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ABSTRACT

Recent years have witnessed a surge in the development of protein foundation
models, significantly improving performance in protein prediction and generative
tasks ranging from 3D structure prediction and protein design to conformational
dynamics. However, the capabilities and limitations associated with these models
remain poorly understood due to the absence of a unified evaluation framework.
To fill this gap, we introduce ProteinBench, a holistic evaluation framework de-
signed to enhance the transparency of protein foundation models. Our approach
consists of three key components: (i) A taxonomic classification of tasks that
broadly encompass the main challenges in the protein domain, based on the re-
lationships between different protein modalities; (ii) A multi-metric evaluation
approach that assesses performance across four key dimensions: quality, novelty,
diversity, and robustness; and (iii) In-depth analyses from various user objectives,
providing a holistic view of model performance. Our comprehensive evaluation
of protein foundation models reveals several key findings that shed light on their
current capabilities and limitations. To promote transparency and facilitate further
research, we release the evaluation dataset, code, and a public leaderboard publicly
for further analysis and a general modular toolkit. We intend for ProteinBench to
be a living benchmark for establishing a standardized, in-depth evaluation frame-
work for protein foundation models, driving their development and application
while fostering collaboration within the field.

1 INTRODUCTION

Proteins are fundamental molecules playing pivotal roles in a vast array of biological processes,
from enzymatic catalysis and signal transduction to structural support and immune response. Their
functions are determined by their amino acid sequences, often mediated through folding into spe-
cific three-dimensional structures. Understanding the complex interplay between protein sequence,
structure, and function is crucial for advancing science and engineering spanning pharmaceuticals,
agriculture, specialty chemicals, and biofuels (Kuhlman & Bradley, 2019).
In recent years, there has been a surge in the development of protein foundation models1 aimed
at understanding fundamental biological processes by capturing the intricate mechanisms of pro-
teins (Jumper et al., 2021; Abramson et al., 2024; Lin et al., 2023a; Watson et al., 2023b; Ingraham
et al., 2023; Krishna et al., 2024; Shin et al., 2021; Madani et al., 2023; Alley et al., 2019; Wang et al.,
2024b; Hayes et al., 2024; Hie et al., 2024). These models, leveraging advanced deep-learning and
generative AI techniques, have demonstrated remarkable capabilities and marks a significant shift
from traditional, task-specific approaches to more generalizable frameworks capable of learning
complex patterns and relationships within vast protein datasets. For instance, AlphaFold3 (Abram-
son et al., 2024), which is based on diffusion models, has achieved unprecedented accuracy in full
atom structure prediction for all biomolecules, while others like the ESM series (Rives et al., 2021;
Hsu et al., 2022; Lin et al., 2023a; Verkuil et al., 2022; Hayes et al., 2024) and DPLM (Wang et al.,
2024b) have shown impressive representation capability in protein language modeling benefiting di-
verse downstream tasks. Furthermore, these foundation models are not limited to single modalities.
Multi-modal models that jointly consider sequence, structure, and function are emerging, offering a
comprehensive understanding of protein behavior (Hayes et al., 2024; Liu et al., 2023). In addition

1In this study, we broaden the definition of protein foundation models to include any generative models
aimed at addressing foundational problems of protein sciences.
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Figure 1: Comprehensive overview of fundamental protein modeling tasks in ProteinBench.
ProteinBench incorporates a spectrum of protein modeling challenges. Tasks marked with blue stars
highlight domains where standardized performance benchmarks were previously unavailable.

to sequence and structural modeling, recent works on protein conformational dynamics further ex-
tend models’ capabilities, offering deeper insights into the connections from sequence to structural
dynamics (and ultimately functions) through the lens of generative AI (Jing et al., 2023; Zheng
et al., 2024; Jing et al., 2024; Wang et al., 2024c; Lu et al., 2024).
However, the rapid progress of protein foundation models has also led to an urgent need for a uni-
fied framework to holistically evaluate their performance across a diverse set of tasks, datasets, and
metrics, as shown in Appendix A. The current landscape of protein foundation models is character-
ized by ununified modeling approaches, and task-specific or model-specific evaluation criteria. This
heterogeneity in evaluation methods makes it challenging to draw meaningful comparisons between
different models and to fully understand their relative strengths and limitations.
Through systematic evaluations of datasets spanning diverse biological domains, with a particular
emphasis on protein design and conformational dynamics, we aim to provide a comprehensive anal-
ysis of model architecture and performance on protein foundation models. This approach allows
us to dissect the impact of various model components and data characteristics on different aspects
of protein modeling. Comparing the capabilities of these models on standardized benchmarks is
crucial for guiding future research directions, informing model selection for practical applications,
and driving the advancement of the field as a whole.
In this study, as shown in Figure 1, we present ProteinBench, the first benchmark designed to provide
a comprehensive evaluation of protein foundation models through four key components:
(1) A taxonomic classification of tasks encompassing the main generative challenges in the pro-
tein domain. ProteinBench covers a wide range of generative tasks, including protein design (span-
ning structure design, sequence design, structure-sequence co-design, and an application-specific
task of antibody design) and protein conformation prediction (single-state, multiple-state, and con-
formational distribution prediction). These tasks, addressing different protein modalities, enable a
nuanced analysis of the interplay between model architecture and modal characteristics on perfor-
mance. We utilize diverse and carefully curated datasets to capture the complexity and diversity of
the protein universe, ensuring a thorough evaluation of model capabilities.
(2) A multi-metric evaluation approach assessing performance across four key dimensions:
quality, novelty, diversity, and robustness. Current evaluations of protein generative models of-
ten suffer from non-unified metrics and incomplete assessments, typically focusing on only one or
two aspects. However, protein scientific problems encompass a complex and systematic array of
challenges. Downstream tasks in protein modeling and design involve intricate interplays between
sequence, structure, and function. ProteinBench addresses this limitation by providing a comprehen-
sive measurement of a model’s ability based on four critical dimensions: quality, novelty, diversity,
and robustness. This multi-faceted approach offers a more holistic view of model performance and
capabilities.
(3) In-depth analyses from various user objectives, providing a holistic view of model per-
formance. Recognizing that different users may have varying objectives when applying protein
foundation models, we conduct in-depth analyses from multiple perspectives. For instance, in pro-
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Table 1: Overview of ProteinBench, which summarizes the dimensions, metrics, and methods used
in ProteinBench. We use ‘italics’ for highlighting, a method that has not yet been evaluated in
ProteinBench but will be assessed in the future. Details regarding task selection, metric design
principles, and implementation specifics are provided in the corresponding sections.
Tasks Dimension Metrics Methods

Protein Design

Inverse Folding
(Section B.1.1)

Sequence recovery AAR ProteinMPNN, ESMIF1,
Refoldability scTM (AF2) LM-Design, ESM3
Stability pLDDT (AF2) PiFold, CarbonDesign
Robustness

Backbone Design
(Section B.1.2)

Quality scTM, scRMSD (ProteinMPNN & ESMFold) Rfdiffusion, Frameflow, Chroma,
Novelty Max. TM score to PDB database (Foldseek) Framediff, Foldflow, Genie, Proteus
Diversity Pairwise TM, Max Cluster (Foldseek) foldingdiff

Sequence Design
(Section B.1.3)

Quality pLDDT (AF2) ProGen2, EvoDiff,
Novelty Max. TM to PDB database (Foldseek) DPLM, ESM3
Diversity Pairwise TM , Max Cluster (Foldseek)

Struct-seq Co-design
(Section B.1.4)

Quality scTM, scRMSD (ESMFold) ProteinGenerator, ProtPardelle,
Novelty Max. TM score to PDB database (Foldseek) Multiflow, ESM3, CarbonNovo
Diversity Pairwise TM, Max Cluster (Foldseek)

Motif Scaffolding
(Section B.1.5)

Quality Motif RMSD, Scafold RMSD FrameFlow, Rfdiffusion, TDS, EvoDiff, DPLM, ESM3

Antibody Design
(Section B.1.6)

Accuracy AAR, RMSD, TM-score HERN,
Functionality Binding Energy (Rosetta) MEAN, dyMEAN,
Specificity Seq Similarity, PHR DiffAb, AbDPO
Rationality CN-Score, Clashes, Seq Naturalness

Total Energy (Rosetta), scRMSD (IgFold)

Protein Conformation Prediction

Single-state (folding)
(Section B.2.1)

Accuracy TM-score, RMSD, GDT, lDDT AlphaFold2, OpenFold, ESMFold,
Quality CA clash, Peptide bond break RoseTTAFold2, EigenFold

Multiple-state
(Section B.2.2)

Accuracy Ensemble TM-score/RMSD

EigenFold, MSA-subsampling,
Str2Str, AlphaFlow/ESMFlow,
ConfDiff, Distributed graphormer

Diversity Pairwise RMSD/TM-score
Quality CA clash, Peptide bond break

Distribution Prediction
(Section B.2.3)

Accuracy Flexibility accuracy, Distributional similarity, Ensemble observables
Diversity Pairwise RMSD, RMSF
Quality CA clash, Peptide bond break

tein design, some users may prioritize models that fit natural evolutionary distributions, while others
may seek models capable of generating novel proteins outside the training set distribution. By an-
alyzing model capabilities from these different objectives, ProteinBench provides insights that are
beneficial for a wide range of practical applications.
(4) Leaderboard and code framework. To facilitate fair comparisons and support the development
of new methods, we provide a unified experimental framework. This includes a public leaderboard
and open-source code, enabling researchers to easily benchmark their models against existing ones
and contribute to the ongoing advancement of the field.
By incorporating these four components, ProteinBench aims to establish a standardized, compre-
hensive, and user-centric evaluation framework for protein foundation models. This approach not
only illuminates the current state-of-the-art but also guides future research directions and accelerates
progress in the field of protein modeling and design.

