
Not All Wrong is Bad: Using Adversarial Examples for Unlearning

Ali Ebrahimpour-Boroojeny 1 Hari Sundaram 1 Varun Chandrasekaran 1

Abstract
Machine unlearning, where users can request the
deletion of a forget dataset, is becoming increas-
ingly important because of numerous privacy reg-
ulations. Initial works on “exact” unlearning (e.g.,
retraining) incur large computational overheads.
However, while computationally inexpensive, “ap-
proximate” methods have fallen short of reaching
the effectiveness of exact unlearning: models pro-
duced fail to obtain comparable accuracy and pre-
diction confidence on both the forget and test (i.e.,
unseen) dataset. Exploiting this observation, we
propose a new unlearning method, Adversarial
Machine UNlearning (AMUN), that outperforms
prior state-of-the-art (SOTA) methods for image
classification. AMUN lowers the confidence of
the model on the forget samples by fine-tuning
the model on their corresponding adversarial ex-
amples. Adversarial examples naturally belong
to the distribution imposed by the model on the
input space; fine-tuning the model on the adversar-
ial examples closest to the corresponding forget
samples (a) localizes the changes to the decision
boundary of the model around each forget sample
and (b) avoids drastic changes to the global behav-
ior of the model, thereby preserving the model’s
accuracy on test samples. Using AMUN for un-
learning a random 10% of CIFAR-10 samples, we
observe that even SOTA membership inference
attacks cannot do better than random guessing.

1. Introduction
The goal of machine unlearning is to remove the influence
of a subset of the training dataset for a model that has been
trained on that dataset (Vatter et al., 2023). The necessity for
these methods has been determined by privacy regulations
such as the European Union’s General Data Protection Act

1University of Illinois at Urbana-Champaign (UIUC), Illi-
nois, USA. Correspondence to: Ali Ebrahimpour-Boroojeny
<ae20@illinois.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

and the California Consumer Privacy Act. Despite early
efforts on proposing “exact” solutions to this problem (Cao
& Yang, 2015; Bourtoule et al., 2021), the community has
favored “approximate” solutions due to their ability to pre-
serve the original model’s accuracy while being more com-
putationally efficient (Chen et al., 2023b; Liu et al., 2024;
Fan et al., 2024).

Given a training set D and a subset DF ⊂ D of the samples
that have to be unlearned from a model trained on D, recent
works on unlearning have emphasized the use of evaluation
metrics that measure the similarity to the behavior of the
models that are retrained from scratch on D−DF. However,
prior unlearning methods do not effectively incorporate this
evaluation criterion in the design of their algorithm. In this
paper, we first characterize the expected behavior of the
retrained-from-scratch models on D −DF. Using this char-
acterization, we propose Adversarial Machine UNlearning
(AMUN). AMUN is a method that, when applied to the
models trained on D, replicates that (desired) behavior af-
ter a few iterations. The success of AMUN relies on an
intriguing observation: fine-tuning a trained model on the
adversarial examples of the training data does not lead to a
catastrophic forgetting and instead has limited effect on the
deterioration of model’s test accuracy.

Upon receiving a request for unlearning a subset DF of the
training set D, AMUN finds adversarial examples that are
as close as possible to the samples in DF. It then utilizes
these adversarial examples (with the wrong labels) during
fine-tuning of the model for unlearning the samples in DF.
Fine-tuning the model on these adversarial examples, which
are naturally mispredicted by the model, decreases the con-
fidence of the predictions on DF. This decreased confidence
of model’s predictions on DF is similar to what is observed
in the models that are retrained on D − DF. The distance
of these adversarial examples to their corresponding sam-
ples in DF is much smaller than the distance of DF to other
samples in D −DF; this localizes the effect of fine-tuning
to the vicinity of the samples in DF and prevents significant
changes to the decision boundary of the model and hurting
the model’s overall accuracy (see § 3.1).

As we will show in § 6, AMUN outperforms prior state-
of-the-art (SOTA) unlearning methods (Fan et al., 2024) in
unlearning random subsets of the training data from a trained

1

Not All Wrong is Bad: Using Adversarial Examples for Unlearning

classification model and closes the gap with the retrained
models, even when there is no access to the samples in
D −DF during the unlearning procedure.

To summarize, the main contributions of this work are:

• We observe that neural networks, when fine-tuned on
adversarial examples with their wrong labels, have lim-
ited test accuracy degradation. While prior research in
adversarial robustness fine-tune the models on these
samples with their labels corrected, we are the first
to utilize this form of fine-tuning to get lower predic-
tion confidence scores on the training samples that are
present in the proximity of those adversarial examples.

• We introduce a new unlearning method, AMUN, for
classification models that outperforms prior methods.
It does so by replicating the behavior of the retrained
models on the test samples and the forget samples.

• By comparing AMUN to existing unlearning methods
using SOTA membership inference attacks (MIAs), we
show that it outperforms the other methods in unlearn-
ing subsets of training samples of various sizes.

All code can be found in https://github.com/
Ali-E/AMUN

1.1. Related Work

Early works in machine unlearning focused on exact solu-
tions (Cao & Yang, 2015; Bourtoule et al., 2021); those
ideas were adapted to unlearning in other domains such
as graph neural networks (Chen et al., 2022b) and recom-
mendation systems (Chen et al., 2022a). The extensive
computational cost and utility loss resulted in the design
of approximate methods. An example is the work of Gi-
nart et al. (2019), who provide a definition of unlearning
based on differential privacy. Works that followed sought
solutions to satisfy those probabilistic guarantees (Ginart
et al., 2019; Gupta et al., 2021; Neel et al., 2021; Ullah et al.,
2021; Sekhari et al., 2021). However, the methods that sat-
isfy these guarantees were only applied to simple models,
such as k-means (Ginart et al., 2019) , linear and logistic
regression (Guo et al., 2019; Izzo et al., 2021), convex-
optimization problems (Neel et al., 2021), or graph neu-
ral networks with no non-linearities (Chien et al., 2022).
Additional research was carried out to design more scal-
able approximate methods, those that can be applied to
the models that are used in practice, including large neu-
ral networks (Golatkar et al., 2020; Warnecke et al., 2021;
Izzo et al., 2021; Thudi et al., 2022; Chen et al., 2023b;
Liu et al., 2024; Fan et al., 2024). However, these approx-
imate methods do not come with theoretical guarantees;
their effectiveness are evaluated using membership infer-
ence attacks (MIAs). MIAs aim to determine whether a
specific data sample was used in the training set of a trained

model (Shokri et al., 2017; Yeom et al., 2018; Song et al.,
2019; Hu et al., 2022; Carlini et al., 2022; Zarifzadeh et al.,
2024), and is a common evaluation metric (Liu et al., 2024;
Fan et al., 2024). For further discussion on related works,
see Appendix B.

2. Preliminaries
We begin by introducing the notation we use. We proceed
to define various terms in the paper, and conclude by intro-
ducing our method.

2.1. Notation

Assume a probability distribution PX on the domain of
inputs X and m classes Y = {1, 2, . . . ,m}. We consider
a multi-class classifier F : X → Y and its corresponding
prediction function f(x) which outputs the probabilities
corresponding to each class (e.g., the outputs of the softmax
layer in a neural network). The loss function for model F
is denoted ℓF : X × Y → R+; it uses the predicted scores
from f(x) to compute the loss given the true label y (e.g.,
cross-entropy loss). In the supervised setting we consider
here, we are given a dataset D = {(xi, yi)}i={1,...,N} that
contains labeled samples xi ∼ PX with yi ∈ Y . The
model F is trained on D using the loss ℓF to minimize
the empirical risk ED[ℓF (x, y)] and a set of parameters
θo ∼ ΘD is derived for F ; ΘD is the distribution over the
set of all possible parameters Θ when the training procedure
is performed on D due to the potential randomness in the
training procedure (e.g., initialization and using mini-batch
training). We also assume access to a test set DT with
samples from the same distribution PX . A function g(x) is
L-Lipschitz if ∥g(x)− g(x′)∥2 ≤ L∥x− x′∥2,∀x, x′ ∈ X .

2.2. Definitions

Definition 2.1 (Attack Algorithm). For a given input/output
pair (x, y) ∈ X × Y , a model F , and a positive value ϵ, an
untargetted attack algorithm AF (x, ϵ) = x+ δx minimizes
ℓF (x+ δx, y

′ ̸= y) such that ∥δx∥2 ≤ ϵ, where y′ ∈ Y .

Definition 2.2 (Machine Unlearning). Given the trained
model F , and a subset DF ⊂ D known as the forget set,
the corresponding machine unlearning method is a function
MD,DF : Θ → Θ that gets θo ∼ ΘD as input and derives a
new set of parameters (aka the unlearned model) θu ∼ ΘDF ,
where ΘDF is the distribution over the set of parameters
when F is trained on D −DF rather than D.

2.3. Approximate Unlearning

Using Definition 2.2, it is clear that the most straight-
forward, exact unlearning method would be to retrain model
F from scratch on D−DF; this does not even use θo. How-
ever, training deep learning models is very costly, and re-

2

https://github.com/Ali-E/AMUN
https://github.com/Ali-E/AMUN

Not All Wrong is Bad: Using Adversarial Examples for Unlearning

training the models upon receiving each unlearning request
would be impractical. Thus, approximate unlearning meth-
ods are designed to overcome these computational require-
ments by starting from θo and modifying the parameters to
derive θo

′ s.t. θo′
d
= θu (i.e., from the same distribution).

In the rest of the paper, we refer to DF as the forget or
unlearning set interchangeably. Its complement, DR =
D − DF is the remain set. We will use the behavior of
the models retrained from scratch on DR as the goal of
approximate unlearning methods, and will refer to them as
FR for brevity.

2.4. Unlearning Settings

Many of the prior methods on approximate unlearning for
classification models require access to DR. However, in
practice, this assumption might be unrealistic. The access
to DR might be restricted, or might be against privacy regu-
lations. Prior works do not make a clear distinction based
on this requirement when comparing different approximate
methods. Therefore, to make a clear and accurate compari-
son, we perform our experiments (see § 6) in two separate
settings: one with access to both DR and DF, and the other
with access to only DF. We report the results for each setting
separately. For comparison with prior methods, we adapt
them to both settings whenever possible.

3. Motivation
We present the intuition for our proposed unlearning method
in § 3.1, and in § 3.2 we describe our observation about fine-
tuning a model on its adversarial examples.

3.1. A Guiding Observation

Before designing a new unlearning method, we would like
to first characterize the changes we expect to see after a
successful unlearning. Because the retrained models are
the gold standard of unlearning methods, we first assess
their behavior on DR, DF, and DT. To this end, we evaluate
the confidence values of FR when predicting labels of DR,
DF, and DT. Since samples in DT are drawn from the same
distribution as D, we can conclude that samples in DT and
DF are from the same distribution. Therefore, we expect FR
to have similar accuracy and prediction confidence scores
on DT (test set) and DF.

Results: Figure 3 in Appendix F.1, shows the confidence
scores (see § F.1 for details) for a ResNet-18 (He et al.,
2016) model that has been retrained on D−DF, where D is
the training set of CIFAR-10 (Alex, 2009) and the size of
DF (randomly chosen from D) is 10% and 50% of the size
of D (the first and second sub-figures, respectively).

Key Observation 1: The main difference between
the predictions on DT (unseen samples) and DR

(observed samples) is that the model’s predictions
are much more confident for the samples that it has
observed compared to the unseen samples.

