Workshop track - ICLR 2018

JOINTLY LEARNING “WHAT” AND “HOW” FROM IN-
STRUCTIONS AND GOAL-STATES

Dzmitry Bahdanau*
MILA, Universite de Montreal
bahdanau@iro.umontreal.ca

Felix Hill, Jan Leike, Edward Hughes, Pushmeet Kohli, Edward Grefenstette
DeepMind, London

ABSTRACT

Training agents to follow instructions requires some way of rewarding them for be-
havior which accomplishes the intent of the instruction. For non-trivial instructions,
which may be either underspecified or contain some ambiguity, it can be difficult
or impossible to specify a reward function or obtain relatable expert trajectories for
the agent to imitate. For these scenarios, we introduce a method which requires
only pairs of instructions and examples of goal states, from which we can jointly
learn a model of the instruction-conditional reward and a policy which executes
instructions. Our experiments in a gridworld compare the effectiveness of our
method with that of RL in a control setting with available ground-truth reward. We
furthermore evaluate the generalization of our approach to unseen instructions, and
to scenarios where environment dynamics change outside of training, requiring
fine-tuning of the policy “in the wild”.

1 INTRODUCTION

One of the many goals of artificial intelligence is to build agents that are able to follow arbitrary
instructions given by humans. To specify what an instruction-following agent needs to do, researchers
typically rely on either reinforcement learning (RL) or on expert demonstrations. In the RL approach
(e.g.|Branavan et al.|(2009); [Hermann et al.| (2017); |Chaplot et al.|(2017)) the agent is rewarded for
executing the instruction correctly, and must understand the task only from the rewards it receives. In
methods that rely on demonstrations, often referred to as imitation learning (IL; |Chen and Mooney
(2011); |Artzi and Zettlemoyer| (2013)); |/Andreas and Klein| (2015); Mei et al.[(2016)), an agent is
trained to reproduce the behaviour of the expert when given the same instruction in the same initial
state. Both the RL and IL approaches to training instruction-following agents suffer from certain
limitations: a formal reward specification is required for RL and complete traces with the agent’s
actions are required for IL (and the agent’s action space might be different from the human’s).

We explore an alternative approach that avoids both the idiosyncrasies of human-provided trajectories
and the burden of reward programming. We focus on the case where instructions implicitly character-
ize a set of goal-states (e.g. “Move things around so that a red rectangle is north of a green sphere.”)
and where the agent’s task is to bring the world in one such state. Given a dataset of instructions and
respective goal-state examples provided by an expert, we train a discriminator network and a policy
network that focus on the “what to do” and “how to do it” aspects of the tasks, respectively. We
call our approach Adversarial Goal-Induced Learning from Examples (AGILE). AGILE is strongly
inspired by Inverse Reinforcement Learning (IRL; Ng and Russell|(2000); Ziebart et al.|(2008)) meth-
ods in general and Generative Adversarial Imitation Learning (Ho and Ermon 2016) in particular, but
it differs in that the policy and the discriminator are conditioned on an instruction and that goal-states
instead of complete trajectories are given to the discriminator. A unique property of AGILE is that
the “what to do” knowledge of the discriminator can be reused to improve the agent’s performance
on novel instructions or let the agent adapt to a change of the environment.

*Most of the work was done during an internship at DeepMind, London.



Workshop track - ICLR 2018

To validate the approach, we experiment with verifiable structured instructions in a gridworld. We
show that learning speed and performance of AGILE are comparable to those of vanilla RL, as well
as investigate the data efficiency (in terms of the number of positive examples) of AGILE. We then
demonstrate that AGILE affords greater and more flexible generalisation than vanilla RL.

