
Published as a conference paper at ICLR 2018

ONLINE LEARNING RATE ADAPTATION WITH
HYPERGRADIENT DESCENT

Atılım Güneş Baydin
University of Oxford
gunes@robots.ox.ac.uk

Robert Cornish
University of Oxford
rcornish@robots.ox.ac.uk

David Martı́nez Rubio
University of Oxford
david.martinez2@wadham.ox.ac.uk

Mark Schmidt
University of British Columbia
schmidtm@cs.ubc.ca

Frank Wood
University of Oxford
fwood@robots.ox.ac.uk

ABSTRACT

We introduce a general method for improving the convergence rate of gradient-
based optimizers that is easy to implement and works well in practice. We demon-
strate the effectiveness of the method in a range of optimization problems by
applying it to stochastic gradient descent, stochastic gradient descent with Nes-
terov momentum, and Adam, showing that it significantly reduces the need for the
manual tuning of the initial learning rate for these commonly used algorithms. Our
method works by dynamically updating the learning rate during optimization using
the gradient with respect to the learning rate of the update rule itself. Computing
this “hypergradient” needs little additional computation, requires only one extra
copy of the original gradient to be stored in memory, and relies upon nothing more
than what is provided by reverse-mode automatic differentiation.

1 INTRODUCTION

In nearly all gradient descent algorithms the choice of learning rate remains central to efficiency;
Bengio (2012) asserts that it is “often the single most important hyper-parameter” and that it always
should be tuned. This is because choosing to follow your gradient signal by something other than the
right amount, either too much or too little, can be very costly in terms of how fast the overall descent
procedure achieves a particular level of objective value.

Understanding that adapting the learning rate is a good thing to do, particularly on a per parameter
basis dynamically, led to the development of a family of widely-used optimizers including AdaGrad
(Duchi et al., 2011), RMSProp (Tieleman & Hinton, 2012), and Adam (Kingma & Ba, 2015).
However, a persisting commonality of these methods is that they are parameterized by a “pesky” fixed
global learning rate hyperparameter which still needs tuning. There have been methods proposed
that do away with needing to tune such hyperparameters altogether (Schaul et al., 2013) but their
adoption has not been widespread, owing perhaps to their complexity, applicability in practice, or
performance relative to the aforementioned family of algorithms.

Our initial conceptualization of the learning rate adaptation problem was one of automatic differen-
tiation (Baydin et al., 2018). We hypothesized that the derivative of a parameter update procedure
with respect to its global learning rate ought to be useful for improving optimizer performance. This
conceptualization is not unique, having been explored, for instance, by Maclaurin et al. (2015). While
the automatic differentiation perspective was integral to our conceptualization, the resulting algorithm
turns out to simplify elegantly and not require additional automatic differentiation machinery. In fact,
it is easily adaptable to nearly any gradient update procedure while only requiring one extra copy
of a gradient to be held in memory and very little computational overhead; just a dot product in the

1



Published as a conference paper at ICLR 2018

dimension of the parameter. Considering the general applicability of this method and adopting the
name “hypergradient” introduced by Maclaurin et al. (2015) to mean a derivative taken with respect
to a hyperparameter, we call our method hypergradient descent.

To our knowledge, our rediscovery appeared first in the largely neglected paper of Almeida et al.
(1998), who arrived at the same hypergradient procedure as us. However, none of the aforementioned
modern gradient-based optimization procedures existed at the time of its publication so the only
examples considered were gradient and stochastic gradient descent on relatively simple functions.
Having rediscovered this approach, we develop it further and demonstrate that adapting existing
gradient descent procedures to use hypergradient descent to dynamically tune global learning rates
improves stochastic gradient descent (SGD), stochastic gradient descent with Nesterov momentum
(SGDN), and Adam; particularly so on large-scale neural network training problems.

For a given untuned initial learning rate, hypergradient algorithms consistently bring the loss trajectory
closer to the optimal one that would be attained with a tuned initial learning rate, and thus significantly
reduce the need for the expensive and time consuming practice of hyperparameter search (Goodfellow
et al., 2016) for learning rates, which is conventionally performed using grid search, random search
(Bergstra & Bengio, 2012), Bayesian optimization (Snoek et al., 2012), and model-based approaches
(Bergstra et al., 2013; Hutter et al., 2013).

2 HYPERGRADIENT DESCENT

We define the hypergradient descent (HD) method by applying gradient descent on the learning rate
of an underlying gradient descent algorithm, independently discovering a technique that has been
previously considered in the optimization literature, most notably by Almeida et al. (1998). This
differs from the reversible learning approach of Maclaurin et al. (2015) in that we apply gradient-
based updates to a hyperparameter (in particular, the learning rate) at each iteration in an online
fashion, instead of propagating derivatives through an entire inner optimization that consists of many
iterations.

The method is based solely on the partial derivative of an objective function—following an update
step—with respect to the learning rate. In this paper we consider and report the case where the
learning rate α is a scalar. It is straightforward to generalize the introduced method to the case where
α is a vector of per-parameter learning rates.