This basic observation has either been overlooked by the
prior research on approximate machine unlearning or has
been treated incorrectly. To make the unlearned models
more similar to FR, prior methods have focused on degrad-
ing the model’s performance on DF directly by either (a)
some variation of fine-tuning on DR (Warnecke et al., 2021;
Liu et al., 2024), (b) choosing wrong labels for samples in
DF and fine-tuning the model (Golatkar et al., 2020; Chen
et al., 2023b; Fan et al., 2024), or (c) directly maximizing
the loss with respect to the samples in DF (Thudi et al.,
2022). Using the wrong labels for the samples of DF or
maximizing the loss on them make these methods very un-
stable and prone to catastrophic forgetting (Zhang et al.,
2024a) because these samples belong to the correct distri-
bution of the data and we cannot force a model to perform
wrongly on a portion of the dataset while preserving it’s
test accuracy. For these methods, it is important to use a
small enough learning rate along with early stopping to pre-
vent compromising the model’s performance while seeking
worse prediction confidence values on the samples in DF.
Also, most of these methods require access to the set of
remaining samples to use it for preventing a total loss of the
model’s performance (e.g., by continuing to optimize the
model on DR) (Golatkar et al., 2020; Liu et al., 2024).

3.2. Fine-tuning on Adversarial Examples

After training a model F on D, this model imposes a dis-
tribution f(x) (e.g., softmax outputs) for all possible labels
y ∈ Y given any x ∈ X . Since the model F is directly opti-
mized on D, f(x) becomes very skewed toward the correct
class for samples in D. For a given sample from D, its ad-
versarial examples (see Definition 2.1) are very close in the
input space to the original sample. However, F makes the
wrong prediction on these examples. This wrong prediction
is the direct result of the learned parameters θo for the clas-
sification model, and these adversarial examples, although
predicted incorrectly, belong to the distribution imposed on
X by these learned parameters (i.e., even though that is not
the correct distribution, that is what the model has learned).

Now, what happens if we insert one adversarial example
(xadv, yadv) that corresponds to the sample (x, y) into D
and make an augmented dataset D′ for fine-tuning? Even
before fine-tuning starts, the model makes the correct predic-
tion on that (adversarial) example (by predicting the wrong
label yadv!), but its confidence might not be as high as the
samples in D, on which the model has been trained on. Pro-

3

Not All Wrong is Bad: Using Adversarial Examples for Unlearning

Figure 1: Effect of fine-tuning on adversarial examples. This figure shows the effect of fine-tuning on test accuracy of
a ResNet-18 model that is trained on CIFAR-10, when the dataset for fine-tuning changes (see § 6.2 for details). Let DF
contain 10% of the samples in D and DA be the set of adversarial examples constructed using Algorithm 1. Adv, from the
left sub-figure to right one, shows the results when D∪DA, DF ∪DA, and DA is used for fine-tuning the model, respectively.
Orig, Adv-RS, Adv-RL, Orig-RL, and Orig-AdvL shows the results when DA for each of these sub-figures is replace
by DF, DARS , DARL, DRL, and DAdvL, accordingly. As the figure shows, the specific use of adversarial examples with the
mis-predicted labels matters in keeping the model’s test accuracy because DA, in contrast to the other constructed datasets
belong to the natural distribution learned by the trained model.

ceeding with fine-tuning of the model on the augmented
dataset increases its confidence on xadv while making the
same wrong prediction yadv. However, this fine-tuning
does not change the model’s performance because the newly
added sample (xadv, yadv) does not contradict the distribu-
tion learned by the model. Since (x, y) ∈ D′, and x and
xadv are very close to one another (e.g., very similar im-
ages) while having different labels, optimizing the model
has to change its decision boundary in that region of the
input space to reach small loss for both of these samples. As
a result of this balance, the model tends to decrease its con-
fidence on the original sample compared to the model that
was solely trained on D because there was no opposing com-
ponents for its optimization on D. Note that ∥x−xadv∥ ≤ ϵ,
where ϵ is often much smaller than the distance of any pairs
of samples in D. This helps to localize this change in the de-
cision boundary during fine-tuning, and prevent changes to
models’ behavior in other regions of the input space (Liang
et al., 2023). In the following we elaborate on our empirical
observations that verify these changes.

Setup: We consider the training set of CIFAR-10 as D and
choose DF to be a random subset whose size is 10% of
|D|. We also compute a set of adversarial examples (using
Algorithm 1) corresponding to DF, which we call DA. Fig. 1
shows the fine-tuning of a trained ResNet-18 model for 20
epochs. Similar experiment for VGG19 models trained on
the Tiny Imagenet dataset (Le & Yang, 2015) can be found
in In the leftmost sub-figure, the curve presented as Orig
represents the test accuracy of the model when it is fine-
tuned on D. The curve named Adv is fine-tuned on D∪DA,
which has a similar test accuracy to Orig.

In the second sub-figure, Orig shows the test accuracy of
the model when it is fine-tuned on DF (two copies of DF

to keep the sample count similar), while Adv represents
fine-tuning on DF ∪ DA. As the figure shows, Adv has a
small degradation in test accuracy compared to Orig.

The rightmost sub-figure shows the case where Orig is fine-
tuning of the model on DF, and Adv is fine-tuning on only
DA. Although the degradation in test accuracy increases for
this case, surprisingly we see that the model still remains
noticeably accurate despite being fine-tuned on a set of
samples that are all mislabeled. See § 6.2.1 for more details.

Results: As Figure 1 (and Figure 6 and 7 in Appendix F.3)
shows, the test accuracy of the model does not deteriorate,
even when it is being fine-tuned on only DA (the dataset
with wrong labels). See § 6.2.1 for further details.

Key Observation 2: Fine-tuning a model on the
adversarial examples does not lead to catastrophic
forgetting!

4. Adversarial Machine UNlearning (AMUN)
We utilize our novel observation about the effect of fine-
tuning on adversarial examples (see § 3.2) to achieve the
intuition we had about the retrained models (see § 3.1). We
utilize the existing flaws of the trained model in learning the
correct distribution, that appear as adversarial examples in
the vicinity of the samples in DF, to decrease its confidence
on those samples while maintaining the performance.

Formally, AMUN uses Algorithm 1 to find an adversarial
example for any sample in (x, y) ∈ DF. This algorithm uses
a given untargeted adversarial algorithm AF , that finds the
solution to Definition 2.1, for finding an adversarial example

4

Not All Wrong is Bad: Using Adversarial Examples for Unlearning

xadv. To make sure ϵ is as small as possible, Algorithm 1
starts with a small ϵ and runs the attack AF ; if an adversarial
algorithm is not found within that radius, it runs AF with
a larger ϵ. It continues to perform AF with incrementally
increased ϵ values until it finds an adversarial example;
it then adds it to DA. The algorithm stops once it finds
adversarial examples for all the samples in DF.

The reason behind minimizing the distance of ϵ for each
sample is to localize the changes to the decision boundary
of the model as much as possible; this prevents changing the
model’s behavior on other parts of the input space. For our
experiments, we use PGD-50 (Madry, 2017) with ℓ2 norm
bound as AF . We set the step size of the gradient ascent in
the attack to 0.1× ϵ, which changes with the ϵ value. More
details regarding the implementations of AMUN and prior
unlearning methods and tuning their hyper-parameters can
be found in Appendix C. Also, in Appendix F.5, we will
show how using weaker attacks, such as Fast Gradient Sign
Method (FGSM) (Goodfellow et al., 2014), might lead to
lower performance of AMUN.

Algorithm 1 Build Adversarial Set (F ,A,DF, ϵinit)

1: Input: Model F , Attack algorithm A, Forget set DF,
and Initial ϵ for adversarial attack

2: Output: DA: Adversarial set for DF
3: DA = {}
4: for (x, y) in DF do
5: ϵ = ϵinit
6: while TRUE do
7: xadv = A(x, ϵ)
8: yadv = F(xadv)
9: if yadv ! = y then

10: Break
11: end if
12: ϵ = 2ϵ
13: end while
14: Add (xadv, yadv) to DA
15: end for
16: Return DA

Once Algorithm 1 constructs DA, AMUN utilizes that to
augment the dataset on which it performs the fine-tuning.
If DR is available, AMUN fine-tunes the model on DR ∪
DF ∪ DA and when DR is not accessible, it performs the
fine-tuning on DF ∪ DA. Also, in the setting where the size
of the DF is very large, we noticed some improvement when
using only DR ∪DA and DA, for those settings, respectively.

4.1. Influencing Factors

We also derive an upper-bound on the 2-norm of the dif-
ference of the parameters of the unlearned model and the
retrained model (which are gold-standard for unlearning)

that illuminated the influencing factors in the effectiveness
of AMUN. To prove this theorem, we make assumptions
that are common in the certified unlearning literature. The
proof is given in Appendix A.

Theorem 4.1. Let D = {(xi, yi)}i={1,...,N} be a dataset
of N samples and without loss of generality let (xn, yn)
(henceforth represented as (x, y) for brevity) be the sample
that needs to be forgotten and (xadv, yadv) be its corre-
sponding adversarial example used by AMUN such that
∥x− xadv∥2 = δ. Let R̂(w) represent the (unnormalized)
empirical loss on D′ = D ∪ {(xadv, yadv)} for a model
f that is parameterized with w. We assume that f is L-
Lipschitz with respect to the inputs and R̂ is β-smooth and
convex with respect to the parameters. Let θo represent the
parameters corresponding to the model originally trained
on D and θu be the parameters derived when the model
is trained on D − {(x, y)}. We also assume that both the
original and retrained models achieve near-0 loss on their
training sets. After AMUN performs fine-tuning on D′ us-
ing one step of gradient descent with a learning rate of 1

β to
derive parameters θ′, we get the following upper-bound for
the distance of the unlearned model and the model retrained
on D − {(x, y)} (gold standard of unlearning):

∥θ′ − θu∥22 ≤ ∥θo − θu∥22 +
2

β
(Lδ − C),

where C = ℓ(fθo(xadv), y) + ℓ(fθ′(xadv), yadv) −
ℓ(fθu(x), y)− ℓ(fθu(xadv), yadv).

According to the bound in Theorem 4.1, a lower Lipschitz
constant of the model (L) and adversarial examples that are
closer to the original samples (lower value for δ) lead to
a smaller upper bound. A larger value of C also leads to
a improved upper-bound. In the following we investigate
the factors that lead to a larger value for C, which further
clarifies some of influencing factors in the effectiveness of
AMUN:

• Higher quality of adversarial example in increasing the
loss for the correct label on the original model, which
leads to larger value for ℓ(fθo(xadv), y).

• Transferability of the adversarial example generated on
the original model to the retrained model to decrease its
loss for the wrong label, which leads to a lower value
for ℓ(fθu(xadv), yadv). This also aligns with lower
Lipschitz constant of the model, as shown by prior
work (Ebrahimpour-Boroojeny et al.).

• Early stopping and using appropriate learning rate dur-
ing fine-tuning phase of unlearning to avoid overfitting
to the adversarial example, which does not allow low
values for ℓ(fθ′(xadv), yadv).

5

Not All Wrong is Bad: Using Adversarial Examples for Unlearning

• The generalization of the retrained model to the unseen
samples, which leads to a lower value for ℓ(fθu(x), y).

Note that the first two implications rely on the strength of
the adversarial example in addition to being close to the
original sample. The second bullet, which relies on the
transferability of adversarial examples, has been shown to
improve as the Lipschitz constant decreases (Ebrahimpour-
Boroojeny et al., 2024). The third bullet point is a natural
implication which also holds for other unlearning methods
that rely on the fine-tuning of the model. The fourth bullet
point is not relevant to the unlearning method and instead
relies on the fact that the retrained model should have good
generalizability to unseen samples; it implies that as the size
of DF increases (i.e., |DR| decreases) and the performance
of the retrained model decreases, the effectiveness of the
unlearning model also decreases. This is also intuitively ex-
pected in the unlearning process. Hence, the proved theorem
also justifies our earlier intuitions about the need for good
quality adversarial examples that are as close as possible to
the original samples (which is the goal of Algorithm 1).

5. Evaluation Setup
In this section we elaborate on the details of evaluating
different unlearning methods. More details (e.g., choosing
the hyper-parameters) can be found in Appendix C.