2 ADVERSARIAL GOAL-INDUCED LEARNING FROM EXAMPLES

We consider a setup in which an agent is is given a dataset D of (¢;, g;) pairs, where ¢; is an instruction
and g; is an example goal-state for ¢;. An example ¢; could be “build a tower from blocks on the
table” and the respective g; could be a visual observation from which it is clear that blocks form
a tower. We furthermore assume that the agent is provided with a stream of training instances G.
Each training instance constitutes an instruction ¢ and an initial state sg from which the instruction
can be successfully executed. Our algorithm trains a policy 7y with parameters € on the instances
from G using only examples from D to understand the semantics of the instructions. In order to train
our agent without an explicit reward but by using just examples from D we introduce an additional
network D which we call the discriminator whose purpose is to define a meaningful reward function
for training 7y. Specifically, the discriminator D, is trained to predict whether a state s is a goal-state
for an instruction c. The discriminator’s positive examples are fetched from D, whereas its negative
examples come from the agent’s attempts to solve the training instances from G. Formally speaking,
the policy is trained to maximize a return R, (#) and the discriminator is trained to minimize a
cross-entropy loss Lp(¢), the equations for which are listed below:

R (0) = o E > 7'M Dy(e,se) > 0.5] + aH (mp), (1)
Cy81:00 )G O =1
Lp(¢p)= E —log(l—Dy(c,s))+ E —logDy(ci,g:). 2)
(¢,8)~B (ci,gi)~D

In the equations above square brackets [z] stand for the indicator function, i.e. [x] = 1 iffz > 0
and 0 otherwise. + is the discount factor. With (¢, s1.00) ~ G™ we denote a state trajectory that
was obtained by sampling (¢, s9) ~ G and running 7y conditioned on ¢ starting from sg. B denotes
a replay buffer to which (¢, s) pairs from T-step episodes are added, or in other words, it is the
undiscounted occupancy measure over the first T" steps. Dy /(c, s) refers to the probability of (c, s)
having a positive label according to the discriminator. H(my) is the policy’s entropy, and « is a
hyperparameter. Figure[T]illustrates the complete approach.

3 SETUP

In order to investigate AGILE we built a minimalist 5 X 5 gridworld surrounded by walls. The cells of
the grid can be occupied by blocks of 3 possible shapes and 3 possible colors. The grid also contains
an agent sprite. The agent may carry a block; when it does so, the agent sprite changes color. When
the agent is free, i.e. when it does not carry anything, it is able to enter cells with blocks. A free
agent can pick a block in the cell where both are situated. An agent that carries a block can not enter
non-empty cells, but it can instead drop the block that it carries in any empty cell. Both picking up
and dropping are realized by the INTERACT action. Other available actions are LEFT, RIGHT, UP
and DOWN and NOOP. We render the state of the world as an image (see Figure 1| for examples of
rendered world states) and we use it as the input for all neural networks.

We defined a minimalistic task that requires the agent to understand 5 spatial relations (NorthFrom,
SouthFrom, EastFrom, WestFrom, SameLocation) in the context of our gridworld. The operands
of relations can be either the blocks, which are referred to by their shapes and colors, or the
agent itself. The instructions are represented as programs in a simple functional programming
language. A program can verify that a block is one step in a specified direction from another
block. For example, the program NorthForm(Color(‘red’, Shape(‘circle’, SCENE)), Color(‘blue’,
Shape( ‘square’, SCENE))) returns True if and only if there exists a red circle right north from a blue
square. Figure[I]shows two examples of instructions and their respective goal states.



Workshop track - ICLR 2018

4 EXPERIMENTS

We trained AGILE and RL agents on episodes of 30 steps. We considered an episode to be a success
if the final state was a goal state as judged by the ground-truth program. We use the success rate
(i.e. the ratio of successful episodes) as our main performance metric for the agents. More detailed

presentation of our results can be found in Appendix [A]

AGILE vs RL In our first experiment we compare the
performance of AGILE against a vanilla RL baseline. For
the RL baseline we used the ground-truth goal checker to
provide binary reward to the agent. While AGILE training
was able to take off without any auxiliary tasks, we found
it necessary to add an auxiliary task of reward prediction
(RP; |Jaderberg et al.,|2016) to make the RL baseline work
well. The best performance for AGILE was 0.95, which
is close to 0.99 attained by RL-RP, albeit not perfect.