The most basic form of HD can be derived from regular gradient descent as follows. Regular gradient
descent, given an objective function f and previous parameters θt−1, evaluates the gradient∇f(θt−1)
and moves against it to arrive at updated parameters

θt = θt−1 − α∇f(θt−1) , (1)

where α is the learning rate. In addition to this update rule, we would like to derive an update rule for
the learning rate α itself. We make the assumption that the optimal value of α does not change much
between two consecutive iterations so that we can use the update rule for the previous step to optimize
α in the current one. For this, we will compute ∂f(θt−1)/∂α , the partial derivative of the objective f
at the previous time step with respect to the learning rate α. Noting that θt−1 = θt−2 − α∇f(θt−2),
i.e., the result of the previous update step, and applying the chain rule, we get

∂f(θt−1)

∂α
= ∇f(θt−1) · ∂(θt−2 − α∇f(θt−2))

∂α
= ∇f(θt−1) · (−∇f(θt−2)) , (2)

which allows us to compute the needed hypergradient with a simple dot product and the memory cost
of only one extra copy of the original gradient. Using this hypergradient, we construct a higher level
update rule for the learning rate as

αt = αt−1 − β
∂f(θt−1)

∂α
= αt−1 + β∇f(θt−1) · ∇f(θt−2) , (3)

introducing β as the hypergradient learning rate. We then modify Eq. 1 to use the sequence αt to
become

θt = θt−1 − αt∇f(θt−1) . (4)

Equations 3 and 4 thus define the most basic form of the HD algorithm, updating both θt and αt
at each iteration. This derivation, as we will see shortly, is applicable to any gradient-based primal

2



Published as a conference paper at ICLR 2018

Algorithm 1 Stochastic gradient descent (SGD)
Require: α: learning rate
Require: f(θ): objective function
Require: θ0: initial parameter vector
t← 0 . Initialization
while θt not converged do
t← t+ 1
gt ← ∇ft(θt−1) . Gradient
ut ← −αgt . Parameter update
θt ← θt−1 + ut . Apply parameter update

end while
return θt

Algorithm 4 SGD with hyp. desc. (SGD-HD)
Require: α0: initial learning rate
Require: f(θ): objective function
Require: θ0: initial parameter vector
Require: β: hypergradient learning rate
t,∇αu0 ← 0, 0 . Initialization
while θt not converged do
t← t+ 1
gt ← ∇ft(θt−1) . Gradient
ht ← gt · ∇αut−1 . Hypergradient
αt ← αt−1 − β ht . Learning rate update
Or, alternative to the line above:

αt ← αt−1

(
1− β ht

‖gt‖‖∇αut−1‖

)
.Mult. update

ut ← −αt gt . Parameter update
∇αut ← −gt
θt ← θt−1 + ut . Apply parameter update

end while
return θt

Algorithm 2 SGD with Nesterov (SGDN)
Require: µ: momentum
t, v0 ← 0, 0 . Initialization
Update rule:
vt ← µ vt−1 + gt . “Velocity”
ut ← −α (gt + µ vt) . Parameter update

Algorithm 5 SGDN with hyp. desc. (SGDN-HD)
Require: µ: momentum
t, v0,∇αu0 ← 0, 0, 0 . Initialization
Update rule:
vt ← µ vt−1 + gt . “Velocity”
ut ← −αt (gt + µ vt) . Parameter update
∇αut ← −gt − µ vt

Algorithm 3 Adam
Require: β1, β2 ∈ [0, 1): decay rates for Adam
t,m0, v0 ← 0, 0, 0 . Initialization
Update rule:
mt ← β1mt−1 + (1− β1) gt . 1st mom. estimate
vt ← β2 vt−1 + (1− β2) g

2
t . 2nd mom. estimate

m̂t ← mt/(1− βt1) . Bias correction
v̂t ← vt/(1− βt2) . Bias correction
ut ← −α m̂t/(

√
v̂t + ε) . Parameter update

Algorithm 6 Adam with hyp. desc. (Adam-HD)
Require: β1, β2 ∈ [0, 1): decay rates for Adam
t,m0, v0,∇αu0 ← 0, 0, 0, 0 . Initialization
Update rule:
mt ← β1mt−1 + (1− β1) gt . 1st mom. estimate
vt ← β2 vt−1 + (1− β2) g

2
t . 2nd mom. estimate

m̂t ← mt/(1− βt1) . Bias correction
v̂t ← vt/(1− βt2) . Bias correction
ut ← −αt m̂t/(

√
v̂t + ε) . Parameter update

∇αut ← −m̂t/(
√
v̂t + ε)

Figure 1: Regular and hypergradient algorithms. Left-hand side: SGD with Nesterov (SGDN)
(Algorithm 2) and Adam (Algorithm 3) are obtained by substituting the corresponding initialization
(red) and update (blue) statements into regular SGD (Algorithm 1). Right-hand side: Hypergradient
variants of SGD with Nesterov (SGDN-HD) (Algorithm 5) and Adam (Adam-HD) (Algorithm 6) are
obtained by substituting the corresponding statements into hypergradient SGD (SGD-HD) (Algo-
rithm 4).

optimization algorithm, and is computation- and memory-efficient in general as it does not require
any more information than the last two consecutive gradients that have been already computed in the
base algorithm.

2.1 DERIVATION OF THE HD RULE IN THE GENERAL CASE

Here we formalize the derivation of the HD rule for an arbitrary gradient descent method. Assume
that we want to approximate a minimizer of a function f : Rn → R and we have a gradient descent
method with update rule θt = u(Θt−1, α), where θt ∈ Rn is the point computed by this method at
step t, Θt = {θi}ti=0 and α is the learning rate. For instance, the regular gradient descent mentioned
above corresponds to an update rule of u(Θt, α) = θt − α∇f(θt).

