of the semantics of language, which
supplies the relationship between utterances and states of
the world. Under a Bayesian approach, this representation
is probabilistic: we represent some uncertainty over mean-
ings. In a hierarchical Bayesian model, this uncertainty is
structured over different partners and contexts.

At the highest level of the hierarchy is a fask-general vari-
able © which parameterizes the agent’s task-specific prior
expectations P(6;|©), where 6, represents the semantics
used by a novel partner ¢. Given observations D; from com-
municative interactions in that context, an agent can update
their task-specific model using Bayes rule:

P(0:|D;, ©) o< P(D;]0;)P(6;|©) (1

The Bayesian formulation thus decomposes the problem of
task-specific adaptation into two terms, a prior term P(6;|©)

and a likelihood term P(D;|f;). The prior captures the
idea that different language tasks share some task-general
structure in common: in the absence of strong information
about usage departing from this common structure, the agent
ought to be regularized toward their task-general knowledge.

The likelihood term accounts for needed deviations from
general knowledge due to evidence from the current situa-
tion. The form of the likelihood depends on the task at hand.
For our benchmark communication task, D; = {(u,0):}
contains paired observations of utterances v and their ob-
jects of reference o at times ¢. These data can be viewed
from the point of view of a speaker (generating u given o)
or a listener (choosing o from a context of options, given u)
(Smith et al., 2013; Hawkins et al., 2017). A speaker model!
uses its task-specific semantics 6; to sample utterances u
proportional to how well they apply to o:

Ps(ulo, 0:) o< exp fo, (u,0) 2

A listener can be modeled as inverting this speaker model
to evaluate how well an utterance u describes each object o
relative to the others in a context C of objects by normalizing
(Frank & Goodman, 2012; Vedantam et al., 2017; Cohn-
Gordon et al., 2018; Monroe et al., 2017):

PL(O|quv 92) X PS(U|Oa Gz)P(O) 3

Because these views of the data D; provide complementary
statistical information about the task-specific semantics 6;,
we will combine them in our loss.

2.3. Continual adaptation for neural language models

There is a deep theoretical connection between the hierarchi-
cal Bayesian framework presented in the previous section
and recent deep learning approaches to multi-task learning
(Nagabandi et al., 2018; Grant et al., 2018; Jerfel et al.,
2018). Given a task-general initialization, regularized gradi-
ent descent on a particular task is equivalent to conditioning
on new data under a Bayesian prior. We exploit this connec-
tion to propose an online continual learning scheme for a
neural listener model that can adapt to a human speaker in
our challenging referential communication task.

Concretely, we consider an image-captioning network that
combines a convolutional visual encoder (ResNet-152) with
an LSTM decoder (Vinyals et al., 2015). The LSTM takes
a 300-dimensional embedding as input for each word in an
utterance and its output is then linearly projected back to
a softmax distribution over the vocabulary size. To pass
the visual feature vector computed by the encoder into the
decoder, we replaced the final layer of ResNet with a fully-
connected adapter layer. This layer was jointly pre-trained
with the decoder on the COCO training set and then frozen,

!"The function f abstracts away from any specific architecture.



Continual adaptation for efficient machine communication

Algorithm 1 Update step for adaptive language model

Input: 0;: weights at time ¢
Output: 0, 4: updated weights
Data: (u, 0;): observed utterance and object at time ¢
for step do
sample augmented batch of sub-utterances u ~ P (u)
update 0; < 0, + BV[P(ulo) + P(o|u) + reg(o, u)]
end for

leaving only the decoder weights (i.e. word embeddings,
LSTM, and linear output layer) to be learned in an online
fashion. Upon observing each utterance-object data point in
the current task, we take a small number of gradient steps
fine-tuning these weights to better account for the speaker’s
usage (see Algorithm 1). We consider several loss terms
and techniques to do so.

Speaker and listener likelihood. The primary signal avail-
able for adaptation is the (log-) probability of the new data
under speaker and listener likelihoods given in Eqns. 2-3.
Our speaker likelihood serves to make the observed utter-
ance more likely for the target in isolation, while our listener
likelihood makes it more likely relative to other objects in
context. The speaker and listener likelihoods can be com-
puted directly from the neural captioning model, as shown
in Fig. 1, where the probability of each word is given by the
softmax decoder output conditioned on the sentence so far.

Regularization. We introduce two kinds of regularization
terms to approximate the Bayesian prior on task-specific
learning. First, rather than directly regularizing weights,
a global KL regularization term minimizes the divergence
between the captioning model’s output probabilities before
and after fine-tuning (Yu et al., 2013; Galashov et al., 2018).
Since the support for our distribution of captions is infinite,
we approximate the divergence incrementally by expanding
from the maximum a posteriori (MAP) word at each step
according to P, where P represents the model at initializa-
tion and (), represents the model at time ¢. This loss is then
averaged across random images from the full domain O, not
just those in context:

> Dxr (Pwilo,wli™)||Qu(wilo,w}37)) (4

o€Oi<L

where we denote the word at position ¢ by w; and terminate
after reaching L, the length of the MAP caption. A second
form of regularization we consider is local rehearsal: we
sum the likelihood over previous observations (u, o), from
the same partner to prevent overfitting to the most recent
observation. Finally, we examine listener variants of both
forms of regularization by using the listener likelihood in-
stead of the speaker likelihood. For example, we compute
the listener KL regularization by comparing the initial lis-
tener distribution over the objects in context o € C with the

fine-tuned model’s distribution: Dxkr, (P(o|u)]|Q:(o|w)) .
We anneal the weight on the listener regularization terms
over time while reverse-annealing the listener likelihood.