5.1. Baseline Methods

We compare AMUN with FT (Warnecke et al., 2021),
RL (Golatkar et al., 2020), GA (Thudi et al., 2022),
BS (Chen et al., 2023b), l1-Sparse (Liu et al., 2024),
and SalUn (Fan et al., 2024). We also combine the weight
saliency idea for masking the model parameters to limit the
changes to the parameters during fine-tuning with AMUN
and present its results as AMUN+SalUn (see Appendix D
for more details). We use the same hyper-parameter tuning
reported by prior works. For further details, see Appendix C.

5.2. Evaluation Metrics

The metic used by recent works in unlearning to evaluate
the unlearning methods (Liu et al., 2024; Fan et al., 2024)
considers the models retrained on DR as the goal standard
for comparison. They compute the following four values for
both the retrained models and the models unlearned using
approximate methods:

• Unlearn Accuracy: Their accuracy on DF.

• Retain Accuracy: Their accuracy on DR.

• Test Accuracy: Their accuracy on DT.

• MIA score: Scores returned by membership inference
attacks on DF

Once these four values are computed, the absolute value
of the difference of each of them with the corresponding
value for FR (the retrained models) is computed. Finally,
the average of the four differences (called the Average Gap)
is used as the metric to compare the unlearning methods.

The MIAs used in the recent unlearning methods by Liu
et al. (2024); Fan et al. (2024) are based on the methods
introduced by Yeom et al. (2018); Song et al. (2019). Al-
though these MIAs have been useful for basic comparisons,
recent SOTA MIAs significantly outperform their earlier
counterparts, albeit with an increase in complexity and com-
putation cost. To perform a comprehensive comparison of
the effectiveness of the unlearning methods, we utilized a
SOTA MIA called RMIA (Zarifzadeh et al., 2024), in ad-
dition to using the MIAs from prior works. In RMIA, the
area under the ROC curve (AUC) of the MIA scores for
predicting the training samples from the unseen samples is
reported. Recall that in machine unlearning, the samples
are split to three sets: DR, DF, and DT. For an unlearning
method to be effective, as discussed in § 3.1, we expect
the AUC of RMIA for distinguishing the samples in DF
from the ones in DT to be the same as random guessing
(50% assuming balanced data). As shown in Table 1, this
expectation holds for the models retrained on DR.

We report the results of our comparisons for both the MIAs
from prior unlearning literature and the new SOTA MIA.
We will present the former one as MIS , and the latter one
as FT AUC (the AUC of predicting DF from DT).

5.3. Unlearning Settings

Another important factor missing in the comparisons of
the unlearning methods in prior works is the possibility of
access to DR. So, for our experiments we consider two
settings, one with access to DR and one with access to only
DF. We adapt each of the unlearning methods to both of
these settings, and perform the comparisons in each of these
settings separately. The prior unlearning methods that do
not adapt to the setting where there is no access to DR
(Warnecke et al., 2021; Liu et al., 2024) are excluded for the
presented results in that setting.

Therefore, we perform different sets of experiments to eval-
uate the unlearning methods in both settings, and hope this
becomes the norm in future works in machine unlearning.
In each of these two settings, we evaluate unlearning of 10%
or 50% of the samples randomly chosen from D. For all the
experiments we train three models on D. For each size of
D, we use three random subsets and for each subset, we try
three different runs of the unlearning methods. This leads to
a total of 27 runs of each unlearning method using different
initial models and subsets of D to unlearn.

6

Not All Wrong is Bad: Using Adversarial Examples for Unlearning

6. Experiments
We wish to answer the following questions:

1. Does AMUN lead to effective unlearning of any ran-
dom subset of the samples when evaluated by a SOTA
MIA?

2. Does the choice of DA matter in AMUN, or can it be
replaced with a dataset that contains different labels or
different samples that are within the same distance to
the corresponding samples in DF?

3. Is AMUN effective on adversarially robust models?

4. Does the choice of attack method matter in Algorithm 1
used by AMUN and does transferred attack work as
well?

5. How does AMUN compare to other unlearning meth-
ods when used for performing multiple unlearning re-
quests on the same model?

As a quick summary, our results show that: (1) AMUN
effectively leads to unlearning the samples in DF: after un-
learning 10% of the samples of CIFAR-10 from a trained
ResNet-18, RMIA cannot do better than random guessing
(§ 6.1); (2) If we replace DA with any of the aforemen-
tioned substitutes, the model’s accuracy significantly deteri-
orates, especially when there is no access to DR (§ 6.2.1);
(3) AMUN is as effective for unlearning on models that
are adversarially robust (§ 6.2.2); (4) using weaker attack
methods, such as FGSM, in AMUN hurts the effectiveness
by not finding the adversarial examples that are very close
to the samples in DF. However, they still outperform prior
methods (Appendix F.5). The transferred adversarial exam-
ples are effective as well (Appendix F.4); and (5) AMUN
outperforms other unlearning methods when handling mul-
tiple unlearning requests (§ 6.3).

6.1. Effectiveness of AMUN

In this subsection we report the results on the comparisons
of AMUN to other unlearning methods (see § 5.1). We
consider the unlearning settings discussed in § 5.3, and the
evaluation metrics discussed in § 5.2. We use ResNet-18
models trained on CIFAR-10 and VGG19 models trained on
Tiny Imagenet for this experiment. We also perform an anal-
ysis on the computation costs of AMUN (see section E.1
for the details).

Results: Table 1 shows the results of evaluation using
RMIA when the unlearning methods have access to DR.
Table 2 shows these results when there is no access to DR.
As the results show, AMUN clearly outperforms prior un-
learning methods in all settings. This becomes even more
clear when there is no access to DR. Note that, for the

Figure 2: Multiple unlearning requests. This figure shows
the evaluation of unlearning methods when they are used for
unlearning for five times and each time on 2% of the training
data. We train a ResNet-18 model on CIFAR-10 when DR is
available (left) and when it is not (right). After each step of
the unlearning, we use the MIA scores generated by RMIA
to derive the area under the ROC curve (AUC) for DR vs.
DF and DF vs. DT. The values on the y-axis shows the
difference of these two AUC scores. A high value for this
gap means the samples in DF are far more similar to DT
rather than DR and shows a more effective unlearning.

models retrained on DR, the AUC score of RMIA for pre-
dicting DR from DT (which can be considered as the worst
case for FT AUC score) are 64.17 and 69.05 for unlearning
10% and 50% accordingly. Similar results for unlearning in
VGG19 models trained on Tiny Imagenet when unlearning
10% of D can be found in section E.

We also present the results when MIS is used as the evalua-
tion metric in Tables 10 and 11 in Appendix G, which sim-
ilarly shows AMUN’s dominance in different unlearning
settings. Moreover, we evaluate the combination of AMUN
and SalUn (see Appendix D for details) and present its re-
sults as AMUNSalUn in these tables. AMUNSalUn slightly
improves the results of AMUN in the setting where there is
no access to DR, by filtering the parameters that are more
relevant to DF during fine-tuning.

6.2. Ablation Studies

In this subsection, we first elaborate on the effect of fine-
tuning a model on its adversarial examples and compare
it to the cases where either the samples or labels of this
dataset change (§ 6.2.1). We then discuss AMUN’s efficacy
on models that are already robust to adversarial examples
(§ 6.2.2). We present other ablation studies on using weaker,
but faster, adversarial attacks in Algorithm 1 (Appendix F.5).
In Appendix F.4, we utilize transferred adversarial examples
for unlearning, as this can expedite handling the unlearning
from a newly trained model for which adversarial examples
on similar architectures are available.

6.2.1. FINE-TUNING ON ADVERSARIAL EXAMPLES

We want to verify the importance of DA (created by Algo-
rithm 1) in preserving the model’s test accuracy. To this end,
we build multiple other sets to be used instead of DA when

7

Not All Wrong is Bad: Using Adversarial Examples for Unlearning

RANDOM FORGET (10%) RANDOM FORGET (50%)
UNLEARN ACC RETAIN ACC TEST ACC FT AUC AVG. GAP UNLEARN ACC RETAIN ACC TEST ACC FT AUC AVG. GAP

RETRAIN 94.49 ±0.20 100.0 ±0.00 94.33 ±0.18 50.00 ±0.42 0.00 92.09 ±0.37 100.0 ±0.00 91.85 ±0.33 50.01 ±0.12 0.00

FT 95.16 ±0.29 96.64 ±0.25 92.21 ±0.27 52.08 ±0.34 2.06 ±0.10 94.24 ±0.30 95.82 ±0.31 91.21 ±0.33 51.74 ±0.36 2.17 ±0.13

RL 95.54 ±0.14 97.47 ±0.08 92.17 ±0.10 51.33 ±0.63 1.74 ±0.18 94.83 ±0.44 99.79 ±0.04 90.08 ±0.16 50.78 ±0.14 1.38 ±0.09

GA 98.94 ±1.39 99.22 ±1.31 93.39 ±1.18 60.96 ±2.93 4.28 ±0.47 100.00 ±0.00 100.00 ±0.00 94.65 ±0.07 63.39 ±0.26 4.62 ±0.05

BS 99.14 ±0.31 99.89 ±0.06 93.04 ±0.14 57.85 ±1.12 3.48 ±0.32 55.24 ±5.11 55.67 ±4.90 50.16 ±5.28 55.19 ±0.42 32.01 ±3.86

l1-SPARSE 94.29 ±0.34 95.63 ±0.16 91.55 ±0.17 51.21 ±0.32 2.16 ±0.06 98.00 ±0.17 98.71 ±0.13 92.79 ±0.10 54.44 ±0.47 2.67 ±0.11

SALUN 96.25 ±0.21 98.14 ±0.16 93.06 ±0.18 50.88 ±0.54 1.44 ±0.12 96.68 ±0.35 99.89 ±0.01 91.97 ±0.18 50.86 ±0.18 1.36 ±0.04

AMUN 95.45 ±0.19 99.57 ±0.00 93.45 ±0.22 50.18 ±0.36 0.62 ±0.05 93.50 ±0.09 99.71 ±0.01 92.39 ±0.04 49.99 ±0.18 0.33 ±0.03

AMUN+SalUn 95.02 ±0.18 99.58 ±0.04 93.29 ±0.04 50.72 ±0.79 0.68 ±0.18 93.56 ±0.07 99.72 ±0.02 92.52 ±0.20 49.81 ±0.40 0.36 ±0.07

Table 1: Unlearning with access to DR. Comparing different unlearning methods in unlearning 10% and 50% of D.
Avg. Gap (see § 5.2) is used for evaluation (lower is better). The lowest value is shown in bold while the second best is
specified with underscore. As the results show, AMUN outperforms all other methods by achieving lowest Avg. Gap and
AMUNSalUn achieves comparable results.