2 PROTEINBENCH

In this section, we provide ProteinBench, a holistic evaluation framework for protein foundation
models as shown in Table 1, with a particular focus on two key generative tasks: protein design and
conformation prediction. These two areas are further divided into eight subtasks. For each task, we
focus on the following aspects: More details about the task definitions, evaluations, and discussions
can be found in Appendix B.

2.1 PROTEIN DESIGN

We evaluate protein foundation models on six design tasks using standardized metrics, enabling
cross-task comparisons and assessment of different modeling approaches.

2.1.1 INVERSE FOLDING

Inverse folding is a fundamental task aiming to design amino acid sequences that can fold into
predetermined structures. Evaluations were conducted on different datasets targeting two distinct
objectives of structure-based sequence design: evolutionary distribution capturing and de novo pro-
tein design. For more detailed information, please refer to Section B.1.1. Evaluation results are
presented in Table 2. Our analysis of native distribution fitness reveals that language model-based
method LM-DESIGN (Zheng et al., 2023) achieve high sequence recovery rates for native protein
structure-based sequence design. This suggests that these models effectively learn and replicate the
intricate patterns of amino acid selection that have emerged through evolutionary processes. While
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Table 2: Performance of structure-based sequence design models on inverse folding tasks. The
reported results are the median of repetitive experiments. ’N/A’ stands for not applicable. ESMIF1
and ESM3 use all native structures and sequences for model training, therefore, they not measured
in the evolution distribution fitting objective.

Objectives Fitting Evolution Distribution De novo backbones based sequence design

CASP CAMEO length 100 length 200 length 300 length 400 length 500

AAR ↑ AAR ↑ scTM ↑ pLDDT ↑ scTM ↑ pLDDT ↑ scTM ↑ pLDDT ↑ scTM ↑ pLDDT ↑ scTM ↑ pLDDT ↑

ProteinMPNN 0.450 0.468 0.962 94.14 0.945 89.34 0.962 90.28 0.875 83.76 0.568 67.09
ESM-IF1 N/A N/A 0.810 88.83 0.635 69.67 0.336 74.36 0.449 64.59 0.462 58.97
LM-DESIGN 0.516 0.570 0.834 78.45 0.373 58.41 0.481 69.86 0.565 59.87 0.397 56.35
ESM3 N/A N/A 0.942 86.60 0.486 60.69 0.632 70.78 0.564 62.63 0.452 59.37

its performance decreases when applied to de novo backbone-based sequence design. Conversely,
ProteinMPNN (Dauparas et al., 2022a), a method specifically developed for de novo design and
trained using coordinates perturbed with 0.2Å added noise, consistently demonstrates superior per-
formance in de novo design tasks. However, ProteinMPNN’s performance shows a decline when
evaluated on the objective of fitting to native evolution. This finding suggests no single model cur-
rently excels across all inverse folding objectives. The choice of model should be carefully aligned
with the intended applications.
ESM-IF1 (Hsu et al., 2022), trained on AlphaFoldDB (Varadi et al., 2022) using GVP (Jing et al.,
2020) and Transformer architectures with 0.1Å noise, showed suboptimal performance in de novo
backbone sequence design. While the model excels at functional mutation prediction as demon-
strated in ProteinGYM (Notin et al., 2024), these tasks were not included in our study. The recently
released ESM3 (Hayes et al., 2024) performs similarly to ESM-IF1, with advantages at specific
sequence lengths (100, 300, and 400 residues). PiFold (Gao et al., 2022) and CarbonDesign (Ren
et al., 2024) are not currently included in ProteinBench.

2.1.2 STRUCTURE DESIGN

Protein backbone design focuses on generating new protein folds to expand the repertoire of protein
structures beyond those found in nature. Further details are provided in Section B.1.2. Evaluation
results are presented in Table 3 and Table 12. Based on the quality metrics of scTM-score and
scRMSD, RFdiffusion (Watson et al., 2023b) demonstrates exceptional performance in backbone
design for chain lengths ranging from 50 to 300 amino acids. FrameFlow (Yim et al., 2023) achieves
the second-best performance in this range. However, we observe a significant performance decrease
across all models for longer chains (500 amino acids), with scTM scores dropping by more than
20%. This decline suggests that developing methods for long-chain backbone design remains an
important challenge for future research. Proteus (Wang et al., 2024a) shows a superior design qual-
ity for long-chain backbones (500 residues). However, we observed a significant decline in structure
diversity for long chains. Novelty is an equally important metric, as it gauges a method’s capacity
to explore new structural space beyond known protein folds. Under moderate quality constraints
(scTM score >0.5), FoldFlow (Bose et al., 2023) and Genie (Lin & AlQuraishi, 2023) exhibit good
performance in generating novel structures. When we increase the quality threshold (scTM score
>0.8), Chroma (Ingraham et al., 2023) generally shows the best performance across chain lengths
from 50 to 500 amino acids. For structural diversity, Chroma shows commendable performance
across the tested chain lengths. It is important to note that we used the released FoldFlow model
trained on a smaller training set with shorter sequences. This limitation may lead to an unfair com-
parison of the model architecture to other methods trained on the entire PDB database, particularly
for longer chain lengths. Foldingdiff (Wu et al., 2024a) is not featured in ProteinBench.

2.1.3 SEQUENCE DESIGN

Protein sequence design aims to generate amino acid sequences with desired properties. See Section
B.1.3 for details. In this section, we assess the performance of various protein sequence generative
models. The evaluation metrics include AlphaFold2 (AF2) predicted pLDDT scores for structural
plausibility (quality), maximum TM-score and maximum cluster values for structural diversity, and
maximum TM-score to PDB structures for structural novelty. We choose representative methods
of distinct modeling foundations for evaluation. Among the methods evaluated, ProGen2 (Nijkamp
et al., 2023) is an autoregressive protein language model (AR-LM), while EvoDiff (Alamdari et al.,
2023) is designed as an order-agnostic autoregressive diffusion model (OADM). DPLM (Wang et al.,
2024b) and ESM3 (Hayes et al., 2024) share a probabilistic foundation as absorbing discrete diffu-
sion models or generative masked language models. Notably, ESM3 is a multimodal model that

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Table 3: Performance of backbone design models evaluated using various lengths ranging from
50 to 500. The reported results are the median of repetitive experiments. We highlight the best
performance in bold and the second-best with the underline. For the novelty and diversity metrics,
we only highlight results with the corresponding scTM score higher than 0.5. ’N/A’ stands for not
applicable.

length 50 length 100

Quality Novelty Diversity Quality Novelty Diversity

scTM ↑ scRMSD ↓ Max TM ↓ pairwise TM ↓ Max Clust. ↑ scTM ↑ scRMSD ↓ Max TM ↓ pairwise TM ↓ Max Clust.↑

Native PDBs 0.91±0.11 0.74±1.45 N/A 0.29±0.03 0.66 0.96±0.10 0.67±1.61 N/A 0.30±0.02 0.77
RFdiffusion 0.95±0.12 0.45±1.71 0.65±0.16 0.58±0.05 0.67 0.98±0.12 0.48±0.56 0.76±0.01 0.41±0.03 0.32
FrameFlow 0.91±0.09 0.58±0.51 0.75±0.01 0.68±0.10 0.39 0.94±0.08 0.70±0.70 0.72±0.01 0.55±0.08 0.49
Chroma 0.85±0.15 1.05±1.49 0.59±0.08 0.29±0.01 0.48 0.89±0.13 1.27±1.85 0.70±0.01 0.35±0.03 0.59
FrameDiff(latest) 0.85±0.13 1.00±1.27 0.67±0.01 0.35±0.02 0.64 0.90±0.08 1.23±1.02 0.71±0.08 0.52±0.05 0.11
FoldFlow1(sfm) 0.90±0.10 0.67±0.88 0.68±0.03 0.63±0.07 0.48 0.87±0.11 1.34±1.42 0.65±0.01 0.49±0.08 0.83
FoldFlow1(base) 0.79±0.14 1.19±1.27 0.66±0.02 0.53±0.08 0.76 0.81±0.15 1.70±1.95 0.62±0.01 0.48±0.07 0.83
FoldFlow1(ot) 0.83±0.16 1.10±1.53 0.65±0.02 0.53±0.08 0.77 0.83±0.15 1.60±1.95 0.64±0.01 0.48±0.06 0.81
Genie 0.57±0.15 3.12±2.07 0.57±0.03 0.32±0.02 0.90 0.69±0.17 3.38±3.04 0.59±0.01 0.31±0.02 0.96
Proteus – – – – – 0.94±0.12 0.84±0.52 0.73±0.10 – 0.5

length 300 length 500

Quality Novelty Diversity Quality Novelty Diversity

scTM ↑ scRMSD ↓ Max TM ↓ pairwise TM ↓ Max Clust. ↑ scTM ↑ scRMSD ↓ Max TM ↓ pairwise TM ↓ Max Clust.↑