In each step, our goal is to update the value of α towards the optimum value α∗t that minimizes
the expected value of the objective in the next iteration, that is, we want to minimize E[f(θt)] =
E[f(u(Θt−1, αt))], where the expectation is taken with respect to the noise produced by the estimator
of the gradient (if we compute the gradient exactly then the noise is just 0). We want to update the

3



Published as a conference paper at ICLR 2018

previous learning rate αt−1 so the new computed value, αt, is closer to α∗t . As we did in the example
above, we could perform a step gradient descent, where the gradient is

∂E[f ◦ u(Θt, αt)]

∂αt
= E

[
∇θf(θt)

>∇αu(Θt−1, αt)
]

= E
[
∇̃θf(θt)

>∇αu(Θt−1, αt)
]

(5)

where ∇̃θf(θt) is the noisy estimator of∇θf(θt). The last equality is true if we assume, as it is usual,
that the noise at step t is independent of the noise at previous iterations.

However we have not computed θt yet, we need to compute αt first. If we assume that the optimum
value of the learning rate at each step does not change much across iterations, we can avoid this
problem by performing one step of the gradient descent to approximate α∗t−1 instead. The update
rule for the learning in such a case is

αt = αt−1 − β ∇̃θf(θt−1)>∇αu(Θt−2, αt−1) . (6)

We call the previous rule, the additive rule of HD. However, (see Martı́nez (2017), Section 3.1) it is
usually better for this gradient descent to set

β = β′
αt−1∥∥∥∇̃f(θt−1)

∥∥∥∥∥∥∇αu(Θt−2, αt−1)
∥∥∥ (7)

so that the rule is

αt = αt−1

1− β′ ∇̃f(θt−1)>∇αu(Θt−2, αt−1)∥∥∥∇̃f(θt−1)
∥∥∥∥∥∥∇αu(Θt−2, αt−1)

∥∥∥
 . (8)

We call this rule the multiplicative rule of HD. One of the practical advantages of this multiplicative
rule is that it is invariant up to rescaling and that the multiplicative adaptation is in general faster than
the additive adaptation. In Figure 2 we can see in black one execution of the multiplicative rule in
each case.

Applying these derivation steps to stochastic gradient descent (SGD) (Algorithm 1), we arrive at the
hypergradient variant of SGD that we abbreviate as SGD-HD (Algorithm 4). As all gradient-based
algorithms that we consider have a common core where one iterates through a loop of gradient
evaluations and parameter updates, for the sake of brevity, we define the regular algorithms with
reference to Algorithm 1, where one substitutes the initialization statement (red) and the update
rule (blue) with their counterparts in the variant algorithms. Similarly we define the hypergradient
variants with reference to Algorithm 4. In this way, from SGD with Nesterov momentum (SGDN)
(Algorithm 2) and Adam (Algorithm 3), we formulate the hypergradient variants of SGDN-HD
(Algorithm 5) and Adam-HD (Algorithm 6).

In Section 4, we empirically demonstrate the performance of these hypergradient algorithms for
the problems of logistic regression and training of multilayer and convolutional neural networks for
image classification, also investigating good settings for the hypergradient learning rate β and the
initial learning rate α0. Section 5 discusses extensions to this technique and examines the convergence
of HD for convex objective functions.

3 RELATED WORK

3.1 LEARNING RATE ADAPTATION

Almeida et al. (1998) previously considered the adaptation of the learning rate using the derivative
of the objective function with respect to the learning rate. Plagianakos et al. (2001; 1998) proposed
methods using gradient-related information of up to two previous steps in adapting the learning rate.
In any case, the approach can be interpreted as either applying gradient updates to the learning rate
or simply as a heuristic of increasing the learning rate after a “successful” step and decreasing it
otherwise.

Similarly, Shao & Yip (2000) propose a way of controlling the learning rate of a main algorithm
by using an averaging algorithm based on the mean of a sequence of adapted learning rates, also
investigating rates of convergence. The stochastic meta-descent (SMD) algorithm (Schraudolph et al.,

4



Published as a conference paper at ICLR 2018

2006; Schraudolph, 1999), developed as an extension of the gain adaptation work by Sutton (1992),
operates by multiplicatively adapting local learning rates using a meta-learning rate, employing
second-order information from fast Hessian-vector products (Pearlmutter, 1994). Other work that
merits mention include RPROP (Riedmiller & Braun, 1993), where local adaptation of weight updates
are performed by using only the temporal behavior of the gradient’s sign, and Delta-Bar-Delta (Jacobs,
1988), where the learning rate is varied based on a sign comparison between the current gradient and
an exponential average of the previous gradients.

Recently popular optimization methods with adaptive learning rates include AdaGrad (Duchi et al.,
2011), RMSProp (Tieleman & Hinton, 2012), vSGD (Schaul et al., 2013), and Adam (Kingma &
Ba, 2015), where different heuristics are used to estimate aspects of the geometry of the traversed
objective.

3.2 HYPERPARAMETER OPTIMIZATION USING DERIVATIVES

Previous authors, most notably Bengio (2000), have noted that the search for good hyperparameter
values for gradient descent can be cast as an optimization problem itself, which can potentially be
tackled via another level of gradient descent using backpropagation. More recent work includes
Domke (2012), where an optimization procedure is truncated to a fixed number of iterations to
compute the gradient of the loss with respect to hyperparameters, and Maclaurin et al. (2015),
applying nested reverse automatic differentiation to larger scale problems in a similar setting.

A common point of these works has been their focus on computing the gradient of a validation
loss at the end of a regular training session of many iterations with respect to hyperparameters
supplied to the training in the beginning. This requires a large number of intermediate variables to be
maintained in memory for being later used in the reverse pass of automatic differentiation. Maclaurin
et al. (2015) introduce a reversible learning technique to efficiently store the information needed for
exactly reversing the learning dynamics during the hyperparameter optimization step. As described in
Sections 1 and 2, the main difference of our method from this is that we compute the hypergradients
and apply hyperparameter updates in an online manner at each iteration,1 overcoming the costly
requirement of keeping intermediate values during training and differentiating through whole training
sessions per hyperparameter update.