Data Efficiency We measure how many examples of

positive examples of instructions and goal-states

put a red rectangle north from a blue
object
NorthFrom(

Color('red’, Shape('rect’, SCENE)),
Color('blue', SCENE))))

put a triangle east from red triangle
EastFrom(

Shape(‘triangle’, SCENE),

Color(‘red’, Shape(‘triangle’,SCENE))

WestFrom( policy

. . X . [— Shape(triangle, SCENE), training

instructions and goal-states are required by AGILE in Color(red, Shape(circle, SCENE))

order to understand the semantics of the GridLU-Relations l P(UP)=0.2 ~
[policy |- p(DOWN)=0.3

instruction language. The AGILE-trained agent succeeds
in more than 50% of cases starting from 2'2 examples, but
as many as 217 is required for the best performance.

x‘/x‘/£
NEE
) —

ti le buff discriminator
negative example buffer training

Generalization We test generalization of agents trained
by AGILE to unseen instructions. We split instructions
into a training and a test set by holding out instruc- ‘
tions that contain subexpressions Color( ‘blue’, ...) and
Shape( ‘sphere’, ...) (this includes instructions which refer
to blue spheres but not only them). This split is applied to
both the dataset D and the instance generator G. To make
the task harder, at test time we also add two additional
objects to the gridworld, a nonblue circle and a blue non-
circle. The success rate dropped from 0.88 on the training
set to 0.21 when we evaluated the trained policy on the
test set. To find out whether it is the policy’s or the dis-
criminator’s failure to generalize, we fine-tuned the policy on the test instructions while freezing the
discriminator’s weights, which improved the average success rate to 0.50, which suggest that the
discriminator generalized better to the test situation.

Figure 1: Top: examples of instructions
and respective goal-states. Instructions
are displayed in italic together with their
natural language equivalents in a normal
font. Bottom: schematic illustration of
adversarial learning with goal-states ex-
amples.

To further investigate AGILE’s potential uses, we performed an additional generalization experiment.
We modified the physics of the game by making red square blocks immovable, simulating a scenario
where low battery or damaged actuators render a robot unable to lift heavier objects, requiring its
policy to be adjusted “in the wild”. This change impaired the learned policy and the agent’s success
rate on the instructions referring to a red square dropped to 0.43. After fine-tuning the policy with a
frozen discriminator, the success rate went up to anywhere between 0.53 and 0.67,

5 CONCLUSION

In this paper we proposed AGILE, an IRL-inspired approach to training an agent to perform instruc-
tions with examples of goal-states. Our experiments in controlled settings with verifiable reward show
that AGILE delivers performance which is comparable to that of RL and achieves more than 50%
success rate with 2'3 examples, a number that is amenable to crowd-sourcing. An attractive property
of our approach is that learning “what should be done” and “how it should be done” is performed
by two different model components. Our experiments confirm that the “what” kind of knowledge
generalizes stronger and can help the agent to adapt to unseen instructions and to changes in the
environment. We hypothesize that regularizing the discriminator could help with data efficiency and
will experiment in this direction in our future work.



Workshop track - ICLR 2018

REFERENCES

Jacob Andreas and Dan Klein. Alignment-Based Compositional Semantics for Instruction Following.
In arXiv preprint arXiv:1508.06491, 2015.

Yoav Artzi and Luke Zettlemoyer. Weakly supervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Association for Computational Linguistics, 1:49-62,
2013.

S. R. K. Branavan, Harr Chen, Luke S. Zettlemoyer, and Regina Barzilay. Reinforcement Learning
for Mapping Instructions to Actions. In Proceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing
of the AFNLP: Volume 1 - Volume I, ACL ’09, pages 82-90, Stroudsburg, PA, USA, 2009.
Association for Computational Linguistics. ISBN 978-1-932432-45-9. URL http://dl.acm}
org/citation.cfm?id=1687878.1687892.