Native PDBs 0.97±0.10 0.82±2.67 N/A 0.28±0.02 0.77 0.97±0.17 1.07±5.96 N/A 0.29±0.03 0.8
RFdiffusion 0.96±0.15 1.03±3.14 0.64±0.01 0.36±0.03 0.65 0.79±0.19 5.60±5.66 0.62±0.004 0.33±0.02 0.89
FrameFlow 0.92±0.15 1.95±2.76 0.65±0.01 0.43±0.07 0.88 0.61±0.19 7.92±4.08 0.61±0.01 0.40±0.06 0.92
Chroma 0.87±0.13 2.47±3.63 0.66±0.01 0.36±0.04 0.67 0.72±0.18 6.71±5.76 0.60±0.01 0.29±0.01 0.99
FrameDiff(latest) 0.87±0.12 2.73±2.69 0.69±0.00 0.48±0.04 0.21 0.63±0.24 9.52±18.19 0.58±0.03 0.40±0.06 0.52
FoldFlow1(sfm) 0.45±0.11 9.04±2.52 0.54±0.01 0.39±0.04 1.00 0.37±0.06 13.04±1.71 0.53±0.01 0.37±0.03 1.00
FoldFlow1(base) 0.43±0.09 9.56±2.42 0.54±0.01 0.39±0.05 0.98 0.35±0.05 13.20±2.29 0.52±0.01 0.39±0.05 1.00
FoldFlow1(ot) 0.54±0.12 8.21±2.38 0.58±0.00 0.41±0.06 0.94 0.37±0.06 12.48±2.00 0.51±0.01 0.35±0.03 1.00
Genie 0.27±0.02 20.37±1.70 0.30±0.01 0.23±0.01 1.00 0.25±0.01 26.08±1.58 0.22±0.002 0.23±0.004 1.00
Proteus 0.94±0.06 1.46±1.08 0.78±0.05 – 0.34 0.90±0.13 2.76±3.57 0.72±0.02 – 0.34

Table 4: Performance of protein sequence generative models/language models on sequence genera-
tion tasks. The reported results are the average of repetitive experiments with the standard derivation.
The pLDDT score is the output of AlphaFold2. Max TM is an abbreviation for Maximum TM-score
to PDB database. ’N/A’ stands for not applicable.We highlight the best performance in bold.

length 100 length 200

Quality Diversity Novelty Quality Diversity Novelty

ppl ↓ pLDDT ↑ pairwise TM ↓ Max Clust. ↑ Max TM ↓ ppl ↓ pLDDT↑ pairwise TM ↓ Max Clust. ↑ Max TM ↓

Native Seqs 68.46±16.50 0.55±0.19 0.75 N/A 61.91±11.62 0.49±0.10 0.78 N/A
Progen 2 (700M) 8.28±3.87 64.00±21.26 0.42±0.10 0.94 0.64±0.08 5.68±3.64 69.91±9.23 0.40±0.13 0.91 0.69±0.05
EvoDiff 16.89±1.04 50.20±10.27 0.43±0.05 0.98 0.69±0.03 17.28±1.64 50.66±16.38 0.36±0.04 1.00 0.71±0.02
DPLM (650M) 6.21±3.10 85.38±14.20 0.50±0.20 0.80 0.74±0.10 4.61±2.63 93.54±3.73 0.54±0.24 0.70 0.91±0.004
ESM3 (1.4B) 14.79±2.90 54.26±15.35 0.45±0.15 0.90 0.68±0.07 12.96±2.38 58.45±9.40 0.35±0.07 1.00 0.80±0.01

length 300 length 500

Quality Diversity Novelty Quality Diversity Novelty

ppl ↓ pLDDT ↑ pairwise TM ↓ Max Clust. ↑ Max TM ↓ ppl ↓ pLDDT↑ pairwise TM ↓ Max Clust. ↑ Max TM ↓

Native Seqs 61.49±14.47 0.51±0.13 0.85 N/A 62.95±12.60 0.51±0.11 0.78 N/A
Progen 2 (700M) 6.25± 4.02 65.69±20.93 0.42±0.16 0.93 0.66±0.06 4.27±3.60 61.45±20.17 0.32±0.11 0.95 0.68±0.08
EvoDiff 17.13±2.00 45.14±9.95 0.31±0.03 1.00 0.68±0.02 16.51±3.82 43.14±5.16 0.31±0.03 1.00 0.69±0.02
DPLM (650M) 3.47±1.44 93.07±5.77 0.57±0.25 0.63 0.91±0.01 3.33±1.8 87.73±11.61 0.43±0.18 0.85 0.85±0.04
ESM3 (1.4B) 14.59±2.97 48.08±13.34 0.32±0.03 1.00 0.75±0.02 11.10±2.26 52.17±10.52 0.30±0.05 1.00 0.54±0.03

advances beyond other sequence-only methods by jointly learning protein sequences, structures and
functions through tokenization. For each model and sequence length, we sample 50 sequences to
evaluate their performance.
As shown in Table 4, DPLM consistently shows the highest quality scores, indicating superior ac-
curacy in sequence generation. However, it has relatively lower diversity metrics, suggesting less
variation in its generated sequences. EvoDiff, while demonstrating lower pLDDT scores, excels in
diversity, particularly in producing highly diverse sequence clusters. Surprisingly, ESM3, a multi-
modal protein LM, displays lower pLDDT in sequence generation, while maintaining competitive
diversity, especially in generating novel sequences. ProGen2 strikes a balance between quality and
diversity, offering moderate pLDDT scores and satisfactory diversity and novelty. This model is
effective for generating sequences that are both diverse and close to known structures, depending
on specific application needs. Regarding different chain lengths, all the models generally exhibit
consistent trends in their performance metrics. As the chain length increases, there is a slight de-
cline in the quality of sequences generated by some models, particularly for EvoDiff and ESM3.
This indicates a challenge in maintaining high sequence quality as the chain length grows. Among
them, DPLM demonstrates robust performance across all lengths, maintaining high pLDDT even for
longer sequences. Overall, DPLM is good at highly structural protein sequence generation, while
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Table 5: Performance of protein co-design models on structure-sequence co-generation tasks. The
reported results are the average of repetitive experiments with the standard derivation. We highlight
the best performance in bold and the second-best with the underline. ∗: We have tried our best
to reproduce all models according to the instructions in their respective codebases, using publicly
available model weights. However, some results may differ from those reported in the original
studies. We welcome any feedback and corrections to help us make timely updates in the future.

length 100 length 200

Quality Diversity Novelty Quality Diversity Novelty

scTM ↑ scRMSD ↓ Max Clust. ↑ Max TM ↓ scTM ↑ scRMSD ↓ Max Clust. ↑ Max TM ↓

Native PDBs 0.91±0.11 2.98±3.49 0.75 N/A 0.88±0.09 3.24±3.77 0.77 N/A
ProteinGenerator 0.91±0.08 3.75±3.39 0.24 0.73 0.88±0.09 6.24±4.10 0.25 0.72
ProtPardelle 0.91±0.09 2.07±1.87 0.73 0.16 0.92±0.04 2.36±1.19 0.09 0.75
Multiflow 0.96±0.04 1.10±0.71 0.33 0.71 0.95±0.04 1.61±1.73 0.42 0.71
Carbonnovo 0.91±0.14 1.16±1.03 0.71 0.69 0.94±0.09 1.18±1.47 0.50 0.71
ESM3* 0.72±0.19 13.80±10.51 0.64 0.41 0.63±0.20 21.18±16.19 0.63 0.61

length 300 length 500

Quality Diversity Novelty Quality Diversity Novelty

scTM ↑ scRMSD ↓ Max Clust. ↑ Max TM ↓ scTM ↑ scRMSD ↓ Max Clust. ↑ Max TM ↓

Native PDBs 0.92±0.12 3.94±4.95 0.75 N/A 0.90±0.14 9.64±7.05 0.80 N/A
ProteinGenerator 0.81±0.14 9.26±4.13 0.22 0.71 0.41±0.19 33.91±15.10 0.18 0.73
ProtPardelle 0.94±0.02 2.07±0.73 0.05 0.73 0.41±0.10 41.10±8.85 0.14 0.65
Multiflow 0.96±0.06 2.14±3.24 0.58 0.71 0.83±0.15 8.48±7.02 0.67 0.68
Carbonnovo 0.95±0.08 1.33±1.59 0.31 0.74 0.85±0.15 4.07±4.14 0.67 0.68
ESM3* 0.59±0.21 25.5±20.68 0.52 0.73 0.54±0.20 33.70±21.08 0.37 0.77

EvoDiff and ESM3 are preferable for better diversity and novelty, with ProGen2 offering a balanced
performance across metrics.

2.1.4 STRUCTURE AND SEQUENCE CO-DESIGN

Protein structure-sequence co-design represents a challenge in protein engineering that involves the
simultaneous generation of both backbone structure and amino acid sequence. We evaluate the struc-
tural quality, novelty, and diversity similarly to backbone design. See Section B.1.4 for details. in
Table 5. We inspect the performance of ProteinGenerator (Lisanza et al., 2023), ProtPardelle (Chu
et al., 2024), Multiflow (Campbell et al.), CarbonNovo (Ren et al., 2024) and ESM3 (Hayes et al.,
2024) for different lengths. The performance is assessed using metrics similar to those applied in
backbone generation. Note that, however, the quality here is about structure-sequence compatibility
measuring how well the designed sequence can fold into the corresponding designed structure, using
scTM and scRMSD. The key difference is that co-design models are tasked with simultaneously gen-
erating both the sequence and structure, while backbone design models require an additional inverse
folding model, such as ProteinMPNN, to design the sequence. Other metrics used for evaluation
include diversity (max cluster) and novelty (max TM-score to PDB).
As shown in Table 5, ProteinGenerator, ProtPardelle, CarbonNovo, and Multiflow consistently show
strong performance of structure-sequence compatibility when length less than 300, with high scTM
scores (up to 0.96±0.06) and relatively low scRMSD values, indicating superior structural qual-
ity in generated sequences. ProtPardelle and ProteinGenerator particularly excel at shorter lengths
while failing at long proteins. CarbonNovo and Multiflow maintain high performance even as se-
quence length increases, demonstrating their robustness with consistently high scTM scores and
lower scRMSD values, which indicates their capability to generate high-quality structures. ESM3,
on the other hand, shows suboptimal performance by its low scTM scores and very high scRMSD
values, suggesting that it struggles with unconditional generation. Overall, these findings suggest
that CarbonNovo and Multiflow are particularly robust and superior as a co-design protein generative
model across all tested lengths.