Data augmentation. A final component of our approach is
a data augmentation step on the new utterance u. Ideally,
an adaptive agent should learn that words and sub-phrases
contained in the observed utterance are compositionally
responsible for its meaning. We thus derive a small training
dataset D(u) from u; for simplicity, we take the (ordered)
powerset D(u) = P(u) of all sub-utterances.”

3. Evaluations

To evaluate our model, we implemented a repeated refer-
ence game using images from the validation set of COCO
(Lin et al., 2014) as the targets of reference. To construct
challenging contexts C, we used our pre-trained visual en-
coder to find sets of highly similar images. We extracted
feature vectors for each image, partitioned the images into
100 groups using a k-means algorithm, sampled one image
from each cluster, and took its 3 nearest neighbors in feature
space, yielding 100 unique contexts of 4 images each’.

3.1. Human baselines

We first investigated the baseline performance of human
speakers and listeners. We recruited 113 participants from
Amazon Mechanical Turk and automatically paired them
into an interactive environment with a chatbox. For each
of these 56 pairs, we sampled a context and constructed
a sequence of 24 trials structured into 6 repetition blocks,
where each of the 4 images appeared as the target once per
block. We prevented the same target appearing twice in a
row and scrambled the order of the images on each player’s
screen on each trial.

We found that pairs of humans were remarkably accurate
at this task, with performance near ceiling on every round.
At the same time, they grew increasingly efficient in their
communication: the utterance length decreased from an
average of 7 words per image on the first repetition to only 3
words on the last. A mixed-effects regression with random
slopes and intercepts accounting for variability at the pair-
and context-level found a significant decrease in utterance
length across repetitions, t = —5.8, p < 0.001 (Fig. 2A).

3.2. Model evaluation with human partner

Next, we evaluated how our adaptive listener performed in
real-time interaction with human speakers. We recruited
45 additional participants from Amazon Mechanical Turk

2Grammatical acceptability could in principle be taken into
account using alternative sets derived from a syntactic parse.
3Using pre-trained VGG as the encoder gave similar contexts.
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Figure 2. (A) Human speakers grow more efficient and accurate as our model adapts. Curves show regression fits. (B) Speaker KL
regularization prevents catastrophic forgetting. (C) Lesions reveal the contributions of each loss term. Error bars and ribbons are

bootstrapped 95% Cls.

who were told they would be paired with an artificial agent
learning how they talk. This task was identical to the one per-
formed by humans, except participants were only allowed
to enter a single message through the chatbox on each trial.
This message was sent to a GPU where the model weights
from the previous trial were loaded, used to generate a re-
sponse, and updated in real-time for the next round. The
approximate latency for the model to respond was 6-8s.

We used a batch size of 8, learning rate of 0.0005, and
took 8 gradient steps after each trial. For our loss objective,
we used a linear combination of all speaker and listener
likelihood losses and regularization terms. We found that
a listener based on a pre-trained neural captioning model—
the initialization for our adapting model—performs much
less accurately than humans due to the challenging nature
of the reference task. Yet our model rapidly improves in
accuracy as it coordinates on appropriate meanings with
human speakers. Similarly, while speakers did not simplify
their utterances to the same extent as they did with other
humans, perhaps due to early feedback about errors, they
nonetheless became significantly more efficient over time,
b= —19,t = -5 (see Fig. 2A).

4. Analysis

We proceed to a series of lesion analyses that analyze the
role played by each component of our approach.

4.1. Preventing catastrophic forgetting

Fine-tuning repeatedly on a small number of data points
presents a clear risk of catastrophic forgetting (Robins,
1995), losing our ability to produce or understand utter-
ances for other images. Our KL regularization term (Eqn. 4)
was intended to play the same role as a Bayesian prior, pre-
venting catastrophic forgetting by tethering task-specific
behavior to the task-general model. To test the effective-
ness of this term, we examined the likelihood of different
captions before and after adaptation to the human baseline

utterances. First, we sampled a random set of images from
COCO that were not used in our experiment as control im-
ages, and used the initialized state of the LSTM to greedily
generate a caption for each. We also generated initial cap-
tions for the target objects in context. We recorded the
likelihood of all of these sampled captions under the model
at the beginning and at each step of adaptation until the final
round. Finally, we greedily generated an utterance for each
target at the end and retrospectively evaluated its likelihood
at earlier states. These likelihood curves are shown with
and without speaker KL regularization in Fig. 2B. The fi-
nal caption becomes more likely in both cases; without the
KL term, the initial captions for both targets and unrelated
controls are (catastrophically) lost.

4.2. Lesioning loss terms

We next simulated our adaptive agent’s performance under-
standing utterances from the human baseline under lesioned
losses (Fig. 2C). We found that rehearsal on previous rounds
had the largest qualitative benefit, allowing for faster adap-
tation on early rounds, while data augmentation and the
listener terms provided small boosts later in the game. Com-
pared to a non-adapting baseline, however, even a simple
loss only containing the speaker likelihood and speaker
KL regularization performed better over time—successfully
adapting to human language use.

5. Conclusions

Human language use is flexible, continuously adapting to
the needs of the current situation. In this paper, we intro-
duced a challenging repeated reference game benchmark
for artificial agents, which requires such adaptability to suc-
ceed. We proposed a continual learning approach that forms
context-specific conventions by adapting general-purpose
semantic knowledge. Even when models based on general-
purpose knowledge perform poorly, our approach allows
human speakers working with adapted variants of such mod-
els to become more accurate and more efficient over time.
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