4 EXPERIMENTS

We evaluate the behavior of HD in several tasks, comparing the behavior of the variant algorithms
SGD-HD (Algorithm 4), SGDN-HD (Algorithm 5), and Adam-HD (Algorithm 6) to that of their
ancestors SGD (Algorithm 1), SGDN (Algorithm 2), and Adam (Algorithm 3) showing, in all cases,
a move of the loss trajectory closer to the optimum that would be attained by a tuned initial learning
rate. The algorithms are implemented in Torch (Collobert et al., 2011) and PyTorch (Paszke et al.,
2017) using an API compatible with the popular torch.optim package,2 to which we are planning to
contribute via a pull request on GitHub.

Experiments were run using PyTorch, on a machine with Intel Core i7-6850K CPU, 64 GB RAM,
and NVIDIA Titan Xp GPU, where the longest training (200 epochs of the VGG Net on CIFAR-10)
lasted approximately two hours for each run.

4.1 ONLINE TUNING OF THE LEARNING RATE

Figure 2 demonstrates the general behavior of HD algorithms for the training of logistic regres-
sion and a multi-layer neural network with two hidden layers of 1,000 units each, for the task
of image classification with the MNIST database. The learning rate α is taken from the set of
{10−1, 10−2, 10−3, 10−4, 10−5, 10−6} and β is taken as 10−4 in all instances.3 We observe that
for any given untuned initial learning rate, HD algorithms (solid curves) consistently bring the loss

1Note that we use the training objective, as opposed to the validation objective as in Maclaurin et al. (2015),
for computing hypergradients. Modifications of HD computing gradients for both training and validation sets at
each iteration and using the validation gradient only for updating α are possible, but not presented in this paper.

2Code will be shared here: https://github.com/gbaydin/hypergradient-descent
3Note that β = 0.02 is for the multiplicative example.

5

https://github.com/gbaydin/hypergradient-descent


Published as a conference paper at ICLR 2018

0.00

0.02

0.04

0.06

0.08

0.10

10
1

10
2

10
3

Iteration

0.00

0.05

0.10

10
0

Tr
ai

ni
ng

 lo
ss 10

1
10

2
10

3

Iteration

0

1

2

Tr
ai

ni
ng

 lo
ss

0 10 20 30 40 50
Epoch

10
0

Va
lid

at
io

n 
lo

ss

SGD, = 10 1
SGD, = 10 2
SGD, = 10 3
SGD, = 10 4
SGD, = 10 5
SGD, = 10 6
SGD-HD, 0 = 10 1
SGD-HD, 0 = 10 2
SGD-HD, 0 = 10 3
SGD-HD, 0 = 10 4
SGD-HD, 0 = 10 5
SGD-HD, 0 = 10 6
SGD-HDM, 0 = 10 1

Logistic Regression

0.00

0.02

0.04

0.06

0.08

0.10

10
1

10
2

10
3

Iteration

0.00

0.05

0.10

10
0

10
1

10
2

10
3

Iteration

0

5

10

15

Tr
ai

ni
ng

 lo
ss

0 10 20 30 40 50
Epoch

10
0

Adam, = 10 1
Adam, = 10 2
Adam, = 10 3
Adam, = 10 4
Adam, = 10 5
Adam, = 10 6
Adam-HD, 0 = 10 1
Adam-HD, 0 = 10 2
Adam-HD, 0 = 10 3
Adam-HD, 0 = 10 4
Adam-HD, 0 = 10 5
Adam-HD, 0 = 10 6
Adam-HDM, 0 = 10 2

Logistic Regression

0.00

0.02

0.04

0.06

0.08

0.10

10
1

10
2

10
3

Iteration

0.00

0.05

0.10

10
3

10
2

10
1

10
0

10
1

10
2

10
3

Iteration

0

1

2

Tr
ai

ni
ng

 lo
ss

0 10 20 30 40 50
Epoch

10
1

10
0

SGD, = 10 1
SGD, = 10 2
SGD, = 10 3
SGD, = 10 4
SGD, = 10 5
SGD, = 10 6
SGD-HD, 0 = 10 1
SGD-HD, 0 = 10 2
SGD-HD, 0 = 10 3
SGD-HD, 0 = 10 4
SGD-HD, 0 = 10 5
SGD-HD, 0 = 10 6
SGD-HDM, 0 = 10 1

Multi-Layer Neural Network

0.00

0.02

0.04

0.06

0.08

0.10

10
1

10
2

10
3

Iteration

0.00

0.05

0.10

10
3

10
2

10
1

10
0

10
1

10
1

10
2

10
3

Iteration

0

2000

4000

Tr
ai

ni
ng

 lo
ss

0 10 20 30 40 50
Epoch

10
1

10
0

10
1

10
2

Adam, = 10 1
Adam, = 10 2
Adam, = 10 3
Adam, = 10 4
Adam, = 10 5
Adam, = 10 6
Adam-HD, 0 = 10 1
Adam-HD, 0 = 10 2
Adam-HD, 0 = 10 3
Adam-HD, 0 = 10 4
Adam-HD, 0 = 10 5
Adam-HD, 0 = 10 6
Adam-HDM, 0 = 10 3

Multi-Layer Neural Network

Figure 2: Online tuning of the learning rate for logistic regression and multi-layer neural network.
Top row shows the learning rate, middle row shows the training loss, and the bottom row shows the
validation loss. Dashed curves represent the regular gradient descent algorithms SGD and Adam, and
solid curves represent their HD variants, SGD-HD and Adam-HD. HDM denotes an example of the
multiplicative update rule.

trajectory closer to the optimal one that would be attained with the tuned initial learning rate of the
non-HD algorithm (dashed curves).