2.1.5 MOTIF SCAFFOLDING

Motif scaffolding represents a specialized challenge in protein design that focuses on creating pro-
tein structures incorporating specific functional motifs or binding sites. See Section B.1.5 for more
details. In this section, we evaluate the performance of various motif-scaffolding methods across dif-
ferent scaffolds used in Watson et al. (2023b) and Yim et al. (2024), focusing on their effectiveness
in designing scaffold structures. The primary objective of this evaluation is to compare the efficacy
of structure-based and sequence-based approaches in generating designable scaffolds. For purely
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Table 6: Performance of antibody design methods on 55 antibody-antigen complexes from the
RAbD dataset. For methods that can generate multiple antibodies (marked with *), the standard
deviations between different antibodies generated against the same antigen are also reported.

Accuracy Functionality Specificity
AAR ↑ RMSD ↓ TM-score ↑ Binding Energy ↓ SeqSim-outer ↓ SeqSim-inner ↑ PHR ↓

RAbD (natural) 100.00% 0.00 1.00 -15.33 0.26 N/A 45.78%
HERN 33.17% 9.86 0.16 1242.77 0.41 N/A 39.83%
MEAN 33.47% 1.82 0.25 263.90 0.65 N/A 40.74%
dyMEAN 40.95% 2.36* 0.36 889.28 0.58 N/A 42.04%
*dyMEAN-FixFR 40.05%±1.06 2.37±0.03 0.35±0.01 612.75±56.03 0.60 0.96 43.75%±2.24
*DiffAb 35.04%±8.36 2.53±0.60 0.37±0.06 489.42±499.76 0.37 0.45 40.68%±10.65
*AbDPO 31.29%±7.29 2.79±3.01 0.35±0.06 116.06±186.06 0.38 0.60 69.69%±8.49
*AbDPO++ 36.25%±7.95 2.48±0.59 0.35±0.06 223.73±281.7 0.39 0.54 44.51%±9.55

Rationality
CN-score ↑ Clashes-inner ↓ Clashes-outer ↓ SeqNat↑ Total Energy ↓ scRMSD ↓

RAbD (natural) 50.19 0.07 0.00 -1.74 -16.76 1.77
HERN 0.04 0.04 3.25 -1.47 5408.74 9.89
MEAN 1.33 11.65 0.29 -1.83 1077.32 2.77
dyMEAN 1.49 9.15 0.47 -1.79 1642.65 2.11
*dyMEAN-FixFR 1.14±1.71 8.88±0.55 0.48±0.12 -1.82±0.10 1239.29±113.84 2.48±0.24
*DiffAb 2.02±2.83 1.84±1.35 0.19±0.31 -1.88±0.47 495.69±350.96 2.57±0.77
*AbDPO 1.33±2.31 4.14±1.84 0.10±0.24 -1.99±0.34 270.12±217.45 2.79±3.25
*AbDPO++ 2.34±3.20 1.66±1.28 0.08±0.20 -1.78±0.43 338.14±266.48 2.50±0.75

sequence-based methods, e.g., EvoDiff (Alamdari et al., 2023) and DPLM (Wang et al., 2024b), we
use ESMFold to predict the structures of their designed motif-scaffold sequences.

Figure 2: Performance of motif-scaffolding of structure-based and sequence-based methods on the
benchmark used in Watson et al. (2023b). Results of FrameFlow, RFDiffusion and TDS are quoted
from Yim et al. (2024)3.

Figure 2 reveals a wide range of performance levels among the tested methods, each exhibiting dis-
tinct strengths and weaknesses depending on the specific scaffold context. Notably, structure-based
methods such as RFdiffusion (Watson et al., 2023b), TDS (Wu et al., 2024b) and FrameFlow (Yim
et al., 2024) consistently perform well across most scenarios, with RFdiffusion showing particular
robustness in generating a high number of designable scaffolds. This suggests that structure-based
methods are highly effective at capturing the intricate structural details necessary for successful
scaffold design. In contrast, sequence-based methods like EvoDiff and DPLM display variable per-
formance, excelling in certain scaffolds that are primarily governed by evolutionary constraints, but
underperforming in others with more complex structural motifs. This variability may reflect their
limitations in recognizing and adapting to specific structural features.
Interestingly, we find that ESM3 (Hayes et al., 2024), a recent multimodal language model that
handles both sequence and structure, performs similarly to advanced structure-based models and
even succeeds in cases where those models fail. This shows that multimodal models like ESM3 can
process both types of information within a unified framework, making them useful for conditional
design. However, ESM3 still doesn’t outperform structure-based methods in most cases. Our results
highlight that no single model is best for all scaffolds. Future research should focus on combining
these methods to leverage their strengths for more effective protein design.

2.1.6 ANTIBODY DESIGN

Antibody designing aims to generate antibodies that specifically bind to target antigens (details re-
fer to B.1.6 [Task Definition]). In this section, we selected five antigen-specific antibody design
methods (HERN (Jin et al., 2022), MEAN (Kong et al., 2022), dyMEAN (Kong et al., 2023), Dif-
fAb (Luo et al., 2022), AbDPO (Zhou et al., 2024)) and two of their variants (dyMEAN-FixFR and
AbDPO++) to evaluate their performance in CDR-H3 generation towards the given antigens. All

3https://github.com/microsoft/protein-frame-flow/tree/main/motif_
scaffolding
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Table 7: Performance of protein folding on CAMEO2022. Results are reported as mean/median
over 183 proteins. The best performance is highlighted in bold, and the second-best is underlined.
EigenFold only predicts CA coordinates and PepBond break % is not available (shown in “N/A”).

Accuracy Quality

TM-score ↑ RMSD ↓ GDT-TS ↑ lDDT ↑ CA clash (%) ↓ PepBond break (%) ↓

AlphaFold2 0.871/0.952 3.21/1.64 0.860/0.921 0.904/0.933 0.3/0.0 4.8/4.1
OpenFold 0.870/0.947 3.21/1.59 0.856/0.913 0.899/0.933 0.4/0.0 2.0/1.7
RoseTTAFold2 0.859/0.941 3.52/1.75 0.845/0.903 0.892/0.926 0.3/0.0 5.5/4.0
ESMFold 0.847/0.929 3.98/2.10 0.826/0.881 0.870/0.907 0.3/0.0 4.7/3.4
EigenFold 0.743/0.823 7.65/3.73 0.703/0.781 0.737/0.810 8.0/4.6 N/A

methods were trained on the same dataset with the configurations reported in the corresponding pa-
pers and tested on a unified set of 55 test cases from the RAbD dataset (Adolf-Bryfogle et al., 2018)
(further details of model implementation and data construction are provided in Appendix B.1.6
[Model Implementations]) The final results of the evaluation are shown in Table 6. For each eval-
uation metric, we highlighted the best performance in bold and the second-best with the underline,
the detailed concept and implementation of each metric can be seen in Appendix B.1.6 [Evaluation
Metrics].
In the Accuracy evaluation, dyMEAN, and MEAN achieved the best performance in terms of se-
quence and structure (highest AAR and lowest RMSD), while DiffAb performed best in TM-score.
In the Functionality evaluation, all methods produced antibodies with binding energies to the given
antigens significantly higher than those of natural antibodies. AbDPO and AbDPO++ achieved the
best performance among all the methods.
In the Specificity evaluation, we mainly observed the sequence similarity between antibodies against
different antigens (SeqSim-outer) and the proportion of hydrophobic residues in the generated an-
tibodies (PHR). The former metric indicates whether the method can design antibodies specific to
a given antigen and DiffAb, AbDPO, and AbDPO++ achieved better performance, while the latter
reflects the potential nonspecific binding due to high hydrophobicity and HERN performed best.
In the Rationality evaluation, we mainly observed: structural rationality, sequence rationality, and
joint structural and sequence rationality. AbDPO++ performed best in structural rationality with
fewer clashes and reasonable peptide bond length. HERN performed best in sequence rationality
with the highest naturality. AbDPO and dyMEAN perform best in joint structural and sequence
rationality from two perspectives. Details of the Specificity and Rationality evaluation refer to Ap-
pendix B.1.6 [Extended Explanations and Discussion on Model Performance].
In general, evaluating antibody design methods encompasses various aspects, and using only a few
metrics will seriously mislead researchers’ understanding of model performance. No single method
outperformed all others across the board, and all methods showed substantial gaps compared to natu-
ral antibodies. However, AbDPO++, by utilizing synthetic data and aligning with various properties,
achieved one of the best performances in almost all metrics among all methods.

2.2 PROTEIN CONFORMATION PREDICTION

Protein conformation prediction infers the 3D conformations of proteins from their sequences, eval-
uating models based on their understanding of structure, dynamics, and ultimately functions. We
begin by benchmarking common folding models, as they play a crucial role in the development of
conformation prediction models. We then compare five recent studies that explore different strate-
gies to extend folding to conformation prediction, focusing on multiple-state and distribution pre-
diction tasks. A detailed discussion of task definition, evaluation, and discussion can be found in
Section B.2.

