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ABSTRACT

In vanilla backpropagation (VBP), activation function matters considerably in
terms of non-linearity and differentiability. Vanishing gradient has been an im-
portant problem related to the bad choice of activation function in deep learning
(DL). This work shows that a differentiable activation function is not necessary
any more for error backpropagation. The derivative of the activation function can
be replaced by an iterative temporal differencing (ITD) using fixed random feed-
back weight alignment (FBA). Using FBA with ITD, we can transform the VBP
into a more biologically plausible approach for learning deep neural network ar-
chitectures. We don’t claim that ITD works completely the same as the spike-time
dependent plasticity (STDP) in our brain but this work can be a step toward the
integration of STDP-based error backpropagation in deep learning.

1 INTRODUCTION

VBP was proposed around 1987 Rumelhart et al. (1985). Almost at the same time, biologically-
inspired convolutional networks was also introduced as well using VBP LeCun et al. (1989). Deep
learning (DL) was introduced as an approach to learn deep neural network architecture using VBP
LeCun et al. (1989; 2015); Krizhevsky et al. (2012). Extremely deep networks learning reached 152
layers of representation with residual and highway networks He et al. (2016); Srivastava et al. (2015).
Deep reinforcement learning was successfully implemented and applied which was mimicking the
dopamine effect in our brain for self-supervised and unsupervised learning Silver et al. (2016); Mnih
et al. (2015; 2013). Hierarchical convolutional neural network have been biologically inspired by
our visual cortex Hubel & Wiesel (1959); Fukushima (1988; 1975); Yamins & DiCarlo (2016).

Geoff Hinton in 1988 proposed recirculation in VBP Hinton & McClelland (1988) which does not
require the derivative of the activation function. The recirculation-based backprop is the main in-
spiration behind our work, an iterative temporal differencing in VBP. He gave a lecture about this
approach again in NIPS 2007 Hinton (2007), and recently gave a similar lecture in Standford in
2014 and 2017 to reject the four arguments against the biological foundation of backprop. In his
latest related lecture in Standford, he explains the main four arguments by neuroscientists on why
VBP is not biologically or neurologically feasible 1.
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Neuroscientist arguments against VBP Hinton’s counter-arguments
Unsupervised learning using
the Dopamine effect in the
brain (reinforcement learn-
ing)

Autoencoders (AE)
and generative ad-
versarial networks
(GAN)

Spike instead of sending and
receiving real values

Dropout Srivastava
et al. (2014) using
Bernoulli, Gaus-
sian, and Poisson
distribution

STDP (Our core focus and
contribution) as a temporal
differencing approach

recirculationHinton
& McClelland
(1988)

Symmetry or symmetrical
forward and backward path
using symmetrical weights

FBA Lillicrap et al.
(2016)

Table 1: The problems with with artificial neural networks compared to the biological neural net-
works (brain) according to neuroscientist.

The discovery of fixed random synaptic feedback weights alignments (FBA) in error backpropaga-
tion for deep learning started a new quest of finding the biological version of VBP Lillicrap et al.
(2016) since it solves the symmetrical synaptic weights problem in backprop. Recently, spike-
time dependent plasticity was the important issue with backprop. One of the works in this direction,
highly inspired from Hinton’s recirculation idea Hinton & McClelland (1988), is deep learning using
segregated dendrites Guergiuev et al. (2016). Apical dendrites as the segregated synaptic feedback
are claimed to be capable of modeling STDP into the backprop successfully Guergiuev et al. (2016).

ITERATIVE TEMPORAL DIFFERENCING

In this section, we visually demonstrate the ITD using FBA in VBP 1. In this figure, VBP, VBP with
FBA, and ITD using FBA for VBP are shown all in one figure. The choice of activation function
for this implementation was Tanh function. The ITD was applied to MNIST standard dataset. VBP,
FBA, and ITD were compared using maximum cross entropy (MCE) as the loss function 2. Also,
ITD with MCE as loss function is compared to ITD with least squared error (LSE) 3.
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Figure 1: VBP vs FBA vs ITD are all visualized in a 2-layer deep neural network.

The hyper parameters for both of the experiments are equal as follows: 5000 number of iterations/
epochs, 0.01 (1e-2) learning rate, 100 minibatch size with shuffling for stochasticity, vanilla stochas-
tic gradient descent is used, 32 for number of hidden layers, 2-layer deep networks. Feed-forward
neural network is used as the architecture.
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Figure 2: The experimental results on MNIST dataset: (top row) ITD, (middle row) FBA, (bottom
row) VBP.
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Figure 3: The experimental results on MNIST dataset using ITD with different loss function: (top
row) LSE, (bottom row) MCE.

DISCUSSION & FUTURE VIEW

In this paper, we took one more step toward a more biologically plausible backpropagation for
deep learning. After hierarchical convolutional neural network and fixed random synaptic feedback
alignment, we believe iterative temporal differencing is a way toward integrating STDP learning
process in the brain. We believe the next steps should be to investigate more into the STDP processes
details in learning, dopamine-based unsupervised learning, and generating Poisson-based spikes.
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