In Figure 4 we report the results of a grid search for all the algorithms on the logitistic regression
objective; similar results have been observed for the multi-layer neural network and CNN objectives
as well. Figure 4 compels several empirical arguments. For one, independent of these results, and
even if one acknowledges that using hypergradients for online learning rate adaption improves on
the baseline algorithm, one might worry that using hypergradients makes the hyperparameter search
problem worse. One might imagine that their use would require tuning both the initial learning rate
α0 and the hypergradient learning rate β. In fact, what we have repeatedly observed and can be seen
in this figure is that, given a good value of β, HD is somewhat insensitive to the value of α0. So, in
practice tuning β by itself, if hyperparameters are to be tuned at all, is actually sufficient.

Also note that in reasonable ranges for α0 and β, no matter which values of α0 and β you choose,
you improve upon the original method. The corollary to this is that if you have tuned to a particular
value of α0 and use our method with an arbitrary small β (no tuning) you will still improve upon
the original method started at the same α0; remembering of course that β = 0 recovers the original
method in all cases.

In the following subsections, we show examples of online tuning for an initial learning rate of
α0 = 0.001, for tasks of increasing complexity, covering logistic regression, multi-layer neural
networks, and convolutional neural networks.

4.1.1 TUNING EXAMPLE: LOGISTIC REGRESSION

We fit a logistic regression classifier to the MNIST database, assigning membership probabilities for
ten classes to input vectors of length 784. We use a learning rate of α = 0.001 for all algorithms,
where for the HD variants this is taken as the initial α0. We take µ = 0.9 for SGDN and SGDN-HD.
For Adam, we use β1 = 0.9, β2 = 0.999, ε = 10−8, and apply a 1/

√
t decay to the learning rate(

αt = α/
√
t
)

as used in Kingma & Ba (2015) only for the logistic regression problem. We use the

6



Published as a conference paper at ICLR 2018

0.000

0.005

0.010

0.015

0.020

0.025

0.030

10
0

10
1

10
2

10
3

Iteration

0.01
0.00
0.01
0.02
0.03
0.04
0.05

10
1

10
0

Tr
ai

ni
ng

 lo
ss 10

0
10

1
10

2
10

3

Iteration

0.0

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 lo
ss

0 5 10 15 20
Epoch

10
1

10
0

Va
lid

at
io

n 
lo

ss

Adam
Adam-HD
SGD
SGD-HD
SGDN
SGDN-HD

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

100 101 102 103

Iteration

0.01
0.00
0.01
0.02
0.03
0.04
0.05

10 3

10 2

10 1

100

101

Tr
ai

ni
ng

 lo
ss 100 101 102 103

Iteration

0.0

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 lo
ss

0 20 40 60 80 100
Epoch

10 2

10 1

100

101

Va
lid

at
io

n 
lo

ss

Adam
Adam-HD
SGD
SGD-HD
SGDN
SGDN-HD

0.000

0.002

0.004

0.006

0.008

0.010

0.012

10
0

10
1

10
2

10
3

Iteration

0.015
0.010
0.005
0.000
0.005
0.010
0.015
0.020
0.025

10
1

10
0

10
1

Tr
ai

ni
ng

 lo
ss 10

0
10

1
10

2
10

3

Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 lo
ss

0 50 100 150 200
Epoch

10
0

10
1

Va
lid

at
io

n 
lo

ss

Adam
Adam-HD
SGD
SGD-HD
SGDN
SGDN-HD

Figure 3: Behavior of hypergradient variants compared with their regular counterparts. Columns:
left: logistic regression on MNIST; middle: multi-layer neural network on MNIST; right: VGG Net
on CIFAR-10. Rows: top: evolution of the learning rate αt; middle: training loss; bottom: validation
loss. Main plots show epoch averages and inset plots highlight the behavior of the algorithms during
initial iterations. For MNIST one epoch is one full pass through the entire training set of 60,000
images (468.75 iterations with a minibatch size of 128) and for CIFAR-10 one epoch is one full pass
through the entire training set of 50,000 images (390.625 iterations with a minibatch size of 128).

full 60,000 images in MNIST for training and compute the validation loss using the 10,000 test
images. L2 regularization is used with a coefficient of 10−4. We use a minibatch size of 128 for all
the experiments in the paper.

Figure 3 (left column) shows the negative log-likelihood loss for training and validation along with the
evolution of the learning rate αt during training, using β = 0.001 for SGD-HD and SGDN-HD, and
β = 10−7 for Adam-HD. Our main observation in this experiment, and the following experiments, is
that the HD variants consistently outperform their regular versions.4 While this might not come as a
surprise for the case of vanilla SGD, which does not possess capability for adapting the learning rate
or the update speed, the improvement is also observed for SGD with Nesterov momentum (SGDN)
and Adam. The improvement upon Adam is particularly striking because this method itself is based
on adaptive learning rates.

An important feature to note is the initial smooth increase of the learning rates from α0 = 0.001 to
approximately 0.05 for SGD-HD and SGDN-HD. For Adam-HD, the increase is up to 0.001174
(a 17% change), virtually imperceivable in the plot due to scale. For all HD algorithms, this initial
increase is followed by a decay to a range around zero. We conjecture that this initial increase and the
later decay of αt, automatically adapting to the geometry of the problem, is behind the performance
increase observed.