2.2.1 PROTEIN FOLDING: SINGLE-STATE PREDICTION

Protein folding task predicts the 3D structure of a protein based on its sequence. This sequence-
to-structure prediction is a critical measure of a model’s understanding of these two modalities.
See Section B.2.1 for more details. As the results shown in Table 7, Multiple Sequence Align-
ment (MSA) based folding models (AlphaFold2, OpenFold, RoseTTAFold2) outperforms protein
language model-based approaches (ESMFold, EigenFold). While the predicted structure quality
is comparable among the all-atom resolution models, AlphaFold2 and its reproduction, OpenFold,
achieve the best performance across all accuracy metrics, offering a strong foundation for confor-
mation prediction.
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Table 8: Performance of the multiple-state prediction on BPTI. Accuracy metrics (RMSDens,
RMSD Cluster 3) are reported as the mean and standard deviations from 20 bootstrap samples,
at different sample sizes. Diversity and quality are evaluated based on 1,000 conformations.

RMSDens (Å) ↓ RMSD (Å) Cluster 3 ↓ Diversity Quality

N=10 N=100 N=1000 N=10 N=100 N=1000 Pairwise
RMSD CA clash% ↓ PepBond break%↓

EigenFold 1.56±0.02 1.50±0.01 1.46±0.00 2.54±0.03 2.48±0.01 2.46±0.01 0.85 1.4 N/A
MSA-depth32 1.66±0.03 1.54±0.04 1.41±0.02 2.43±0.06 2.19±0.16 1.85±0.05 2.14 0.6 10.6
Str2Str-ODE (Tmax = 0.15) 2.40±0.12 2.20±0.05 2.09±0.01 3.00±0.20 2.73±0.12 2.58±0.05 1.86 0.0 13.9
ESMFlow-MD 1.68±0.06 1.47±0.04 1.39±0.03 2.44±0.11 2.27±0.10 2.18±0.02 1.17 0.0 14.3
ConfDiff-ESM-Force 1.58±0.04 1.43±0.03 1.36±0.01 2.44±0.06 2.35±0.05 2.24±0.06 1.76 0.1 8.9

Table 9: Performance of multiple-state prediction on apo-holo. apo/holo-TM represents the maxi-
mum TM-score of the samples relative to the reference apo/holo structure. 20 conformations were
sampled for each protein, and the results are reported as mean across 91 proteins.

Accuracy Diversity Quality

apo-TM ↑ holo-TM ↑ TMens ↑ Pairwise TM CA clash % ↓ PepBond break % ↓

apo model 1.000 0.790 0.895 N/A N/A N/A
EigenFold 0.831 0.864 0.847 0.907 3.6 N/A
MSA-depth256 0.845 0.889 0.867 0.978 0.2 4.6
Str2Str-ODE (Tmax = 0.3) 0.766 0.781 0.774 0.872 0.2 14.7
AlphaFlow-PDB 0.855 0.891 0.873 0.924 0.3 6.6
ConfDiff-Open-PDB 0.847 0.886 0.867 0.909 0.5 5.5

2.2.2 MULTIPLE-STATE PREDICTION

Multiple-state prediction builds upon single-state prediction by aiming to accurately generate two
or more distinct conformational states of a protein, which are typically associated with functional
conformational changes. Further details can be found in B.2.2. Regarding evaluation, we first inves-
tigate the results on BPTI with the best model of each study highlighted in Table 8 and the complete
evaluation in Table 13. The classifier-free guidance in ConfDiff (Wang et al., 2024c) achieved
performance comparable to fine-tuning on MD conformation data and, when combined with force
guidance, delivered the best overall accuracy (RMSDens). This suggests that incorporating struc-
tural exploration and physical constraints can enhance the sampling of high-accuracy conforma-
tions. However, structural exploration alone may be error-prone as Str2Str (Lu et al., 2024), the
structure-only models, showed low accuracy even with small perturbations. Other strategies to en-
hance conformation sampling also showed improved performance: MSA subsampling (Del Alamo
et al., 2022) with reduced MSA depth excelled at sampling Cluster 3, the most difficult state to cap-
ture, and ESMFlow (Jing et al., 2024) fine-tuned on the MD dataset showed improved diversity and
accuracy compared to the PDB-trained base model. However, these approaches also experienced
a decline in quality, with increased CA clashing or peptide bond breaking. Lastly, for most meth-
ods, increasing the sample depth (N ) significantly improved expected accuracy, suggesting that a
sufficient sample size is essential for thorough evaluation.
apo-holo is a more challenging dataset where models are required to predict both the unbound
(apo) and bound (holo) conformations induced by ligand binding. As shown in Table 9 and Ta-
ble 14, strategies to enhance conformation diversity did not improve the TMens score, and the
best-performing models closely resemble folding models. In comparison, a baseline model that
consistently predicts the perfect apo structure achieved a higher TMens score. These findings sug-
gest that these models struggle to accurately sample apo-holo conformation changes, and higher
accuracy may stem from using a stronger folding model.
In summary, strategies like MSA subsampling, guidance during diffusion, or training on MD con-
formation data can improve sample diversity and enhance ensemble accuracy for certain local dy-
namics (as in BPTI). However, they may not be sufficient to capture the complex dynamics involved
in processes like apo-holo conformational changes.

2.2.3 DISTRIBUTION PREDICTION

Distribution prediction assesses a model’s ability to generate distributions that closely resemble
a target distribution, such as the empirical distribution obtained from molecular dynamics (MD)
simulations. See Section B.2.3 for details. The results are summarized in Table 10 and Table 15. We
include reference performances of (1) MD iid: i.i.d. samples from reference MD trajectories and (2)
MD 2.5 ns: consecutive samples from the trajectories corresponding to 2.5 ns of simulation.
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Table 10: Performance on distribution prediction for ATLAS. 250 conformations were sampled for
each protein and the median values across 82 proteins are reported. *These metrics are not available
for models that lack side-chain or full backbone information.

Diversity Flexibility: Pearson r on Distributional accuracy

Pairwise
RMSD *RMSF Pairwise

RMSD ↑
*Global
RMSF ↑

*Per target
RMSF ↑ *RMWD ↓ MD PCA

W2 ↓
Joint

PCA W2 ↓
PC sim
> 0.5 %↑

MD iid 2.76 1.63 0.96 0.97 0.99 0.67 0.73 0.71 93.9
MD 2.5ns 1.54 0.98 0.89 0.85 0.85 2.22 1.55 1.89 36.6
EigenFold 5.96 N/A -0.03 N/A N/A N/A 2.31 7.96 12.2
MSA-depth256 0.83 0.53 0.25 0.34 0.59 3.60 1.79 2.91 29.3
Str2Str-ODE (Tmax = 0.1) 1.66 N/A 0.13 N/A N/A N/A 2.14 4.39 6.1
AlphaFlow-MD 2.87 1.63 0.53 0.66 0.85 2.64 1.55 2.29 39.0
ConfDiff-Open-MD 3.43 2.21 0.59 0.67 0.85 2.75 1.41 2.27 35.4

Ensemble observables Quality

Weak
contacts J ↑

Transient
contacts J↑

*Exposed
residue J ↑

*Exposed MI
matrix ρ ↑

CA clash
% ↓

*PepBond
break % ↓

MD iid 0.90 0.80 0.93 0.56 0.0 3.4
MD 2.5ns 0.62 0.45 0.64 0.25 0.0 3.4
EigenFold 0.36 0.19 N/A N/A 5.6 N/A
MSA-depth256 0.30 0.29 0.36 0.06 0.0 5.5
Str2Str-ODE (Tmax = 0.1) 0.42 0.18 N/A N/A 0.0 12.1
AlphaFlow-MD 0.62 0.41 0.69 0.35 0.0 22.2
ConfDiff-Open-MD 0.63 0.39 0.65 0.33 0.5 6.5

Overall, generative models trained to sample protein conformations (AlphaFlow, ConfDiff) sig-
nificantly outperform perturbation-based methods (MSA subsampling and Str2Str), regardless of
perturbation levels. Using a strong folding model like AlphaFold2 generally results in higher accu-
racy. Classifier-free guidance in ConfDiff improved distribution sampling but was less effective than
direct fine-tuning on MD data, highlighting the importance of large-scale conformational data for
future models. Additionally, the trade-offs between diversity, prediction performance, and sample
quality persist: fine-tuning on MD data improves sample diversity and performance for AlphaFlow
but decreases sample quality.
AlphaFlow and ConfDiff models fine-tuned on MD data have shown promise in capturing the con-
formational distributions, achieving performance comparable to that of 2.5 ns MD simulations on
some metrics. However, a key goal for these models is to achieve i.i.d. sampling equivalent to
long-term MD simulations, and benchmark results reveal a remaining gap in reaching this objective.

3 CONCLUSIONS AND FUTURE WORK

In summary, we present the first comprehensive study evaluating the capabilities of various protein
foundation models across eight distinct tasks, with a particular focus on protein design and con-
formation dynamics. We have developed a unified, multi-metric evaluation framework, which is
essential for unbiased assessment of protein foundation models from multiple facets. Based on the
performance results, we provide insights and considerations for the development and effective use
of protein foundation models, offering guidance for future research.
With the detailed discussion available in the Appendix C, we highlight the key observations from
our holistic evaluation as follows: (1) Valid evaluation of protein foundation models requires accu-
rate and comprehensive evaluation metrics; (2) No single model currently excels across all protein
design objectives. The choice of model should be carefully aligned with the intended applications;
(3) While generative models extended from classic folding models have shown the ability to sample
protein conformations, challenges remain in both multiple-state prediction and distribution predic-
tion.