RANDOM FORGET (10%) RANDOM FORGET (50%)
UNLEARN ACC RETAIN ACC TEST ACC FT AUC AVG. GAP UNLEARN ACC RETAIN ACC TEST ACC FT AUC AVG. GAP

RETRAIN 94.49 ±0.20 100.0 ±0.00 94.33 ±0.18 50.00 ±0.42 0.00 92.09 ±0.37 100.0 ±0.00 91.85 ±0.33 50.01 ±0.12 0.00

RL 100.00 ±0.00 100.00 ±0.00 94.45 ±0.09 61.85 ±0.25 4.31 ±0.06 100.00 ±0.00 100.00 ±0.00 94.57 ±0.14 61.99 ±0.10 4.29 ±0.03

GA 4.77 ±3.20 5.07 ±3.54 5.09 ±3.38 49.78 ±0.34 68.53 ±2.45 100.00 ±0.00 100.00 ±0.00 92.65 ±0.09 63.41 ±0.24 5.13 ±0.04

BS 100.00 ±0.00 100.00 ±0.00 94.48 ±0.04 61.41 ±0.29 4.20 ±0.07 100.00 ±0.00 100.00 ±0.00 94.58 ±0.08 62.43 ±0.14 4.40 ±0.05

SALUN 100.00 ±0.00 100.00 ±0.00 94.47 ±0.10 61.09 ±0.40 4.11 ±0.09 100.00 ±0.00 100.00 ±0.00 94.59 ±0.12 62.45 ±0.37 4.40 ±0.07

AMUN 94.28 ±0.37 97.47 ±0.10 91.67 ±0.04 52.24 ±0.23 1.94 ±0.13 92.77 ±0.52 95.66 ±0.25 89.43 ±0.19 52.60 ±0.22 2.51 ±0.09

AMUN+SalUn 94.19 ±0.38 97.71 ±0.06 91.79 ±0.12 51.93 ±0.12 1.77 ±0.06 91.90 ±0.63 96.59 ±0.31 89.98 ±0.44 52.32 ±0.56 2.00 ±0.17

Table 2: Unlearning with access to only DF. Comparing different unlearning methods in unlearning 10% and 50% of D.
Avg. Gap (see § 5.2) is used for evaluation (lower is better) when only DF is available during unlearning. As the results
show, AMUNSalUn significantly outperforms all other methods, and AMUN achieves comparable results.

fine-tuning. Let us assume that AF (x, y) = (xadv, yadv).
Then, these other sets are:

• DAdvL: {(x, yadv)}∀(x,y)∈DF

• DRL : {(x, y′), s.t. y′ ̸= y, yadv}∀(x,y)∈DF

• DARL: {(xadv, y
′), s.t.y′ ̸= y, yadv}∀(x,y)∈DF

• DARS : {(x′, yadv), s.t. x′ ∼ Uniform(Xδ), where
Xδ = {∀x̂ : ∥xδ − x∥2 = δ}}∀(x,y)∈DF

In this experiment, we evaluate the effect of fine-tuning
on test accuracy of a ResNet-18 model that is trained on
CIFAR-10, when DA is substituted with other datasets that
vary in the choice of samples or their labels. We assume
that DF contains 10% of the samples in D and DA is the set
of corresponding adversarial examples constructed using
Algorithm 1.

Results: In Fig. 1, Adv, from the left sub-figure to the right
sub-figure, shows the results when D ∪DA, DF ∪ DA, and
DA is used for fine-tuning the model, respectively. Orig,
Adv-RS, Adv-RL, Orig-RL, and Orig-AdvL show the
results when DA for each of these sub-figures is replaced
by DF, DARS , DARL, DRL, and DAdvL, respectively. As
the figure shows, the specific use of adversarial examples
with the mispredicted labels matters in keeping the model’s

test accuracy, especially as we move from the leftmost sub-
figure (having access to DR) to the right one (only using DA
or its substitutes). This is due to the fact that the samples in
DA, in contrast to the other constructed datasets, belong
to the natural distribution learned by the trained model.
Therefore, even if we only fine-tune the ResNet-18 model on
DA, we still do not lose much in terms of model’s accuracy
on DT. This is a surprising observation, as DA contains a set
of samples with wrong predictions! Fig. 6 in Appendix F.3
shows similar results when size of DF is 50% of |D|.

6.2.2. ADVERSARIALLY ROBUST MODELS

We evaluate the effectiveness of AMUN when the trained
model is adversarially robust. One of the most effective
methods in designing robust models is adversarial training
which targets smoothing the model’s prediction function
around the training samples (Salman et al., 2019). This has
been shown to provably enhance the adversarial robustness
of the model (Cohen et al., 2019). One of the effective adver-
sarial training methods is by using TRADES loss introduced
by (Zhang et al., 2019). We will use adversarially trained
ResNet-18 models for unlearning 10% of the samples in
CIFAR-10. In addition, we will use another defense mecha-
nism that is less costly and more practical for larger models.

8

Not All Wrong is Bad: Using Adversarial Examples for Unlearning

There is a separate line of work that try to achieve the same
smoothness in model’s prediction boundary by controlling
the Lipschitz constant of the models (Szegedy, 2013). The
method proposed by Boroojeny et al. (2024) is much faster
than adversarial training and their results show a significant
improvement in the robust accuracy. We use their clipping
method to evaluate the effectiveness of AMUN for unlearn-
ing 10% and 50% of the samples from robust ResNet-18
models trained on CIFAR-10.

Results: Table 7 in Appendix F.2 shows the results for the
adversarially trained models. For the models with controlled
Lipschitz continuity, the results are shows in Table 3 (no
access to DR) and Table 6 in Appendix F.2 (with access to
DR). As the results show, even when there is no access to
DR, AMUN still results in effective unlearning for adversar-
ially robust models; RMIA does not do better than random
guessing for predicting DF from DT. As Fig. 3 (right) shows,
in the robust models, more than 97% of the adversarial ex-
amples are further away from their corresponding training
samples, compared to this distance for the original models.
However, this does not interfere with the performance of
AMUN because these robust models are smoother and tend
to be more regularized. This regularization, which prevents
them from overfitting to the training samples is in fact a
contributing factor to the improved generalization bounds
for these models (Bartlett et al., 2017). This in itself con-
tributes to enhanced resilience against MIAs. As seen in
Tables 3 and 6, even for the clipped models retrained on DR,
the AUC score of RMIA for predicting DR from DF (FR
AUC) is very low, which shows that these smoother models .

RANDOM FORGET (10%) RANDOM FORGET (50%)
FT AUC FR AUC TEST ACC FT AUC FR AUC TEST ACC

RETRAIN 49.95 ±0.24 54.08 ±0.16 89.01 ±0.21 50.19 ±0.15 55.61 ±0.05 85.76 ±0.41

AMUN 49.55 ±0.13 54.01 ±0.23 87.55 ±0.44 49.64 ±0.31 53.23 ±0.21 87.39 ±0.61

Table 3: Unlearning on adversarially robust models. Eval-
uating the effectiveness of AMUN in unlearning 10% and
50% of the training samples when the models are adversari-
ally robust and there is no access to DR. For this experiment
we use models with controlled Lipschitz constant which
makes them provably and empirically more robust to adver-
sarial examples.

6.3. Continuous Unlearning

We evaluate the performance of the unlearning methods
when they are used to perform multiple consecutive unlearn-
ing from a trained model. This is a desirable capability
for unlearning methods because in real-world applications
there might be multiple unlearning requests and it is pre-
ferred to minimize the number of times that a model needs
to be retrained from scratch. The setting we envision is as
follows: models are updated at each request for unlearn-
ing. For AMUN, this means that DA is computed on an

updated model after each set of unlearning requests (shown
as AMUN-A). In addition to comparing AMUN-A to the
other unlearning methods, we also compare it to a version
(shown as AMUN) that computes all the adversarial exam-
ples on the original model so it can handle the unlearning
requests faster upon receiving them i.e., DA is not computed
on an updated model after each request; the set of requests
are batched and DA is computed on the entire batch. For this
experiment, we use a ResNet-18 model trained on training
set of CIFAR-10 (50K samples). Our goal is to unlearn
10% of the training samples (5K), but this time in 5 con-
secutive sets of size 2% (1K) each. We then evaluate the
effectiveness of unlearning at each step using RMIA.

Results: Fig. 2 shows an overview of the results for both
settings of unlearning (with or without access to DR). This
figure shows the effectiveness of unlearning by depicting
how the samples in DF are more similar to the test samples
(DT) rather than the remaining samples (DR). The value
on the y-axis shows the difference of the area under the
ROC curve (AUC) for predicting DR from DF and DF from
DT. For the plots of each of these values separately, see
Appendix H. AMUN-A performs better than all the other
unlearning methods for all the steps of unlearning. Although
AMUN also outperforms all the prior unlearning methods,
it slightly under-performs compared to AMUN-A. This is
expected, as the model’s decision boundary slightly changes
after each unlearning request and the adversarial examples
generated for the original model might not be as effective
as those ones generated for the new model. Note that for
this experiment, we did not perform hyper-parameter tuning
for any of the unlearning methods, and used the same ones
derived for unlearning 10% of the dataset presented in § 6.1.
For further discussion of the results see Appendix H.

7. Conclusions
AMUN utilizes our new observation on how fine-tuning
the trained models on adversarial examples that correspond
to a subset of the training data does not lead to significant
deterioration of model’s accuracy. Instead, it decreases the
prediction confidence values on the the corresponding train-
ing samples. By evaluating AMUN using SOTA MIAs, we
show that it outperforms other existing method, especially
when unlearning methods do not have access to the remain-
ing samples. It also performs well for handling multiple
unlearning requests. This work also raises some questions
for future work: (1) Since SOTA MIA methods fail to detect
the unlearned samples, can this method be used to provide
privacy guarantees for all the training samples?; (2) Can
the same ideas be extended to generative models or Large
Language Models?; (3) Can we derive theoretical bounds on
the utility loss due to fine-tuning on adversarial examples?

9

Not All Wrong is Bad: Using Adversarial Examples for Unlearning

Acknowledgments
This work used Delta computing resources at National Cen-
ter for Supercomputing Applications through allocation
CIS240316 from the Advanced Cyberinfrastructure Coor-
dination Ecosystem: Services & Support (ACCESS) pro-
gram (Boerner et al., 2023), which is supported by U.S.
National Science Foundation grants #2138259, #2138286,
#2138307, #2137603, and #2138296. This paper was gener-
ously supported by NSF award IIS-2312561.

Impact Statement
This research advances machine unlearning, a critical ca-
pability for privacy compliance in AI systems. Traditional
exact unlearning methods, such as retraining, are compu-
tationally expensive, while approximate methods struggle
to maintain model accuracy and confidence. AMUN in-
troduces a novel approach that efficiently lowers model
confidence on forget samples by leveraging adversarial ex-
amples, ensuring targeted changes to the decision bound-
ary without significantly altering overall model behavior.
This breakthrough improves privacy protection by making
membership inference attacks ineffective while maintaining
test accuracy, setting a new standard for efficient, privacy-
preserving unlearning in deep learning. The work paves the
way for scalable and effective unlearning solutions, address-
ing a fundamental challenge in AI regulation and ethical
machine learning.

References
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,

Mironov, I., Talwar, K., and Zhang, L. Deep learning
with differential privacy. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications
security, pp. 308–318, 2016.

Alex, K. Learning multiple layers of features from tiny im-
ages. https://www. cs. toronto. edu/kriz/learning-features-
2009-TR. pdf, 2009.

Bartlett, P. L., Foster, D. J., and Telgarsky, M. J. Spectrally-
normalized margin bounds for neural networks. Advances
in neural information processing systems, 30, 2017.

Boerner, T. J., Deems, S., Furlani, T. R., Knuth, S. L.,
and Towns, J. Access: Advancing innovation: Nsf’s
advanced cyberinfrastructure coordination ecosystem:
Services & support. In Practice and Experience in
Advanced Research Computing 2023: Computing for
the Common Good, PEARC ’23, pp. 173–176, New
York, NY, USA, 2023. Association for Computing
Machinery. ISBN 9781450399852. doi: 10.1145/
3569951.3597559. URL https://doi.org/10.
1145/3569951.3597559.

Boroojeny, A. E., Telgarsky, M., and Sundaram, H. Spec-
trum extraction and clipping for implicitly linear layers.
In International Conference on Artificial Intelligence and
Statistics, pp. 2971–2979. PMLR, 2024.

Bourtoule, L., Chandrasekaran, V., Choquette-Choo, C. A.,
Jia, H., Travers, A., Zhang, B., Lie, D., and Papernot,
N. Machine unlearning. In 2021 IEEE Symposium on
Security and Privacy (SP), pp. 141–159. IEEE, 2021.

Cao, Y. and Yang, J. Towards making systems forget with
machine unlearning. In 2015 IEEE symposium on security
and privacy, pp. 463–480. IEEE, 2015.

Carlini, N., Chien, S., Nasr, M., Song, S., Terzis, A., and
Tramer, F. Membership inference attacks from first prin-
ciples. In 2022 IEEE Symposium on Security and Privacy
(SP), pp. 1897–1914. IEEE, 2022.