4We would like to remark that the results in plots showing loss versus training iterations remain virtually the
same when they are plotted versus wall-clock time.

7



Published as a conference paper at ICLR 2018

1e06 1e05 0.0001 0.001 0.01 0.1
β

0.
1

0.
01

0.
00

1
0.

00
01

1e
0

5
1e

0
6

α
0

33 33 33 33 33 33

348 348 348 348 348 348

2657 2657 2657 2657 2657 2657

21239 21239 21239 21239 21239 21239

178298 178298 178298 178298 178298 178298

> 468750

SGD

30000

60000

90000

120000

150000

1e06 1e05 0.0001 0.001 0.01 0.1
β

0.
1

0.
01

0.
00

1
0.

00
01

1e
0

5
1e

0
6

α
0

131 131 131 131 131 131

30 30 30 30 30 30

310 310 310 310 310 310

2657 2657 2657 2657 2657 2657

21239 21239 21239 21239 21239 21239

178298 178298 178298 178298 178298 178298

SGDN

30000

60000

90000

120000

150000

1e06 1e05 0.0001 0.001 0.01 0.1
β

0.
1

0.
01

0.
00

1
0.

00
01

1e
0

5
1e

0
6

α
0

208 208 208 208 208 208

34 34 34 34 34 34

2215 2215 2215 2215 2215 2215

73079 73079 73079 73079 73079 73079

> 468750

Adam

15000

30000

45000

60000

1e06 1e05 0.0001 0.001 0.01 0.1
β

0.
1

0.
01

0.
00

1
0.

00
01

1e
0

5
1e

0
6

α
0

33 33 33 76 97 991

348 272 208 153 208 1036

1452 527 208 153 208 602

1452 527 208 153 208 602

1452 527 208 153 208 602

1452 527 208 153 208 602

SGDHD

250

500

750

1000

1250

1e06 1e05 0.0001 0.001 0.01 0.1
β

0.
1

0.
01

0.
00

1
0.

00
01

1e
0

5
1e

0
6

α
0

131 131 33 21 527 2492

30 30 30 21 602 1382

208 34 30 21 197 1036

208 34 30 21 197 1367

208 34 30 21 197 1382

208 34 30 21 197 1382

SGDNHD

300

600

900

1200

1500

1e06 1e05 0.0001 0.001 0.01 0.1
β

0.
1

0.
01

0.
00

1
0.

00
01

1e
0

5
1e

0
6

α
0

2568 1534 331 212 13018 459765

30 30 77 356 22141 38533

76 30 30 212 40925 467678

140 30 30 226 5072 253198

140 30 30 403 4444 300160

140 30 30 403 5072 166877

AdamHD

80000

160000

240000

320000

400000

Figure 4: Grid search for selecting α0 and β, looking at iterations to convergence to a training loss of
0.29 for logistic regression. Everywhere to the left and below the shaded region marked by the red
boundary, hypergradient variants (bottom) perform better than or equal to the baseline variants (top).
In the limit of β → 0, as one recovers the original update rule, the algorithms perform the same with
the baseline variants in the worst case.

4.2 TUNING EXAMPLE: MULTI-LAYER NEURAL NETWORK

We next evaluate the effectiveness of HD algorithms on training a multi-layer neural network, again
on the MNIST database. The network consists of two fully connected hidden layers with 1,000 units
each and ReLU activations. We again use a learning rate of α = 0.001 for all algorithms. We use
β = 0.001 for SGD-HD and SGDN-HD, and β = 10−7 for Adam-HD. L2 regularization is applied
with a coefficient of 10−4.

As seen in the results in Figure 3 (middle column), the hypergradient variants again consistently
outperform their regular counterparts. In particular, we see that Adam-HD converges to a level of
validation loss not achieved by Adam, and shows an order of magnitude improvement over Adam in
the training loss.

Of particular note is, again, the initial rise and fall in the learning rates, where we see the learning
rate climb to 0.05 for SGD-HD and SGDN-HD, whereas for Adam-HD the overall behavior of the
learning rate is that of decay following a minute initial increase to 0.001083 (invisible in the plot due
to scale). Compared with logistic regression results, the initial rise of the learning rate for SGDN-HD
happens noticeably before SGD-HD, possibly caused by the speedup from the momentum updates.

4.3 TUNING EXAMPLE: CONVOLUTIONAL NEURAL NETWORK

To investigate whether the performance we have seen in the previous sections scales to deep archi-
tectures and large-scale high-dimensional problems, we apply these to train a VGG Net (Simonyan
& Zisserman, 2014) on the CIFAR-10 image recognition dataset (Krizhevsky, 2009). We base our
implementation on the VGG Net architecture for Torch by Sergey Zagoruyko.5 The network used has
an architecture of (conv-64)×2 ◦ maxpool ◦ (conv-128)×2 ◦ maxpool ◦ (conv-256)×3 ◦ maxpool
◦ (conv-512)×3 ◦ maxpool ◦ (conv-512)×3 ◦ maxpool ◦ fc-512 ◦ fc-10, corresponding closely to
the “D configuration” in Simonyan & Zisserman (2014). All convolutions have 3×3 filters and a
padding of 1; all max pooling layers are 2×2 with a stride of 2. We use α = 0.001 and β = 0.001
for SGD-HD and SGDN-HD, and β = 10−8 for Adam-HD. We use the 50,000 training images in
CIFAR-10 for training and the 10,000 test images for evaluating the validation loss.