LIMITATIONS AND FUTURE WORK

We acknowledge several limitations and opportunities for enhancement in our current benchmark:
(1) The selection of foundation models may not be exhaustive. Future iterations should incorporate
additional foundation models to provide a more comprehensive comparison. (2) Inconsistencies
in training data across models currently hinder direct comparisons of different model architectures.
Future work could address this by standardizing datasets, allowing for more accurate comparisons of
architectural performance. (3) The benchmark could be expanded to include a wider range of tasks,
further broadening its scope and utility. We are committed to continually refining and expanding
ProteinBench. Our vision is for it to evolve into a dynamic, growing benchmark that accelerates
progress in the field of protein modeling and design.
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A OVERVIEW OF PROTEIN FOUNDATION MODEL BENCHMARKS

A.1 GENERAL BENCHMARK DESIGN RATIONALE

The field of protein three-dimensional structure prediction has witnessed remarkable progress, ex-
emplified by established benchmarks like CASP and CAMEO, and breakthrough methodologies
including AlphaFold series, RosettaFold, ESMFold, and OmegaFold. While structure prediction fo-
cuses on determining protein structures from known sequences, protein design addresses the inverse
challenge: creating sequences that will fold into desired structures or achieve specific functions.
Despite growing interest in protein design, the field has been hampered by the absence of a compre-
hensive benchmark, with existing evaluations primarily targeting specialized tasks, as documented
in Appendix Table 1. A similar limitation exists in conformational dynamics research. Our work
addresses these gaps by introducing the first comprehensive benchmark focusing on protein design
and conformation prediction.
In our benchmark, protein design is categorized into five distinct areas, following the natural
sequence-structure-function hierarchy. This begins with sequence design, focusing on optimizing
amino acid sequences for stable folding, and progresses to backbone design, which involves en-
gineering the overall protein architecture. The more complex sequence-structure co-design task
requires simultaneous optimization of both sequence and structure. At the functional level, mo-
tif scaffolding involves incorporating functional motifs into stable scaffolds, while antibody design
represents a specialized application focusing on engineering antibody structures and sequences for
antigen binding, particularly crucial for therapeutic development.
The conformation prediction component is similarly structured into three distinct categories, reflect-
ing increasing levels of complexity in protein dynamics. Single conformation prediction focuses
on identifying the lowest energy state among possible conformations. Multiple conformation pre-
diction addresses the more complicated challenge of predicting discrete conformational states. The
most sophisticated category, conformational distribution prediction, tackles the complex task of pre-
dicting probability distributions of conformations, essential for understanding proteins with dynamic
structural ensembles.

A.2 OVERVIEW OF EXISTING BENCHMARKS

In this section, we provide a comprehensive overview of existing benchmarks for protein foundation
models. Table 11 illustrates the current landscape of these benchmarks, revealing significant limi-
tations in the scope and applicability. The majority of existing benchmarks are narrowly focused,
primarily addressing task-specific evaluations rather than offering a holistic assessment of protein
foundation models.
Notably, our proposed ProteinBench stands out by offering the most comprehensive coverage across
various tasks. It encompasses a wide range of evaluations, including inverse folding, backbone
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design, sequence design, structure-sequence co-design, and antibody design in the protein design
domain, as well as single-state folding, and multiple-state prediction in the conformational dynamics
domain.

Table 11: A comparison of benchmarks for protein fundamental tasks.
Benchmark Protein Design Protein Conformation Prediction

Inverse
Folding

Backbone
Design

Sequence
Design

Struc-Seq
Codesign

Motif
scaffolding

Antibody
Design

Folding
(single-state)

Multiple State
Prediction

Distribution
Prediction

PDB-Struct (Wang et al., 2023) ✓ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘
Proteininvbench (Gao et al., 2024) ✓ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘
RFDiffusion (Watson et al., 2023b) ✘ ✘ ✘ ✘ ✓ ✘ ✘ ✘ ✘
CASP (cas, 2022) ✘ ✘ ✘ ✘ ✘ ✘ ✓ ✘ ✘
CAMEO (Robin et al., 2021) ✘ ✘ ✘ ✘ ✘ ✘ ✓ ✘ ✘
PINDER (Kovtun et al., 2024) ✘ ✘ ✘ ✘ ✘ ✘ ✓ ✘ ✘
ProteinBench ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

B DETAILS ON BENCHMARKING EVALUATIONS

In this section, we provide detailed discussions for each task addressed by various protein foundation
models, as shown in Table 1. Our focus will be on the following aspects:

[Task Definition] A detailed description of the task, including its objectives and relevance
to protein science. Specification of the input data format and expected output for each task.
The impact of the task for protein is provided.
[Evaluation Metrics] Justification and description of the metrics used to assess model
performance, including quality, novelty, diversity, and robustness measures. For each
specific task, we provided a detailed thought process behind the metric selection and
detailed implementation information.
[Datasets] Overview of the datasets used for each task, including their size, diversity,
and any pre-processing steps applied. Detailed considerations of datasets, such as dataset
impacts, are provided.
[Model Implementations] We place the detailed implementation information for the
evaluated methods in this part.
[Extended Explanations and Discussion on Model Performance] Due to space limitations
in the main text, we provide an additional explanation and discussion of the performance of
specific methods here.

B.1 PROTEIN DESIGN

B.1.1 INVERSE FOLDING

[Task Definition] Inverse folding is a fundamental task in protein engineering aimed at designing
amino acid sequences that can fold into predetermined structural configurations. This task is
essential for various applications, including capturing evolutionary distribution of protein se-
quences (Zheng et al., 2023), facilitating de novo protein design (Dauparas et al., 2022b), and
optimizing protein stability for therapeutic and industrial purposes (Sumida et al., 2024).

[Evaluation Metrics] A key factor in inverse folding is the diverse range of downstream objectives,
each requiring specific datasets and evaluation approaches. To provide a comprehensive assessment,
we evaluate model performance separately for these distinct objectives. For assessing evolutionary
distribution capture, we employ datasets comprising native protein structures. To evaluate sequence
design capabilities for novel structures, we utilize datasets of protein backbones generated by RFd-
iffusion (Watson et al., 2023). Additionally, we incorporate the pLDDT metric to evaluate the pre-
dicted folding stability of designed sequences, providing insights into their structural reliability.
For the inverse folding task, metrics for evaluation have evolved over time. ProteinMPNN initially
employed amino acid recovery (AAR) as the primary evaluation metric(Dauparas et al., 2022a).
More recent studies have introduced structure-based self-consistency TM-score (scTM) as an addi-
tional metric for this task (Gao et al., 2024; Ren et al., 2024). Based on these previous studies, we
recognize that both metrics provide valuable and complementary insights into model performance.
AAR measures sequence-level accuracy while scTM assesses the structural validity of the designed
sequences.Performance in protein sequence design is assessed using multiple complementary met-
rics.
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• Sequence Recovery Amino Acid Recovery Rate (AAR), measures the sequence recovery rate
of designed proteins and quantifies how well the design method can recapitulate evolutionarily
conserved sequence patterns associated with specific structural motifs. While it is highly efficient
for evolutionary design evaluation, AAR is limited to cases with known ground truth sequences
and cannot assess the refoldability of de novo designed sequences.

• Refoldability self-consistency TM-score (scTM), assesses the structural refoldability of designed
sequences and has been widely adopted in the field for structural validation.This measure evaluates
the structural similarity between the target backbone and the predicted structure of the designed
sequence. scTM can be applied to both native and de novo designed sequences, making it more
versatile. The prediction is performed using AlphaFold2 (Jumper et al., 2021). We used the Co-
labFold implementation Mirdita et al. (2022) for AlphaFold2 inference, with input MSAs obtained
using the Colab pipeline. Specifically, the designed sequences are input into AlphaFold2 in the
MSA alignment mode. For each prediction round, five structures are generated, and the candidate
structure with the highest pLDDT confidence score is selected for comparison with the targeted
structure. Similarity is quantified using self-consistency template modeling score (scTM) (Trippe
et al., 2022) and self-consistency root-mean-square deviation (scRMSD), providing insight into
how well the designed sequence would fold into the intended structure.

• Stability Stability is assessed using the predicted local distance difference test (pLDDT), which
is also calculated by AlphaFold2 in the same MSA alignment mode used for the scTM score.
The pLDDT score serves as a proxy for the predicted stability of the designed protein, as utilized
in Dauparas et al. (2022a). We have observed that removing the MSA alignment may yield optimal
results for pLDDT, and we plan to update our findings accordingly in future analyses.

[Datasets] Typically, inverse folding methods are trained using CATH or PDB datasets. To prevent
data leakage, we utilized newly released PDB structures collected from CASP and CAMEO, as well
as de novo designed backbones that have not been included in any training sets. Evaluations were
conducted on different datasets targeting two distinct objectives of structure-based sequence design.

• Capture the native evolutionary distribution We evaluated two independent datasets contain-
ing newly released experimentally well-determined PDB structures: CASP15 (cas, 2022) and
CAMEO (Robin et al., 2021). We collected new structures from the ongoing CAMEO assessment
between January and July 2024, resulting in a total of 332 complex structures. Additionally, 32
protein structures were collected from CASP15, which includes only protein entities, excluding
nucleic acids or ligands. These datasets mainly comprise native single-chain protein structures
and sequences, making it optimal for evaluating evolutionary information capture and enabling
assessment of natural sequence recovery.

• De novo protein design RFdiffusion (Watson et al., 2023a) was used to unconditionally generate
backbones of varying lengths: specifically, 100, 200, 300, 400, and 500 residues. For each length,
10 different structures were randomly sampled, using a sampling temperature of 0.1 for all meth-
ods. The designability of these sequences was evaluated using AlphaFold2, with the scTM score
and pLDDT metrics serving as the primary assessment criteria. Existing benchmarks for inverse
folding, such as PDB-Struct (Wang et al., 2023) and Proteininvbench (Gao et al., 2024), provide
standardized protein structure sets for evaluating inverse folding methods. While these bench-
marks have significantly contributed to the field’s advancement, there is a growing need for more
comprehensive evaluation frameworks. These expanded evaluations should align more closely
with diverse user objectives in protein design, encompassing aspects like accuracy in capturing
natural evolutionary distributions and robustness in de novo backbone-based sequence design.