Chen, C., Sun, F., Zhang, M., and Ding, B. Recommenda-
tion unlearning. In Proceedings of the ACM Web Confer-
ence 2022, pp. 2768–2777, 2022a.

Chen, H., Zhang, Y., Dong, Y., Yang, X., Su, H., and Zhu, J.
Rethinking model ensemble in transfer-based adversarial
attacks. arXiv preprint arXiv:2303.09105, 2023a.

Chen, M., Zhang, Z., Wang, T., Backes, M., Humbert, M.,
and Zhang, Y. Graph unlearning. In Proceedings of the
2022 ACM SIGSAC conference on computer and commu-
nications security, pp. 499–513, 2022b.

Chen, M., Gao, W., Liu, G., Peng, K., and Wang, C. Bound-
ary unlearning: Rapid forgetting of deep networks via
shifting the decision boundary. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 7766–7775, 2023b.

Chien, E., Pan, C., and Milenkovic, O. Efficient model up-
dates for approximate unlearning of graph-structured data.
In The Eleventh International Conference on Learning
Representations, 2022.

Cohen, J., Rosenfeld, E., and Kolter, Z. Certified adversarial
robustness via randomized smoothing. In international
conference on machine learning, pp. 1310–1320. PMLR,
2019.

Di, Z., Yu, S., Vorobeychik, Y., and Liu, Y. Adversarial
machine unlearning. arXiv preprint arXiv:2406.07687,
2024.

Dwork, C. Differential privacy. In International colloquium
on automata, languages, and programming, pp. 1–12.
Springer, 2006.

Ebrahimpour-Boroojeny, A., Sundaram, H., and Chan-
drasekaran, V. Training robust ensembles requires rethink-
ing lipschitz continuity. In The Thirteenth International
Conference on Learning Representations.

10

https://doi.org/10.1145/3569951.3597559
https://doi.org/10.1145/3569951.3597559

Not All Wrong is Bad: Using Adversarial Examples for Unlearning

Ebrahimpour-Boroojeny, A., Sundaram, H., and Chan-
drasekaran, V. Lotos: Layer-wise orthogonaliza-
tion for training robust ensembles. arXiv preprint
arXiv:2410.05136, 2024.

Fan, C., Liu, J., Zhang, Y., Wei, D., Wong, E., and Liu,
S. Salun: Empowering machine unlearning via gradient-
based weight saliency in both image classification and
generation. In International Conference on Learning
Representations, 2024.

Ginart, A., Guan, M., Valiant, G., and Zou, J. Y. Making ai
forget you: Data deletion in machine learning. Advances
in neural information processing systems, 32, 2019.

Golatkar, A., Achille, A., and Soatto, S. Eternal sunshine of
the spotless net: Selective forgetting in deep networks. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9304–9312, 2020.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.

Guo, C., Goldstein, T., Hannun, A., and Van Der Maaten,
L. Certified data removal from machine learning models.
arXiv preprint arXiv:1911.03030, 2019.

Gupta, V., Jung, C., Neel, S., Roth, A., Sharifi-Malvajerdi,
S., and Waites, C. Adaptive machine unlearning. Ad-
vances in Neural Information Processing Systems, 34:
16319–16330, 2021.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hu, H., Salcic, Z., Sun, L., Dobbie, G., Yu, P. S., and Zhang,
X. Membership inference attacks on machine learning: A
survey. ACM Computing Surveys (CSUR), 54(11s):1–37,
2022.

Izzo, Z., Smart, M. A., Chaudhuri, K., and Zou, J. Approx-
imate data deletion from machine learning models. In
International Conference on Artificial Intelligence and
Statistics, pp. 2008–2016. PMLR, 2021.

Jung, Y., Cho, I., Hsu, S.-H., and Hockenmaier, J. At-
tack and reset for unlearning: Exploiting adversarial
noise toward machine unlearning through parameter re-
initialization. arXiv preprint arXiv:2401.08998, 2024.

Le, Y. and Yang, X. Tiny imagenet visual recognition chal-
lenge. CS 231N, 7(7):3, 2015.

Liang, X., Qian, Y., Huang, J., Ling, X., Wang, B., Wu, C.,
and Swaileh, W. Towards desirable decision boundary by

moderate-margin adversarial training. Pattern Recogni-
tion Letters, 173:30–37, 2023.

Liu, J., Ram, P., Yao, Y., Liu, G., Liu, Y., SHARMA, P., Liu,
S., et al. Model sparsity can simplify machine unlearning.
Advances in Neural Information Processing Systems, 36,
2024.

Liu, Y., Chen, X., Liu, C., and Song, D. Delving into
transferable adversarial examples and black-box attacks.
arXiv preprint arXiv:1611.02770, 2016.

Łucki, J., Wei, B., Huang, Y., Henderson, P., Tramèr, F.,
and Rando, J. An adversarial perspective on machine
unlearning for ai safety. arXiv preprint arXiv:2409.18025,
2024.

Madry, A. Towards deep learning models resistant to adver-
sarial attacks. arXiv preprint arXiv:1706.06083, 2017.

Neel, S., Roth, A., and Sharifi-Malvajerdi, S. Descent-to-
delete: Gradient-based methods for machine unlearning.
In Algorithmic Learning Theory, pp. 931–962. PMLR,
2021.

Papernot, N., McDaniel, P., and Goodfellow, I. Transfer-
ability in machine learning: from phenomena to black-
box attacks using adversarial samples. arXiv preprint
arXiv:1605.07277, 2016.

Salman, H., Li, J., Razenshteyn, I., Zhang, P., Zhang, H.,
Bubeck, S., and Yang, G. Provably robust deep learning
via adversarially trained smoothed classifiers. Advances
in neural information processing systems, 32, 2019.

Sekhari, A., Acharya, J., Kamath, G., and Suresh, A. T. Re-
member what you want to forget: Algorithms for machine
unlearning. Advances in Neural Information Processing
Systems, 34:18075–18086, 2021.

Setlur, A., Eysenbach, B., Smith, V., and Levine, S. Adver-
sarial unlearning: Reducing confidence along adversarial
directions. Advances in Neural Information Processing
Systems, 35:18556–18570, 2022.

Shokri, R., Stronati, M., Song, C., and Shmatikov, V. Mem-
bership inference attacks against machine learning mod-
els. In 2017 IEEE symposium on security and privacy
(SP), pp. 3–18. IEEE, 2017.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Song, L., Shokri, R., and Mittal, P. Privacy risks of securing
machine learning models against adversarial examples.
In Proceedings of the 2019 ACM SIGSAC conference
on computer and communications security, pp. 241–257,
2019.

11

Not All Wrong is Bad: Using Adversarial Examples for Unlearning

Szegedy, C. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

Thudi, A., Deza, G., Chandrasekaran, V., and Papernot,
N. Unrolling sgd: Understanding factors influencing ma-
chine unlearning. In 2022 IEEE 7th European Symposium
on Security and Privacy (EuroS&P), pp. 303–319. IEEE,
2022.

Ullah, E., Mai, T., Rao, A., Rossi, R. A., and Arora, R. Ma-
chine unlearning via algorithmic stability. In Conference
on Learning Theory, pp. 4126–4142. PMLR, 2021.

Vatter, J., Mayer, R., and Jacobsen, H.-A. The evolution of
distributed systems for graph neural networks and their
origin in graph processing and deep learning: A survey.
ACM Computing Surveys, 56(1):1–37, 2023.

Warnecke, A., Pirch, L., Wressnegger, C., and Rieck, K.
Machine unlearning of features and labels. arXiv preprint
arXiv:2108.11577, 2021.

Wong, E., Rice, L., and Kolter, J. Z. Fast is better than
free: Revisiting adversarial training. arXiv preprint
arXiv:2001.03994, 2020.

Yeom, S., Giacomelli, I., Fredrikson, M., and Jha, S. Privacy
risk in machine learning: Analyzing the connection to
overfitting. In 2018 IEEE 31st computer security founda-
tions symposium (CSF), pp. 268–282. IEEE, 2018.

Zarifzadeh, S., Liu, P., and Shokri, R. Low-cost high-power
membership inference attacks. In Forty-first International
Conference on Machine Learning, 2024.

Zeng, Y., Chen, S., Park, W., Mao, Z. M., Jin, M., and
Jia, R. Adversarial unlearning of backdoors via implicit
hypergradient. arXiv preprint arXiv:2110.03735, 2021.

Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., and
Jordan, M. Theoretically principled trade-off between
robustness and accuracy. In International conference on
machine learning, pp. 7472–7482. PMLR, 2019.

Zhang, J., Wu, W., Huang, J.-t., Huang, Y., Wang, W., Su, Y.,
and Lyu, M. R. Improving adversarial transferability via
neuron attribution-based attacks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14993–15002, 2022.

Zhang, R., Lin, L., Bai, Y., and Mei, S. Negative preference
optimization: From catastrophic collapse to effective un-
learning. arXiv preprint arXiv:2404.05868, 2024a.

Zhang, Y., Chen, X., Jia, J., Zhang, Y., Fan, C., Liu, J., Hong,
M., Ding, K., and Liu, S. Defensive unlearning with
adversarial training for robust concept erasure in diffusion
models. arXiv preprint arXiv:2405.15234, 2024b.

Zhao, Z., Liu, Z., and Larson, M. On success and sim-
plicity: A second look at transferable targeted attacks.
Advances in Neural Information Processing Systems, 34:
6115–6128, 2021.

12

Not All Wrong is Bad: Using Adversarial Examples for Unlearning

Appendix

A. Proofs
Here we provide the proof of Theorem 4.1:

Proof. As we perform the unlearning by fine-tuning and performing a gradient descent update to θo, we have: θ′ =
θo − 1

β∇R̂(θo). Therefore, we can write:

∥θ′ − θu∥22 = ∥θo −
1

β
∇R̂(θo)− θu∥22

= ∥θo − θu∥22 −
2

β
⟨∇R̂(θo), θo − θu⟩+

1

β2
∥∇R̂(θo)∥22

≤ ∥θo − θu∥22 +
2

β
(R̂(θu)− R̂(θo)) +

2

β
(R̂(θo)− R̂(θ′))

= ∥θo − θu∥22 +
2

β
(R̂(θu)− R̂(θ′)),

where the inequality is derived by using the smoothness property (∥∇R̂(θo)∥22 ≤ 2β(R̂(θo)− R̂(θ′))) and the convexity
assumption which leads to the inequality: R̂(θo)) ≥ R̂(θu) + ⟨∇R̂(θo), θo − θu⟩.

Next, we derive an upper-bound for R̂(θu)− R̂(θ′) to replace in the above inequality. By the definition of unnormalized
empirical loss on D′:

R̂(θu)− R̂(θ′)

=

n−1∑
i=1

ℓ(fθu(xi), yi) + ℓ(fθu(x), y) + ℓ(fθu(x
′), y′)−

n−1∑
i=1

ℓ(fθ′(xi), yi)− ℓ(fθ′(x), y)− ℓ(fθ′(x′), y′)

= ℓ(fθu(x), y) + ℓ(fθu(x
′), y′)− ℓ(fθ′(x), y)− ℓ(fθ′(x′), y′),

where the last equality was derived by the assumption that models are trained until they achieve near-0 loss on their
corresponding dataset. Therefore,

∑n−1
i=1 ℓ(fθu(xi), yi) =

∑n−1
i=1 ℓ(fθ′(xi), yi) = 0 since the retrained model has been

trained on the remaining samples and the unlearned model has been derived by a single step of gradient descent on the
original model, that had been trained on D.