5http://torch.ch/blog/2015/07/30/cifar.html

8

http://torch.ch/blog/2015/07/30/cifar.html


Published as a conference paper at ICLR 2018

Looking at Figure 3 (right column), once again we see consistent improvements of the hypergradient
variants over their regular counterparts. SGD-HD and SGDN-HD perform significantly better than
their regular versions in the validation loss, whereas Adam and Adam-HD reach the same validation
loss with relatively the same speed. Adam-HD performs significantly better than Adam in the training
loss. For SGD-HD and SGDN-HD we see an initial rise of α to approximately 0.025, this rise
happening, again, with SGDN-HD before SGD-HD. During this initial rise, the learning rate of
Adam-HD rises only up to 0.001002.

5 CONVERGENCE AND EXTENSIONS

5.1 TRANSITIONING TO THE UNDERLYING ALGORITHM

We observed in our experiments that α follows a consistent trajectory. As shown in Figure 3, it
initially grows large, then shrinks, and thereafter fluctuates around a small value that is comparable to
the best fixed α we could find for the underlying algorithm without hypergradients. This suggests
that hypergradient updates improve performance partially due to their effect on the algorithm’s early
behaviour, and motivates our first proposed extension, which involves smoothly transitioning to a
fixed learning rate as the algorithm progresses.

More precisely, in this extension we update αt exactly as previously via Eq. 8, and when we come
to the update of θt, we use as our learning rate a new value γt instead of αt directly, so that our
update rule is θt = θt−1 + u(Θt−1, γt−1) instead of θt = θt−1 + u(Θt−1, αt−1) as previously. Our
γt satisfies γt ≈ αt when t is small, and γt ≈ α∞ as t → ∞, where α∞ is some constant we
choose. Specifically, γt = δ(t)αt + (1 − δ(t))α∞ , where δ is some function such that δ(1) = 1
and δ(t)→ 0 as t→∞ (e.g., δ(t) = 1/t2).

Intuitively, this extension will behave roughly like HD at the beginning of the optimization process,
and roughly like the original underlying algorithm by the end. We suggest choosing a value for α∞
that would produce good performance when used as a fixed learning rate throughout.

Our preliminary experimental evaluation of this extension shows that it gives good convergence
performance for a larger range of β than without, and hence can improve the robustness of our
approach. It also allows us to prove theoretical convergence under certain assumptions about f :

Theorem 5.1. Suppose that f is convex and L-Lipschitz smooth with ‖∇f(θ)‖ < M for some fixed
M and all θ. Then θt → θ∗ if α∞ < 1/L and t δ(t) → 0 as t → ∞, where the θt are generated
according to (non-stochastic) gradient descent.

Proof. Note that

|αt| ≤ |α0|+ β

t−1∑
i=0

∣∣∣∇f (θi+1)
>∇f (θi)

∣∣∣ ≤ |α0|+ β

t−1∑
i=0

‖∇f (θi+1)‖ ‖∇f (θi)‖ ≤ |α0|+ tβM2

where the right-hand side is O(t) as t→∞. Our assumption about the limiting behaviour of t δ(t)
then entails δ(t)αt → 0 and therefore γt → α∞ as t → ∞. For large enough t, we thus have
1/(L + 1) < γt < 1/L, and the algorithm converges by the fact that standard gradient descent
converges for such a (potentially non-constant) learning rate under our assumptions about f (see, e.g.,
Karimi et al. (2016)).

5.2 HIGHER-ORDER HYPERGRADIENTS

While our method adapts αt during training, we still make use of a fixed β, and it is natural to
wonder whether one can use hypergradients to adapt this value as well. To do so would involve the
addition of an update rule analogous to Eq. 3, using a gradient of our objective function computed
now with respect to β. We would require a fixed learning rate for this β update, but then may consider
doing hypergradient updates for this quantity also, and so on arbitrarily. Since our use of a single
hypergradient appears to make a gradient descent algorithm less sensitive to hyperparameter selection,
it is possible that the use of higher-order hypergradients in this way would improve robustness even
further. We leave this hypothesis to explore in future work.

9



Published as a conference paper at ICLR 2018

6 CONCLUSION

Having rediscovered a general method for adapting hyperparameters of gradient-based optimization
procedures, we have applied it to the online tuning of the learning rate, and produced hypergradient
descent variants of SGD, SGD with Nesterov momentum, and Adam that empirically appear to
significantly reduce the time and resources needed to tune the initial learning rate. The method is
general, memory and computation efficient, and easy to implement. The main advantage of the
presented method is that, with a small β, it requires significantly less tuning to give performance
better than—or in the worst case the same as—the baseline. We believe that the ease with which
the method can be applied to existing optimizers give it the potential to become a standard tool and
significantly impact the utilization of time and hardware resources in machine learning practice.

Our start towards the establishment of theoretical convergence guarantees in this paper is limited and
as such there remains much to be done, both in terms of working towards a convergence result for the
non-transitioning variant of hypergradient descent and a more general result for the mixed variant.
Establishing convergence rates would be even more ideal but remains future work.

ACKNOWLEDGMENTS

Baydin and Wood are supported under DARPA PPAML through the U.S. AFRL under Cooperative
Agreement FA8750-14-2-0006, Sub Award number 61160290-111668. Baydin is supported by the
NVIDIA Corporation with the donation of the Titan Xp GPU used for this research. Cornish is
supported by the EPSRC CDT in Autonomous Intelligent Machines and Systems. Martı́nez Rubio
is supported by Intel BDC / LBNL Physics Graduate Studentship. Wood is supported by The Alan
Turing Institute under the EPSRC grant EP/N510129/1; Intel; and DARPA D3M, under Cooperative
Agreement FA8750-17-2-0093.