Model implementations A sampling temperature of 0.1 was used for each method to generate
sequences. While this value balances sequence diversity and quality, optimal temperatures may
vary across inverse folding methods. For each structure, one generated sequence was predicted for
performance evaluation.

• ProteinMPNN (Dauparas et al., 2022a): We follow the official repository and instructions for
inference, with the sampling temperature set to 0.1. The default model weight v 48 020.pt is
used.

• ESM-IF1 (Hsu et al., 2022): We use the public ESM repository for inference.
• LM-DESIGN (Zheng et al., 2023): We used the official repository with the model
lm design esm2 650m.
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• ESM3 (Hayes et al., 2024): We follow the official repository with model esm3-open-small,
which has 1.4B parameters.

[Extended Explanations and Discussion on Model Performance]

• Dataset Characteristics Impact Performance Our evaluation spans two dataset types: high-
quality experimental structures (CASP/CAMEO) and computational de novo structures containing
inherent noise. Models performing well on the more challenging de novo structures demonstrate
superior robustness, as they must overcome structural uncertainties while maintaining design ac-
curacy.

• Training Strategy Influences Robustness ProteinMPNN’s approach of incorporating backbone
noise during training proves highly effective. Our results confirm their findings that increased
training noise correlates with improved model robustness. This is evidenced by ProteinMPNN’s
superior performance in de novo backbone-based sequence design, validating backbone noise
augmentation as an effective strategy for enhancing model resilience.

B.1.2 PROTEIN BACKBONE DESIGN

[Task Definition] Protein backbone design is a classical protein design problem, centered on
developing new protein folds to meet de novo design objectives. It is widely accepted that novel
structures can approximate new functions. As such, the backbone design task is crucial for
expanding the repertoire of protein structures beyond those found in nature, offering significant
applications in areas such as drug discovery, biomaterials, and therapeutics. With de novo designed
protein backbones, inverse folding methods can be employed to generate the corresponding
sequences.

[Evaluation Metrics] The rapid development of protein backbone design methods in recent years
has been accompanied by inconsistent evaluation practices across different studies. While some
researchers report quality in terms of designability, others utilize scTM scores, making it difficult
to draw meaningful comparisons between methods. To address this fragmentation in the field, our
benchmark implements a comprehensive evaluation framework with standardized metrics. This
unified approach enables both fair comparisons between methods and thorough assessment of their
performance across multiple aspects of backbone design quality.

Building on previous studies (Trippe et al., 2022; Lin & AlQuraishi, 2023; Yim et al., 2023; Watson
et al., 2023b), we evaluate backbone design through multiple criteria that assess the quality, diversity,
and novelty of generated structures.

• Quality We utilize ProteinMPNN (Dauparas et al., 2022a) to generate eight different sequences
for each backbone structure, which are unconditionally sampled from various methods. The struc-
tures of these eight sequences are predicted using ESMFold (Lin et al., 2023a). We employ self-
consistency TM-score (scTM) and self-consistency RMSD (scRMSD) to measure structural re-
foldability. For each backbone, we select the sequence with the maximum scTM score. For each
method, we unconditionally sample 100 different backbones and report the median scTM and
scRMSD.

• Novelty Equally important are novelty metrics, which gauge the method’s capacity to explore
new structural space beyond known protein folds. The metrics measuring the novelty of generated
structures were introduced in recent studies (Yim et al., 2023; Campbell et al.). This aspect is
evaluated using two key metrics: The maximum TM-score obtained when comparing designed
structures to existing entries in the RCSB Protein Data Bank (PDB) (Berman et al., 2000). This
comparison is performed using Foldseek with a threshold TM-score of less than 0.5 (van Kempen
et al., 2022).

• Diversity Two metrics were used to evaluate diversity: (a) We calculate the average pairwise
maximum TM-scores among the designed structures. A lower TM-score indicates better diversity.
(b) The number of distinct structural clusters identified within the set of designed backbones was
also determined using Foldseek (van Kempen et al., 2022) with a TM-score threshold less than
0.5. More clusters stand for higher diversity. These diversity metrics help quantify the range of
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Table 12: Performance of backbone design models evaluated using 200, and 400 amino acids in
lengths. The reported results are the medium of repetitive experiments. We use bold text to highlight
the best and suboptimal results for each metric. For the novelty and diversity metrics, we only
highlight results with the corresponding scTM score higher than 0.5.

length 200 length 400

Quality Novelty Diversity Quality Novelty Diversity

scTM ↑ scRMSD ↓ Max TM ↓ pairwise TM ↓ Max Clust. ↑ scTM ↑ scRMSD ↓ Max TM ↓ pairwise TM ↓ Max Clust.↑

Native PDBs 0.974 0.674 N/A 0.278 0.790 0.970 1.085 N/A 0.261 0.840

RFdiffusion 0.982 0.617 0.638 0.363 0.64 0.927 2.12 0.634 0.356 0.720
FrameFlow 0.953 1.02 0.648 0.458 0.800 0.805 4.46 0.620 0.4196 0.920
Chroma 0.892 1.776 0.674 0.346 0.620 0.761 4.891 0.626 0.304 0.95
FrameDiff (latest) 0.893 1.789 0.689 0.464 0.260 0.800 4.324 0.668 0.467 0.330
FoldFlow1 (base) 0.529 7.108 0.579 0.430 0.950 0.415 11.743 0.525 0.357 1.00
FoldFlow1 (sfm) 0.619 5.270 0.586 0.433 0.980 0.398 11.135 0.534 0.372 0.99
FoldFlow1 (ot) 0.528 6.877 0.582 0.392 0.900 0.418 10.78 0.559 0.365 0.99
Genie 0.367 13.699 0.431 0.264 1.00 0.251 24.453 0.238 0.229 1.00

unique structures the design method can produce, ensuring that it’s not simply recreating known
folds but generating a varied repertoire of protein backbones.

[Datasets] Protein backbone design is a generative task, whose primary objective is to map the
overall distribution of the training set accurately. To conduct a comprehensive performance analysis
of protein structure generation, we compare the models’ performance against the distribution of real
PDB structure data. Specifically, we randomly sampled 100 high-resolution experimental structures
from the Protein Data Bank (PDB) to serve as references for the data distribution. To ensure
diversity, we iteratively removed structures with the highest TM-score compared to others until we
arrived at a final set of 100 distinct structures. This approach provides a representative snapshot of
the single-chain structural distribution within the PDB, serving as a benchmark for evaluating the
performance of generative models in capturing the true distribution of protein structures.

[Model implementations] To ensure comprehensive evaluation, we test each method’s ability to
perform unconditional monomer generation across diverse protein sizes. We follow the official
repository and instructions for inference. The generation process is constrained only by specified
target lengths, which we set at 50, 100, 200, 300, 400, and 500 residues. This range allows us to
assess method performance across both small proteins and larger, more complex structures.

[Extended Explanations and Discussion on Model Performance] A notable observation across
different backbone design methods reveals an inverse relationship between structural quality and
diversity: as methods generate more diverse and novel structures, the quality of the generated back-
bones tends to decrease. We emphasize that structural quality should be considered the primary
metric, as diversity and novelty become meaningful only when the generated structures maintain
sufficient quality. Without adequate structural quality, high diversity or novelty scores may simply
reflect the generation of unrealistic or physically implausible conformations.
In the revised manuscript, we have expanded our evaluation to include Proteus’s performance
across multiple protein lengths (100, 200, 300, and 500 residues). Our analysis reveals that Proteus
demonstrates superior design quality for long-chain backbone design (500 residues), achieving a
scTM score of 0.90 compared to RFdiffusion’s 0.79. However, we observed a significant decline
in structural diversity for Proteus when designing longer chains. At 300 residues, Proteus shows a
diversity score of 0.34 vs. RFdiffusion of 0.65. At 500 residues, Proteus shows a diversity score
of 0.34 vs. RFdiffusion of 0.89. Case analysis revealed that Proteus tends to generate structures
limited to three categories, predominantly characterized by helical tandem repeats, confirming our
diversity metric findings.

[Additional results for backbone design]
In this section, we provide more detailed evaluation results of protein backbone design across addi-
tional lengths 200 and 400. The results are shown in Table.12.

B.1.3 PROTEIN SEQUENCE DESIGN

[Task Definition] Protein sequence design aims to generate amino acid sequences with desired
properties, including quality, diversity, and novelty. The task encompasses both sequence-level
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evaluation and assessment of structural characteristics of the generated sequences, making it
fundamental for various applications in protein engineering and therapeutic development.

[Evaluation Metrics] The evaluation of protein sequence design requires a multi-faceted approach
that considers both sequence-level properties and structural characteristics. Sequence-level as-
sessment should verify that generated sequences follow natural protein patterns, while structural
evaluation ensures the designs are likely to fold into stable, well-defined conformations. This
comprehensive evaluation strategy helps validate both the theoretical and practical utility of
designed sequences.

The evaluation of protein sequence design requires a multi-faceted approach that considers both
sequence-level properties and structural characteristics. Sequence-level assessment should verify
that generated sequences follow natural protein patterns, while structural evaluation ensures the
designs are likely to fold into stable, well-defined conformations. This comprehensive evaluation
strategy helps validate both the theoretical and practical utility of designed sequences.

We employ multiple complementary metrics to assess different aspects of sequence design:

• Sequence Naturalness We utilize perplexity scores from ProGen2 (Nijkamp et al., 2023), an
autoregressive protein language model, to quantify how well the generated sequences align with
natural sequence distributions. Lower perplexity indicates sequences that better match patterns
observed in natural proteins.