To further simplify the derived terms above and reaching at our desired inequality, we focus on the term −ℓ(fθ′(x), y). By
adding and decreasing the term ℓ(fθo(x

′), y) we get:

−ℓ(fθ′(x), y) = −ℓ(fθo(x
′), y) + ℓ(fθo(x

′), y)− ℓ(fθ′(x), y)

≤ −ℓ(fθo(x
′), y) + ℓ(fθo(x

′), y)− ℓ(fθo(x), y)− ⟨∇ℓ(fθo(x), y), θ
′ − θo⟩

= −ℓ(fθo(x
′), y) + ℓ(fθo(x

′), y)− ℓ(fθo(x), y)

≤ −ℓ(fθo(x
′), y) + Lδ,

where the first inequality uses the convexity of the the loss function with respect to the parameters and the third derivations
is due to the assumption that the original model achieves a zero loss on its training samples, including (x, y) (hence,
∇ℓ(fθo(x), y) = 0). The final inequality is due to the Lipschitzness assumption of model f with respect to the inputs.

13

Not All Wrong is Bad: Using Adversarial Examples for Unlearning

B. Related Works (cont.)
To the best of our knowledge AMUN is the first work that considers fine-tuning of a model on the adversarial examples
with their wrong labels as a method for unlearning a subset of the samples. However, upon reviewing the prior works in
unlearning literature, there are several works that their titles might suggest otherwise. Therefore, here we mention a few of
these methods and how they differ from our work.

To improve upon fine-tuning on samples in DF with randomly chosen wrong labels, Chen et al. (2023b) use the labels
derived from one step of the FGSM attack to choose the new labels for the samples in DF. This method which was presented
as BS in our experiments (§ 6.1), does not use the adversarial examples and only uses their labels as the new labels for
samples of DF. This corresponds to the dataset DAdvL in § 6.2.1. As our results in Figures 1 and 6 show, fine-tuning the
trained model on this dataset leads to catastrophic forgetting even when DR is available. This is simply due to the fact that
the samples in DAdvL contradict the distribution that the trained models have already learned.

The work by Setlur et al. (2022) is not an unlearning method, despite what the name suggest. They propose a regularization
method that tries to maximize the loss on the adversarial examples of the training samples that are relatively at a higher
distance to lower the confidence of the model on those examples. The work by Zhang et al. (2024b) proposed a defense
method similar to adversarial training for making to unlearned LLMs more robust to jailbreak attacks on the topics that
they have unlearned. Łucki et al. (2024) also study the careful application of jailbreak attacks against unlearned models.
The work by Jung et al. (2024) investigate computing adversarial noise to mask the model parameters. Many of the works
with similar titles, use “adversarial" to refer to minimax optimization (Zeng et al., 2021) or considering a Stackelberg game
setting between the source model and the adversary that is trying to extract information (Di et al., 2024).

C. Implementation Details
For all the experiments we train three models on D. For each size of D (10% or 50%), we use three random subsets and for
each subset, we try three different runs of each of the unlearning methods. This leads to a total of 27 runs of each unlearning
method using different initial models and subsets of D to unlearn. Hyper-parameter tuning of each of the methods is done
on a separate random subset of the same size from D, and then the average performance is computed for the other random
subsets used as DF. For tuning the hyper-parameters of the models, we followed the same range suggested by their authors
and what has been used in the prior works for comparisons. Similar to prior works (Liu et al., 2024; Fan et al., 2024), we
performed 10 epochs for each of the unlearning methods, and searched for best learning rate and number of steps for a
learning rate scheduler. More specifically, for each unlearning method, we performed a grid search on learning rates within
the range of [10−6, 10−1] with an optional scheduler that scales the learning rate by 0.1 for every 1 or 5 steps. For SalUn,
whether it is used on its own or in combination with AMUN, we searched for the masking ratios in the range [0.1, 0.9].

The original models are ResNet-18 models trained for 200 epochs with a learning rate initialized at 0.1 and using a scheduler
that scales the learning rate by 0.1 every 40 epochs. The retrained models are trained using the same hyper-parameters as
the original models. For evaluation using RMIA, we trained 128 separate models such that each sample is included in half
of these models. As suggested by the authors, we used Soft-Margin Taylor expansion of Softmax (SM-Taylor-Softmax)
with a temperature of 2 for deriving the confidence values in attacks of RMIA. We used the suggested threshold of 2 for
comparing the ratios in computing the final scores (γ value). For controlling the Lipschitz constant of the ResNet-18 models
in § 6.2.2, we used the default setting provided by the authors for clipping the spectral norm of all the convolutional and
fully-connected layers of the model to 1. For RMIA evaluations, we trained 128 of these models separately such that each
sample appears in exactly half of these models.

D. AMUN + SalUn
The main idea behind SalUn is to limit the fine-tuning of the model, during unlearning, to only a subset of the parameters of
the model, while keeping the rest of them fixed. Fan et al. (2024) show that this technique helps to preserve the accuracy of
the model when fine-tuning the model on DF with randomly-chosen wrong labels. More specifically, they compute a mask
using the following equation:

mS = 1 (|∇θo
ℓ(θo;DF) || ≥ γ) ,

which, basically, computes the gradient of the loss function for the current parameters with respect to DF, and uses threshold
γ to filter the ones that matter more to the samples in DF. Note that, 1 is an element-wise indicator function. Then, during

14

Not All Wrong is Bad: Using Adversarial Examples for Unlearning

Figure 3: (left) These two plots show the histogram of confidence values of the retrained model on its predictions for the
remaining set (Remain), test set (Test), and forget set (Forget) during the training, when the size of the forget set is %10 (1st
plot) and %50 (2nd plot) of the training set. It also shows the Gaussian distributions fitted to each histogram. As the plots
show the models perform similarly on the forget set and test set because to the retrained model they are unseen data from
the same distribution. (right) This plot compares the δx value in definition 2.1 for adversarial examples generated on the
original ResNet-18 models (x-axis) and clipped ResNet-18 models (y-axis). The dashed line shows x = y line and more
than 97% of the values fall bellow this line.

fine-tuning of the model on DF with random labels they use mS to detect the parameters of θo that get updated.

In our experiments, we try combining this idea with AMUN for updating a subset of the parameters that might be more
relevant to the samples in DF. We refer to this combination as AMUNSalUn in Tables 1 and 2 in § 6.1 and Tables 10 and 11
in Appendix G. As the results show, AMUNSalUn constantly outperforms SalUn and for the cases that DR is not available
it also outperforms AMUN. In the setting where DR is accessible, it performs comparable to AMUN. This is probably due
to the fact that when DR is not available and AMUN has access to only the samples DF ∪DA, SalUn acts as a regularization
for not allowing all the parameters of the model that might not be relevant to DF be updated. In the setting where DR is
available, involving it in fine-tuning will be a sufficient regularization that preserves models’ utility while unlearning DF.

E. Effectiveness of AMUN (cont.)
In this subsection we report the results on the comparisons of AMUN to other unlearning methods (see § 5.1) for unlearning
10% of the training samples for VGG19 models that are trained on Tiny Imagenet dataset. We consider the unlearning
settings discussed in § 5.3, and the evaluation metrics discussed in § 5.2. Table 4 shows the results of evaluation using
RMIA when the unlearning methods have access to DR. Table 5 shows these results when there is no access to DR. As the
results show, AMUN clearly outperforms prior unlearning methods in all settings. This becomes even more clear when
there is no access to DR.

UNLEARN ACC RETAIN ACC TEST ACC FT AUC AVG. GAP

RETRAIN 55.93 ±0.21 99.98 ±0.00 55.96 ±0.74 50.06 ±0.36 0.00

FT 74.99 ±1.13 96.88 ±0.48 56.29 ±0.47 61.66 ±0.36 8.36 ±0.37

RL 59.66 ±1.77 68.19 ±1.55 50.78 ±0.95 51.38 ±0.34 10.50 ±0.07

GA 0.46 ±0.01 0.49 ±0.02 0.50 ±0.02 49.80 ±0.08 52.67 ±0.03

BS 0.50 ±0.11 0.51 ±0.01 0.51 ±0.02 49.80 ±0.02 52.65 ±0.04

l1-SPARSE 55.27 ±1.41 60.64 ±1.24 49.82 ±0.72 54.49 ±0.20 12.80 ±0.52

SALUN 66.54 ±4.61 76.63 ±3.83 49.56 ±1.19 54.64 ±0.52 11.24 ±0.14

AMUN 62.57 ±0.62 93.66 ±0.66 55.52 ±0.67 57.33 ±0.14 5.17 ±0.13

AMUN+SalUn 62.96 ±0.92 94.42 ±0.49 55.80 ±0.55 57.65 ±0.46 5.09 ±0.29

Table 4: Unlearning with access to DR. Comparing different unlearning methods in unlearning 10% of Tiny Imagenet
Dataset (D) from VGG19 models. Avg. Gap is used for evaluation (lower is better). The lowest value is shown in bold
while the second best is specified with underscore. As the results show, AMUN outperforms all other methods by achieving
lowest Avg. Gap and AMUNSalUn achieves comparable results.

15

Not All Wrong is Bad: Using Adversarial Examples for Unlearning

Figure 4: Each plot shows the portion of samples for final values of ϵ in Algorithm 1. The smallest value on the x-axis in
each plot shows the initial ϵ value chosen for Algorithm 1 based on running this algorithm on a small subset of the dataset.
The left-most plot shows this distribution for CIFAR-10 when the chosen attack algorithm is PGD-50. The two right-most
plots show the distributions for the Tiny ImageNet dataset when PGD-10 and PGD-20 are used, respectively. Once the initial
value is set, a run of PGD attack is performed on all the samples. For the ones that adversarial example is not found within
that radius, we perform other runs of PGD attack until adversarial examples are found for all the samples. As the histograms
show, the total work is equivalent to less than 3 runs of PGD attack on the whole dataset, which is not computationally
expensive.

E.1. Computational Cost

One option to fast processing of the unlearning request is to run Algorithm 1 on all the training samples after the model
is trained; this allows access to DA for any arbitrary DF provided. The alternative, is to run Algorithm 1 on DF once the
unlearning request is received. In either of these two cases, note that Algorithm 1 can be run in parallel on all the samples
starting from the initial value for ϵ. Then for only the samples that the adversarial example is not found, we perform
another iteration of attack with the updated value for ϵ. We continue this procedure until all the samples of interest have
a corresponding adversarial example in DA. Choosing a reasonable initial value for ϵ can save the computation time, by
avoiding initial iterations on almost all the samples without any outcome. To choose the initial value of ϵ we run Algorithm 1
with a very small ϵ on a small subset of DF (e.g., 100 samples). Then we choose ϵinit such that at least 95% of the samples
find their adversarial examples within that distance. Using this strategy, we find that even when running Algorithm 1 on all
D, the computation time will be equivalent to running the underlying adversarial attack (e.g., PGD-50) less than 3 times on
all the samples in D. Figure 4 shows the histogram for the number of samples in D for each ϵ value for different models and
datasets. The smallest value of ϵ in these plots is the ϵinit chosen by the sampling procedure mentioned earlier. Note that a
large portion of the samples find their corresponding adversarial examples within the first few iterations.

UNLEARN ACC RETAIN ACC TEST ACC FT AUC AVG. GAP

RETRAIN 55.93 ±0.21 99.98 ±0.00 55.96 ±0.74 50.06 ±0.36 0.00

RL 1.36 ±0.21 1.74 ±0.34 1.27 ±0.18 51.17 ±0.42 52.15 ±0.07

GA 0.44 ±0.05 0.51 ±0.01 0.50 ±0.00 50.55 ±0.97 52.81 ±0.14

BS 0.93 ±0.24 0.97 ±0.22 1.02 ±0.27 49.96 ±0.20 52.28 ±0.19

SALUN 2.46 ±1.51 2.89 ±1.68 2.13 ±0.98 52.20 ±0.94 51.63 ±0.82

AMUN 58.54 ±1.56 62.34 ±1.40 43.22 ±0.68 63.05 ±0.89 16.50 ±0.13

AMUN+SalUn 62.37 ±0.61 68.47 ±0.70 45.44 ±0.72 61.24 ±0.63 14.91 ±0.37

Table 5: Unlearning without access to DR. Comparing different unlearning methods in unlearning 10% of Tiny Imagenet
Dataset (D) from VGG19 models. Avg. Gap is used for evaluation (lower is better). The lowest value is shown in bold
while the second best is specified with underscore. As the results show, AMUN outperforms all other methods by achieving
lowest Avg. Gap and AMUNSalUn achieves comparable results.