Devendra Singh Chaplot, Kanthashree Mysore Sathyendra, Rama Kumar Pasumarthi, Dheeraj
Rajagopal, and Ruslan Salakhutdinov. Gated-Attention Architectures for Task-Oriented Lan-
guage Grounding. arXiv:1706.07230 [cs], June 2017. URL http://arxiv.org/abs/1706,
07230l arXiv: 1706.07230.

David L. Chen and Raymond J. Mooney. Learning to Interpret Natural Language Navigation
Instructions from Observations. In AAAI, volume 2, pages 1-2, 2011.

Karl Moritz Hermann, Felix Hill, Simon Green, Fumin Wang, Ryan Faulkner, Hubert Soyer, David
Szepesvari, Wojciech Marian Czarnecki, Max Jaderberg, Denis Teplyashin, Marcus Wainwright,
Chris Apps, Demis Hassabis, and Phil Blunsom. Grounded Language Learning in a Simulated
3d World. arXiv:1706.06551 [cs, stat], June 2017. URL http://arxiv.org/abs/1706.
06551, arXiv: 1706.06551.

Jonathan Ho and Stefano Ermon. Generative Adversarial Imitation Learning. arXiv:1606.03476 [cs],
June 2016. URL http://arxiv.org/abs/1606.03476. arXiv: 1606.03476.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z. Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement Learning with Unsupervised Auxiliary Tasks. In
ICLR, 2016. URL http://arxiv.org/abs/1611.05397. arXiv: 1611.05397.

Hongyuan Mei, Mohit Bansal, and Matthew R. Walter. Listen, Attend, and Walk: Neural Mapping
of Navigational Instructions to Action Sequences. In Proceedings of the National Conference on
Artificial Intelligence (AAAI), 2016. URL http://arxiv.org/abs/1506.04089. arXiv:
1506.04089.

Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning. In Icml, pages
663-670, 2000.

Brian D Ziebart, Andrew L Maas, J] Andrew Bagnell, and Anind K Dey. Maximum entropy inverse
reinforcement learning. In AAAI, volume 8, pages 1433—-1438. Chicago, IL, USA, 2008.


http://dl.acm.org/citation.cfm?id=1687878.1687892
http://dl.acm.org/citation.cfm?id=1687878.1687892
http://arxiv.org/abs/1706.07230
http://arxiv.org/abs/1706.07230
http://arxiv.org/abs/1706.06551
http://arxiv.org/abs/1706.06551
http://arxiv.org/abs/1606.03476
http://arxiv.org/abs/1611.05397
http://arxiv.org/abs/1506.04089

Workshop track - ICLR 2018

A DETAILED RESULTS

A.1 AGILE vs.RL

The training curves for all methods can be found in Figure[Za] AGILE typically started to learn earlier
than RL-RP and proceeded at the same speed, but after reaching the optimum at roughly 130 million
steps AGILE’s performance started slowly deteriorating and dropped to 0.91 success rate after 500
million steps (see the RL-RP and AGILE curves in Figure[2a). Notably, AGILE’s success rate was
always above pure RL.

A.2 DATA EFFICIENCY

The performance of AGILE for datasets of different sizes can be found in Figure 2

°
IS

success rate

success rate

—— RL-RP
— RL
—— AGILE

0 1 2 3 4 5
environment steps le8

12 14 16
log2 of the dataset size

(a) (b)

Figure 2: (a) Learning curves for RL and AGILE task. RL-RP stands for RL with an auxiliary task of
reward prediction. (b) Performance of AGILE for different sizes of the dataset of instructions and
goal-states.



	Introduction
	Adversarial Goal-Induced Learning from Examples
	Setup
	Experiments
	Conclusion
	Detailed Results
	AGILE vs. RL
	Data Efficiency