REFERENCES

L. B. Almeida, T. Langlois, J. D. Amaral, and A. Plakhov. Parameter adaptation in stochastic
optimization. In D. Saad (ed.), On-Line Learning in Neural Networks. Cambridge University Press,
1998.

A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differentiation in
machine learning: a survey. Journal of Machine Learning Research (JMLR) (In press) (ArXiv
Preprint ArXiv:1502.05767), 2018.

Y. Bengio. Gradient-based optimization of hyperparameters. Neural Computation, 12(8):1889–1900,
2000. doi: 10.1162/089976600300015187.

Y. Bengio. Practical recommendations for gradient-based training of deep architectures. In
Neural Networks: Tricks of the Trade, volume 7700, pp. 437–478. Springer, 2012. doi:
10.1007/978-3-642-35289-8 26.

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of Machine
Learning Research, 13:281–305, 2012.

J. Bergstra, D. Yamins, and D. D. Cox. Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. In International Conference on
Machine Learning, 2013.

R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A MATLAB-like environment for machine
learning. In BigLearn, NIPS Workshop, number EPFL-CONF-192376, 2011.

J. Domke. Generic methods for optimization-based modeling. In Proceedings of the Fifteenth
International Conference on Artificial Intelligence and Statistics, volume 22, pp. 318–326, 2012.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

I. Goodfellow, Y. Bengio, and A. Courville. Practical methodology. In Deep Learning, chapter 11.
MIT Press, 2016. http://www.deeplearningbook.org.

10

http://www.deeplearningbook.org


Published as a conference paper at ICLR 2018

F. Hutter, H. Hoos, and K. Leyton-Brown. An evaluation of sequential model-based optimization
for expensive blackbox functions. In Proceedings of the 15th Annual Conference Companion on
Genetic and Evolutionary Computation, pp. 1209–1216. ACM, 2013.

R. A. Jacobs. Increased rates of convergence through learning rate adaptation. Neural Networks, 1
(4):295–307, 1988.

H. Karimi, J. Nutini, and M. Schmidt. Linear convergence of gradient and proximal-gradient methods
under the Polyak-Lojasiewicz condition. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 795–811. Springer, 2016.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In The International Conference
on Learning Representations (ICLR), San Diego, 2015.

A. Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, Department of
Computer Science, University of Toronto, 2009.

D. Maclaurin, D. K. Duvenaud, and R. P. Adams. Gradient-based hyperparameter optimization
through reversible learning. In Proceedings of the 32nd International Conference on Machine
Learning, pp. 2113–2122, 2015.

D. Martı́nez. Convergence Analysis of an Adaptive Method of Gradient Descent. Master’s thesis,
University of Oxford, 2017.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga,
and A. Lerer. Automatic differentiation in PyTorch. In NIPS 2017 Autodiff Workshop: The Future
of Gradient-based Machine Learning Software and Techniques, Long Beach, CA, US, December 9,
2017, 2017.

B. A. Pearlmutter. Fast exact multiplication by the Hessian. Neural Computation, 6(1):147–160,
1994. doi: 10.1162/neco.1994.6.1.147.

V. P. Plagianakos, D. G. Sotiropoulos, and M. N. Vrahatis. An improved backpropagation method
with adaptive learning rate. Technical Report TR98-02, University of Patras, Department of
Mathematics, 1998.

V. P. Plagianakos, G. D. Magoulas, and M. N. Vrahatis. Learning rate adaptation in stochastic gradient
descent. In Advances in Convex Analysis and Global Optimization, pp. 433–444. Springer, 2001.

M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation learning: The
RPROP algorithm. In IEEE International Conference on Neural Networks, pp. 586–591. IEEE,
1993.

T. Schaul, S. Zhang, and Y. LeCun. No more pesky learning rates. Proceedings of the 30th
International Conference on Machine Learning, 28:343–351, 2013.

N. N. Schraudolph. Local gain adaptation in stochastic gradient descent. In Proceedings of the 9th
International Conference on Neural Networks (ICANN), volume 2, pp. 569–574, 1999.

N. N. Schraudolph, J. Yu, and D. Aberdeen. Fast online policy gradient learning with SMD gain
vector adaptation. In Advances in Neural Information Processing Systems, pp. 1185, 2006.

S. Shao and P. P. C. Yip. Rates of convergence of adaptive step-size of stochastic approximation
algorithms. Journal of Mathematical Analysis and Applications, 244(2):333–347, 2000. ISSN
0022-247X. doi: 10.1006/jmaa.2000.6703.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine learning
algorithms. In Advances in Neural Information Processing Systems, pp. 2951–2959, 2012.

R. S. Sutton. Gain adaptation beats least squares? In Proceedings of the Seventh Yale Workshop on
Adaptive and Learning Systems, pp. 161–166, 1992.

T. Tieleman and G. Hinton. Lecture 6.5 – RMSProp: Divide the gradient by a running average of its
recent magnitude. COURSERA: Neural Networks for Machine Learning, 4(2), 2012.

11


	Introduction
	Hypergradient Descent
	Derivation of the HD rule in the general case

	Related Work
	Learning Rate Adaptation
	Hyperparameter Optimization Using Derivatives

	Experiments
	Online Tuning of the Learning Rate
	Tuning Example: Logistic Regression

	Tuning Example: Multi-Layer Neural Network
	Tuning Example: Convolutional Neural Network

	Convergence and Extensions
	Transitioning to the Underlying Algorithm
	Higher-order Hypergradients

	Conclusion