16

Not All Wrong is Bad: Using Adversarial Examples for Unlearning

Figure 5: The two left-most subplots show the confidence values before and after unlearning (using AMUN) of 10% of the
training samples. The two right-most subplots show these confidence values for unlearning 50% of the training samples. In
both cases, the confidence values of samples in DF are similar to those of DR and their fitted Gaussian distribution matches
as expected. After using AMUN for unlearning the samples in DF, the confidence values on this set gets more similar to the
test (unseen) samples.

F. Ablation Study (cont.)
In this section, we further discuss the ablation studies that were mentioned in § 6.2. We also present other ablation studies
on using transferred adversarial examples (Appendix F.4) and weaker adversarial attacks (Appendix F.5) in AMUN.

F.1. Empirical Behavior of Retrained Models

As discussed in § 3.1, assuming the DT and D come from the same distributions, we expect the prediction confidences of the
models retrained on DR to be similar on DF and DT, because both of these sets are considered unseen samples that belong
the the same data distribution. Figure 3 (left) shows the confidence scores for a ResNet-18 model that has been retrained on
D −DF, where D is the training set of CIFAR-10 and the size of DF (randomly chosen from D) is 10% and 50% of the size
of D for the left and right sub-figures, respectively. To derive the confidence values, we use the following scaling on the
logit values:

ϕ(f(x)y) = log

(
f(x)y

1− f(x)y

)
,

where f(x)y is the predicted probability for the correct class. This scaling has been used by Carlini et al. (2022) to transform
the the prediction probabilities such that they can be better approximated with a normal distribution, which are indeed used
by some of the SOTA MIA methods for predicting training samples from the test samples (Carlini et al., 2022). Figure 3
(left) shows these fitted normal distribution as well, which perfectly match for DF and DT.

F.1.1. CONFIDENCE VALUES IN UNLEARNED MODELS

In this section, we investigate the confidence values of the model, before and after using AMUN for unlearning a subset of
10% or 25% of the training samples. For the original model (before unlearning), we expect the distribution of confidence
values of samples in DF to be similar to those of the samples in DR because they were both used as the training data and
the model has used them similarly during training. However, this distribution is different for the test samples (DT), as the
model has not seen them during the training phase. After unlearning, as discussed in section 3.1, we expect the distribution
of confidence values for DF and DT to become more similar so that MIAs cannot distinguish them from each other. As
Figure 5 shows, for both unlearning 10% (two leftmost subplots) and 50% (two rightmost subplots), we observe the same
behavior. Fur the original models (1st and 3rd subplot), the distribution for DF and DR mathces exactly, but after using
AMUN (2nd and 4th subplot) the distribution for DF shifts toward that of DT.

F.2. Adversarially Robust Models (cont.)

As discussed in § 6.2.2, we also evaluatee the effectiveness of AMUN when the trained model is adversarially robust. For
this experiment, we used the ResNet-18 models with 1-Lipschitz convolutional and fully-connected layers, which are shown
to be significantly more robust than the original ResNet-18 models. In Table 3, we showed the results for unlearning 10%
and 50% of the samples from the robust ResNet-18 models trained on CIFAR-10, in the case where DR is not accessible. In
Table 6, we showed the corresponding results when the unlearning methods have access to DR. As the results show, similar
to the results discussed in § 6.2.2, AMUN effectively unlearns DF for either of the sizes of the this set.

17

Not All Wrong is Bad: Using Adversarial Examples for Unlearning

RANDOM FORGET (10%) RANDOM FORGET (50%)
FT AUC FR AUC TEST ACC FT AUC FR AUC TEST ACC

RETRAIN 49.95 ±0.24 54.08 ±0.16 89.01 ±0.21 50.19 ±0.15 55.61 ±0.05 85.76 ±0.41

AMUN 49.12 ±0.19 53.60 ±0.31 86.94 ±0.56 49.41 ±0.25 54.22 ±0.16 87.38 ±0.39

Table 6: Unlearning on adversarially robust models. Evaluating the effectiveness of AMUN in unlearning 10% and 50%
of the training samples when the models are adversarially robust and we have access to DR. For this experiment we use
models with controlled Lipschitz constant which makes them provably and empirically more robust to adversarial examples.

We also evaluated AMUN for unlearning in models that are adversarially trained. we performed our analysis on ResNet-18
models trained using TRADES loss (Zhang et al., 2019) on CIFAR-10. We performed the experiments for unlearning 10%
of the dataset in both cases where DR is accessible and not. As the results in Table 7 show, in both settings AMUN is
effective in unlearning the forget samples and achieving a low gap with the retrained models. This gap is obviously smaller
when there is access to DR.

UNLEARN ACC RETAIN ACC TEST ACC FT AUC AVG. GAP

RETRAIN 82.33 ±0.39 94.22 ±0.21 81.72 ±0.36 50.04 ±0.34 0.00

AMUN WithDR 82.65 ±0.62 94.33 ±0.84 84.99 ±0.91 47.18 ±0.50 1.02 ±0.18

AMUN NoDR 81.38 ±0.10 87.45 ±0.54 79.74 ±0.31 54.61 ±0.23 3.57 ±0.24

Table 7: Unlearning with access to DR. Evaluating AMUN when applied to ResNet-18 models trained using adversarial
training. TRADES loss is used to train the models, and the unlearning is done on 10% of CIFAR-10 Dataset (D). Avg. Gap
is used for evaluation (lower is better). The result has been reported in two cases: with and without access to DR. As the
results show, AMUN is effective in both cases, with slight degradation in the more difficult setting of no access to DR.

F.3. Fine-tuning on Adversarial Examples (cont.)

As explained in § 6.2.1, we evaluate the effect of fine-tuning on test accuracy of a ResNet-18 model that is trained on
CIFAR-10, when DA is substituted with other datasets that vary in the choice of samples or their labels (see § 6.2.1 for
details). In Figure 1 we presented the results when DF contains 10% of the samples in D. We also present the results for the
case where DF contains 50% of the samples in D in Figure 6. As the figure shows, even for the case where we fine-tune the
trained models on only DA which contains the adversarial examples corresponding to 50% of the samples in D (right-most
sub-figure), there is no significant loss in models’ accuracy. This is due to the fact that the samples in DA, in contrast to the
other constructed datasets, belong to the natural distribution learned by the trained model. To generate the results in both
Figures 1 and 6, we fine-tuned the trained ResNet-18 models on the all the datasets (see § 6.2.1 for details) for 20 epochs.
We used a learning rate of 0.01 with a scheduler that scales the learning rate by 0.1 every 5 epochs.

We also perform the same experiment for VGG19 (Simonyan & Zisserman, 2014) models trained on Tiny Imagenet
dataset (Le & Yang, 2015). We evaluate the effect of fine-tuning on test accuracy of these model that is, when DF contains
10% of the samples in D and DA is substituted with other datasets that vary in the choice of samples or their labels (see
§ 6.2.1 for details). In Figure 7 we presented the results, which similarly show that the specific use of adversarial examples
with the mis-predicted labels matters in keeping the model’s test accuracy.

F.4. Transferred Adversarial Examples

One of the intriguing properties of adversarial attacks is their transferability to other models (Papernot et al., 2016; Liu et al.,
2016); Adversarial examples generated on a trained model (source model) mostly transfer successfully to other models
(target models). This success rate of the transferred adversarial examples increases if the source model and target model
have the same architecture (Papernot et al., 2016). There are other studies that can be used to increase the success rate
of this type of attack (Zhao et al., 2021; Zhang et al., 2022; Chen et al., 2023a; Ebrahimpour-Boroojeny et al., 2024). In
this section, we are interested to see if using the the adversarial examples generated using Algorithm 1 for a given model

18

Not All Wrong is Bad: Using Adversarial Examples for Unlearning

Figure 6: This figure shows the effect of fine-tuning on test accuracy of a ResNet-18 model that is trained on CIFAR-10,
when the dataset for fine-tuning changes (see § 6.2 for details). Let DF contain 50% of the samples in D and DA be the
set of adversarial examples constructed using Algorithm 1. Adv, from the left sub-figure to right one, shows the results
when D∪DA, DF ∪DA, and DA is used for fine-tuning the model, respectively. Orig, Adv-RS, Adv-RL, Orig-RL, and
Orig-AdvL shows the results when DA for each of these sub-figures is replace by DF, DARS , DARL, DRL, and DAdvL,
accordingly. As the figure shows, the specific use of adversarial examples with the mis-predicted labels matters in keeping
the model’s test accuracy because DA, in contrast to the other constructed datasets belong to the natural distribution learned
by the trained model.

Figure 7: Effect of fine-tuning on adversarial examples. This figure shows the effect of fine-tuning on test accuracy of a
VGG19 model that is trained on the Tiny ImagenNet dataset, when the dataset for fine-tuning changes for details). Let DF
contain 10% of the samples in D and DA be the set of adversarial examples constructed using Algorithm 1. Adv, from the
left sub-figure to right one, shows the results when D∪DA, DF ∪DA, and DA is used for fine-tuning the model, respectively.
Orig, Adv-RS, Adv-RL, Orig-RL, and Orig-AdvL shows the results when DA for each of these sub-figures is replace
by DF, DARS , DARL, DRL, and DAdvL, accordingly. As the figure shows, the specific use of adversarial examples with the
mis-predicted labels matters in keeping the model’s test accuracy because DA, in contrast to the other constructed datasets
belong to the natural distribution learned by the trained model.

trained on some dataset D can be used as the DA dataset for unlearning a portion of D from a separately trained model.
The advantage of using adversarial examples generated for another model is saving the computation cost for other trained
models. For this purpose, we train three ResNet-18 models separately on CIFAR-10, we generate the adversarial examples
for each of these models using Algorithm 1. We use AMUN for unlearning 10% and 50% of CIFAR-10 from either of
these models, but instead of their adversarial samples, we use the ones derived from the other models. The results in Table 8
shows that using transferred adversarial examples leads to lower performance, specially for the case where there is no access
to DR. All the values for test accuracy are also lower compared to using adversarial examples from the model itself because
these adversarial examples from the other models do not all belong to the natural distribution of the model and they do not
even always transfer to the other models. Still the results are comparable to the prior SOTA methods in unlearning, and even
in the case of no access to DR outperforms all prior methods.

19

Not All Wrong is Bad: Using Adversarial Examples for Unlearning

WITH ACCESS TO DR NO ACCESS TO DR

RANDOM FORGET (10%) RANDOM FORGET (50%) RANDOM FORGET (10%) RANDOM FORGET (50%)
TEST ACC FT AUC AVG. GAP TEST AUC FT AUC AVG. GAP TEST ACC FT AUC AVG. GAP TEST AUC FT AUC AVG. GAP

SELF 93.45 ±0.22 50.18 ±0.36 0.62 ±0.05 92.39 ±0.04 49.99 ±0.18 0.33 ±0.03 91.67 ±0.04 52.24 ±0.23 1.94 ±0.13 89.43 ±0.19 52.60 ±0.22 2.51 ±0.09

OTHERS 92.64 ±0.09 48.70 ±0.59 1.57 ±0.12 91.49 ±0.03 47.36 ±0.63 1.15 ±0.23 90.56 ±0.28 48.29 ±0.22 3.07 ±0.15 83.61 ±0.45 51.11 ±0.04 6.70 ±0.33

Table 8: Transferred adversarial examples. Comparing the effectiveness of unlearning when instead of using adversarial
examples of the model, we use adversarial examples generated using Algorithm 1 on separately trained models with the
same architecture. As the results show, relying on transferred adversarial examples in AMUN leads to worse results,
specially for test accuracy because the adversarial examples do not necessary belong to the natural distribution learned by
the model. However, even by using these transferred adversarial examples AMUN outperforms prior SOTA unlearning
methods, specially when there is no access to DR.

Figure 8: This figure shows both FT AUC and RF AUC components of the plots presented in Figure 2. The two left-most
sub-figures show these values along the number of unlearning requests for the case where there is access to DR and the two
right-most ones show these values when there is no access to DR.

F.5. Weak Attacks

In this section we evaluate the effectiveness of using weaker attacks in Algorithm 1. For this purpose, we perform the
unlearning on a ResNet-18 model trained on CIFAR-10 in all unlearning settings mentioned in § 5, and compare the results
with the default choice of PGD-50 in AMUN. The weaker attack that we use is a variation of FFGSM (Wong et al., 2020),
which itself is a variant of FGSM (Goodfellow et al., 2014). FGSM takes steps toward the gradient sign at a given sample to
find adversarial samples. FFGSM takes a small step toward a random direction first, and then proceeds with FGSM. To
adapt these method to the format of Algorithm 1 we start with FGSM attack; we find the gradient sign and start to move
toward that direction in steps of size ϵ until we find an adversarial example. If the adversarial example is not found after a
few iteration of the While loop, we restart the value of ϵ and add a small random perturbation before the next round of
FGSM attack and the While loop. We continue this procedure to find an adversarial sample. After deriving a new set
of adversarial examples using this methods, we performed a separate round hyper-parameter tuning for unlearning with
the new attack to have a fair comparison. It is notable to mention that this leads to a much faster attack because we only
compute the gradient once for each round round of FGSM (at the beginning or after each addition of random perturbation
and restarting FGSM). Table 9 shows the comparison of the results with the original version of AMUN that uses PGD-50.
As the results show, using this weaker attack leads to worse results; however, they still outperform prior SOTA methods in
unlearning, specially in the setting where there is no access to DR and the size of DF is 50% of D.

For each image in CIFAR-10, Figure 9 shows δx (see Definition 2.1) for the adversarial examples that Algorithm 1 finds
using PGD-50 (x-axis) and FFGSM (y-axis). The dashed line shows the x = y line for the reference. As the figure shows δx
is much smaller for PGD-50. This value is smaller for FFGSM for less than 4% of the images, but still even for those images,
the value of δx for PGD-50 is very small, compared to the range of values that are required for FFGSM in many cases.
This, we believe, is the main reason behind worse performance when using FFGSM. However, still note that the adversarial
examples that are found using FFGSM belong to the natural distribution of the trained model and therefore fine-tuning the
model on these samples does not lead to noticable deterioration of the test accuracy, while achieving reasonable FT AUC
score. Indeed this larger distance of the adversarial examples with the original samples in DF, leads to better performance of
AMUN when it does not include DF when fine-tuning the model, because the difference in the predicted logits compared to
the δx leads to under-estimation of the local Lipschitz constant and therefore, the model is able to fit perfectly to both the
original samples and its corresponding adversarial sample without changing much. This consequently leads to a larger value

20

Not All Wrong is Bad: Using Adversarial Examples for Unlearning

of FT AUC score.

WITH ACCESS TO DR NO ACCESS TO DR

RANDOM FORGET (10%) RANDOM FORGET (50%) RANDOM FORGET (10%) RANDOM FORGET (50%)
TEST ACC FT AUC AVG. GAP TEST AUC FT AUC AVG. GAP TEST ACC FT AUC AVG. GAP TEST AUC FT AUC AVG. GAP

PGD-50 93.45 ±0.22 50.18 ±0.36 0.62 ±0.05 92.39 ±0.04 49.99 ±0.18 0.33 ±0.03 91.67 ±0.04 52.24 ±0.23 1.94 ±0.13 89.43 ±0.19 52.60 ±0.22 2.51 ±0.09

FGSM 93.87 ±0.16 50.64 ±0.51 0.92 ±0.25 89.41 ±1.01 50.93 ±0.46 1.81 ±0.77 92.14 ±0.28 56.58 ±1.05 3.46 ±0.36 90.12 ±0.28 54.54 ±0.47 3.29 ±0.10

Table 9: Using weaker attacks. Comparing the effectiveness of unlearning when PGD-10 in Algorithm 1 is replaced with a
variant of FGSM attack, which is considered to be significantly weaker and leads to finding adversarial examples at a much
higher distance to the original samples. We evaluate unlearning 10% and 50% of the training samples in CIFAR-10 from a
trained ResNet-18 model. As the results show, in both settings of unlearning (with access to DR and no access to DR), using
the weaker attack does not perform as well as the original method. However, it still outperforms prior SOTA unlearning
methods.

G. Comparison Using Prior Evaluation Methods
In this section we perform similar comparisons to what we presented in section 6.1, but instead of FT AUC, we use the
same MIA used by prior SOTA methods in unlearning for evaluations. As mentioned in section 5.2, we refer to the score
derived by this MIA as MIS.

RANDOM FORGET (10%) RANDOM FORGET (50%)
UNLEARN ACC RETAIN ACC TEST ACC MIS AVG. GAP UNLEARN ACC RETAIN ACC TEST ACC MIS AVG. GAP

RETRAIN 94.49 ±0.20 100.0 ±0.00 94.33 ±0.18 12.53 ±0.32 0.00 92.09 ±0.37 100.0 ±0.00 91.85 ±0.33 16.78 ±0.37 0.00

FT 95.16 ±0.29 96.64 ±0.25 92.21 ±0.27 11.33 ±0.35 1.84 ±0.10 94.24 ±0.30 95.22 ±0.31 91.21 ±0.33 12.10 ±0.72 3.06 ±0.24

RL 99.22 ±0.19 99.99 ±0.01 94.10 ±0.11 10.94 ±0.45 1.64 ±0.19 92.98 ±1.07 94.83 ±1.04 89.19 ±0.74 12.48 ±0.90 3.29 ±0.04

GA 98.94 ±1.39 99.22 ±1.31 93.39 ±1.18 4.21 ±5.25 3.62 ±1.04 99.94 ±0.09 99.95 ±0.08 94.36 ±0.31 0.62 ±0.30 6.64 ±0.15

BS 99.14 ±0.31 99.89 ±0.06 93.04 ±0.14 5.50 ±0.39 3.27 ±0.13 100.00 ±0.00 100.00 ±0.00 94.62 ±0.08 0.40 ±0.05 6.77 ±0.03

l1-SPARSE 94.29 ±0.34 95.63 ±0.16 91.55 ±0.17 12.03 ±1.92 2.26 ±0.26 92.63 ±0.13 95.02 ±0.10 89.56 ±0.08 12.03 ±0.39 3.14 ±0.17

SALUN 99.25 ±0.12 99.99 ±0.01 94.11 ±0.13 11.29 ±0.56 1.56 ±0.20 95.69 ±0.80 97.26 ±0.79 91.55 ±0.59 11.27 ±0.94 3.06 ±0.12

AMUN 95.45 ±0.19 99.57 ±0.00 93.45 ±0.22 12.55 ±0.08 0.59 ±0.09 93.50 ±0.09 99.71 ±0.01 92.39 ±0.04 13.53 ±0.19 1.37 ±0.07

AMUN+SalUn 94.73 ±0.07 99.92 ±0.01 93.95 ±0.18 14.23 ±0.40 0.60 ±0.10 93.56 ±0.07 99.72 ±0.02 92.52 ±0.20 13.33 ±0.10 1.47 ±0.01

Table 10: Unlearning with access to DR. Comparing different unlearning methods in unlearning 10% and 50% of D. Avg.
Gap (see § 5.2), with MIS as the MIA score, is used for evaluation (lower is better). The lowest value is shown in bold
while the second best is specified with underscore. As the results show, AMUN outperforms all other methods by achieving
lowest Avg. Gap and AMUNSalUn achieves comparable results.

RANDOM FORGET (10%) RANDOM FORGET (50%)
UNLEARN ACC RETAIN ACC TEST ACC MIA AVG. GAP UNLEARN ACC RETAIN ACC TEST ACC MIA AVG. GAP

RETRAIN 94.49 ±0.20 100.0 ±0.00 94.33 ±0.18 12.53 ±0.32 0.00 92.09 ±0.37 100.0 ±0.00 91.85 ±0.33 16.78 ±0.37 0.00

RL 100.00 ±0.00 100.00 ±0.00 94.45 ±0.09 3.06 ±0.63 3.77 ±0.13 100.00 ±0.00 100.00 ±0.00 94.54 ±0.11 0.40 ±0.03 6.75 ±0.02

GA 4.77 ±3.20 5.07 ±3.54 5.09 ±3.38 32.63 ±50.85 76.58 ±7.73 100.00 ±0.00 100.00 ±0.00 94.57 ±0.06 0.35 ±0.10 6.77 ±0.04

BS 100.00 ±0.00 100.00 ±0.00 94.48 ±0.04 1.11 ±0.30 4.27 ±0.07 100.00 ±0.00 100.00 ±0.00 94.59 ±0.03 0.38 ±0.02 6.76 ±0.01

SALUN 100.00 ±0.00 100.00 ±0.00 94.47 ±0.10 2.39 ±0.64 3.95 ±0.14 100.00 ±0.00 100.00 ±0.00 94.57 ±0.12 0.33 ±0.04 6.77 ±0.03

AMUN 94.28 ±0.37 97.47 ±0.10 91.67 ±0.04 11.61 ±0.60 1.61 ±0.09 92.77 ±0.52 95.66 ±0.25 89.43 ±0.19 14.13 ±0.67 2.52 ±0.16

AMUN+Salun 94.19 ±0.38 97.71 ±0.06 91.79 ±0.12 11.66 ±0.16 1.51 ±0.02 91.90 ±0.63 96.59 ±0.31 89.98 ±0.44 13.07 ±0.66 2.35 ±0.15

Table 11: Unlearning with access to only DF. Comparing different unlearning methods in unlearning 10% and 50% of D.
Avg. Gap (see § 5.2) is used for evaluation (lower is better) when only DF is available during unlearning. As the results
show, AMUNSalUn significantly outperforms all other methods, and AMUN achieves comparable results.

H. Continuous Unlearning (cont.)
In § 6.3, we showed AMUN, whether with adaptive computation of DA or using the pre-computed ones, outperforms other
unlearning methods when handling multiple unlearning requests. Another important observation on the presented results

21

Not All Wrong is Bad: Using Adversarial Examples for Unlearning

in Figure 2 is that the effectiveness of unlearning decreases with the number of unlearning requests. For the setting with
access to DR, this decrease is due to the fact that the DF at each step has been a part of DR at the previous steps; the model
has been fine-tuned on this data in all the previous steps which has led to further improving confidence of the modes on
predicting those samples. This result also matches the theoretical and experimental results in differential privacy literature
as well (Dwork, 2006; Abadi et al., 2016).

This problem does not exist for the setting where there is no access to DR, but we still see a decrease in the unlearning
effectiveness as we increase the number of unlearning requests. The reason behind this deterioration is that the model
itself is becoming weaker. As Figure 8 shows, the accuracy on the model on both DR and DT gets worse as it proceeds
with the unlearning request; this is because each unlearning step shows the model only 2% (1K) of the samples and their
corresponding adversarial examples for fine-tuning. So this deterioration is expected after a few unlearning requests. So
when using AMUN in this setting (no access to DR) in practice, it would be better to decrease the number of times that the
unlearning request is performed, for example by performing a lazy-unlearning (waiting for a certain number of requests to
accumulate) or at least using a sub-sample of DR if that is an option.

Figure 9: For each image in CIFAR-10 the x-axis shows the Euclidean distance of the corresponding adversarial example
that is found by using PGD-50 in Algorithm 1. y-axis shows this distance for the adversarial examples found by the variant
of FFGSM in Algorithm 1. The dashed line shows the x = y line. As the figure shows, the distance is much larger for
weaker attacks and this leads to worse performance of AMUN, as explained by Theorem 4.1.

22