• Structural Stability For structure-based evaluation, we use single-sequence folding model ESM-
Fold (Lin et al., 2023b) to predict the structure of the generated sequences, and then measure the
structural quality by pLDDT as the proxy of structural stability of the sequence.

• Structural Properties We evaluate structural diversity and novelty using the same protocols es-
tablished in backbone design evaluation, ensuring a comprehensive assessment of the structural
characteristics of generated sequences.

[Datasets] For the training dataset, UniRef50 (Suzek et al., 2015) is the commonly used dataset
for training protein sequence generative models and language models. Similar to backbone design,
to conduct a comprehensive performance analysis of protein sequence generation, we compare the
models’ performance against the distribution of real sequence data. Specifically, we randomly sam-
pled 50 protein sequences from UniRef50 to serve as references for the data distribution.
[Model implementations]
To ensure comprehensive evaluation, we test each method’s ability to perform unconditional
monomer generation across diverse protein sizes. We follow the official repository and instruc-
tions for inference. The generation process is constrained only by specified target lengths, which we
set at 100, 200, 300, 400, and 500 residues.

B.1.4 STRUCTURE AND SEQUENCE CO-DESIGN

[Task Definition] Protein structure-sequence co-design represents an advanced challenge in protein
engineering that involves the simultaneous optimization of both backbone structure and amino acid
sequence. This integrated approach aims to achieve desired properties or functions while maintain-
ing structural stability and sequence compatibility. Unlike isolated sequence or structure design,
co-design explores a significantly larger solution space, making it both more challenging and poten-
tially more powerful for creating novel functional proteins.
[Evaluation Metrics] The evaluation of co-designed proteins requires a comprehensive framework
that addresses both structural and sequence aspects simultaneously. This dual consideration is essen-
tial because success in either domain alone is insufficient - the designed sequence must be compat-
ible with its intended structure, and both must contribute to the desired functional properties. The
interdependence of sequence and structure necessitates metrics that can capture this relationship
effectively.
We implement a multi-faceted evaluation approach that combines metrics from both sequence and
structure design domains:
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• Quality We use a similar self-consistency-based designability in backbone design for the co-
design task, but with a key difference. The quality for simultaneously co-generated structure and
sequence is about structure-sequence compatibility by measuring how well the designed sequence
can fold into the corresponding designed structure, using scTM and scRMSD, whereas backbone
design models require an additional inverse folding model, such as ProteinMPNN, to design the
sequence.

• Novelty Similar to backbone design, we measure the structural novelty compared to known pro-
teins, ensuring that designs represent meaningful additions to the protein design space while main-
taining realistic properties.

• Diversity Similar to backbone design, we measure the structural diversity by maximum pair-wise
TM-scores and the number of distinct structural clusters using Foldseek.

[Datasets] High-resolution protein structures from the Protein Data Bank (PDB) are the commonly
used datasets for this task, with careful consideration given to remove redundancy.
[Model implementations] To ensure comprehensive evaluation, we test each method’s ability to
perform unconditional monomer generation across diverse protein sizes. We follow the official
repository and instructions for inference. The generation process is constrained only by specified
target lengths, which we set at 100, 200, 300, 400, and 500 residues. This range allows us to assess
method performance across both small proteins and larger, more complex structures.

B.1.5 MOTIF SCAFFOLDING

[Task Definition] Motif scaffolding represents a specialized challenge in protein design that
focuses on creating protein structures incorporating specific functional motifs or binding sites.
The objective is to engineer a stable protein framework that precisely positions the desired motif
while maintaining its functional geometry. This task is crucial for developing proteins with targeted
functionalities, including enzyme design, therapeutic proteins, and biomolecular recognition
systems.

[Evaluation Metrics] Evaluating motif scaffolding designs requires a careful balance between
maintaining the precise geometry of the functional motif and ensuring the overall stability of the
scaffold structure. The assessment must consider both the structural accuracy of the motif placement
and the broader protein context that supports it, making this a multi-scale evaluation challenge.
We measure motif scaffolding in terms of both motif accuracy and overall designability. For motif
accuracy, we calculate RMSD between the input motif structure and the corresponding region of the
designed protein to assess whether the motif structure is preserved (motifRMSD <1.0). As for the
overall designability, we use scTM score >0.8 as being designable. We have accordingly elaborated
on motif-scaffolding evaluation in the appendix.
[Datasets] Datasets typically include libraries of known functional motifs (e.g., catalytic sites,
binding interfaces) and diverse scaffold structures that can potentially accommodate these motifs.
The Protein Data Bank is a primary source, but curated datasets of functional sites like the Catalytic
Site Atlas are also valuable.

[Related benchmarks] Enzyme Design Challenge provides relevant test cases. However, given the
specificity of motif scaffolding tasks, benchmarks often need to be tailored to the particular class of
motifs or functions being targeted. Currently, there exists no comprehensive benchmark for this task
in the field. A widely used benchmark containing 17 (25) motif-scaffolding problems was used in
RFDiffusion (Watson et al., 2023b).
[Evaluation Metrics] Following Yim et al. (2024), we implement several key metrics.

• Motif Accuracy We measure the structural retention of motif placement using RMSD calcula-
tions, focusing on the geometric alignment of critical functional elements.

• Overall Designability We assess the overall stability and structural integrity of the designed pro-
tein framework using metrics using self-consistency TM Score.

[Model implementations] Structure-based models (FrameFlow, RFDiffusion), sequence-based
models (DPLM, EvoDiff), and multimodal models (ESM3) require different ways to take as in-
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Figure 3: Sequence-based, structure-based, and co-generation evaluation pipeline of motif-
scaffolding.

*RFDiff ESM3*DPLM2DPLMEvoDiff

seqpred: ✓ structpred: !
motif-preserving

designability
RMSD(ESMFold(seqpred)[motif],structnative[motif])<1.0

prediction

pLDDT(ESMFold(seqpred))>70

seqpred: ! structpred: ✓
motif-preserving

designability
RMSD(ESMFold(PMPNN(structpred))[motif],structnative[motif])<1.0

prediction

TMScore(ESMFold(PMPNN(structpred)), structpred)>0.8

seqpred: ✓ structpred: ✓
motif-preserving

designability
RMSD(ESMFold(seqpred)[motif],structnative[motif])<1.0

prediction

TMScore(ESMFold(seqpred), structpred)>0.8

DPLM2ESM3 DPLM2 *DPLM2
sequence-based structure-based co-generation

* means best of 8 samples

sequence-based

structure-based

co-generation

put the motif information and generate the scaffolds. For example, structure-based methods require
an extra sequence design model to predict sequences of the designed proteins, while sequence-based
methods cannot directly read motif structure and also require an extra folding model to predict the
structure of the designed proteins. Multimodal approaches, on the other hand, can read and predict
structure and sequence simultaneously by themselves. Hence, comparing them in completely iden-
tical settings is challenging, and we resort to slightly different criteria to evaluate these approaches.
We focus on two aspects to assess the success of motif scaffolding: overall designability and motif-
preservation. The overall illustration is shown in Figure 3. Specifically, (1) For the sequence-based
method, we only take the generated sequence and utilize ESMFold to obtain the predicted structure,
and the pLDDT score provided by ESMFold is used to assess overall quality. (2) For the structure-
based method, we only take the generated structure and then leverage ProteinMPNN to predict the
sequence, followed by ESMFold to predict the structure, where overall quality is assessed by scTM.
(3) For the co-generation method, we take both the generated structure and sequence and predict
the structure given the generated sequence with ESMFold, where scTM is calculated between the
generated structure and ESMFold predicted structure to evaluate overall quality. Considering that
the ground truth motif structure is given, we only utilize the ESMFold predicted structure to calculate
motif-RMSD.

B.1.6 ANTIBODY DESIGN

[Task Definition] The goal of antibody design is to generate antibodies that can specifically bind
to a given antigen. Since the Complementarity-Determining Regions (CDRs) of antibodies are
highly variable and primarily responsible for antigen binding, antibody design could be simplified
to the design of CDR regions and further reduced to the design of the third CDR in heavy chain
(CDR-H3). Given the crucial role that protein structure plays in interactions, antibody design
usually involves the simultaneous design of the sequence and the structure when binding to the
antigen.

[Evaluation Metrics] As mentioned in the main text, antibody design can ultimately be simplified
to the design of CDR-H3. Therefore, in this study, we evaluate the performance of different anti-
body design methods by evaluating the CDR-H3 sequences generated by these methods. Given the
primary objective of this study is to assess the relative performance of various design models rather
than the in vivo/vitro functionality of the antibodies they generate, we opted to directly evaluate the
designed antibodies using their predicted structures. This approach is grounded in several consid-
erations: firstly, it ensures a clear focus on evaluating the design methodology itself, independent
of experimental constraints. Secondly, the significant time and resources required for extensive ex-
perimental validations, as well as the limitations of methods that can accurately simulate the real
binding structure of antibodies, render in vivo/vitro assessments impractical. Direct evaluation of
the designed structures presents a feasible and efficient strategy that aligns with the study’s goals
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and resource constraints while still providing valuable theoretical benchmarks for subsequent exper-
imental investigations.
For methods capable of generating multiple antibodies for the same antigen, we generated 64
CDR-H3 sequences per antigen using each method and calculated the average performance across
these different generated samples. Additionally, we also calculated the standard deviation of the
performance among different samples generated for a single antigen.

As a highly goal-oriented functional protein design task, the evaluation of antibody design is
straightforward, namely the Functionality (binding capability to the target antigen) and Specificity
of the designed antibody. Additionally, the Rationality of the designed antibodies sequence
and structure needs to be evaluated for filtering out invalid designs. However, it remains a
challenging task to accurately simulate the performance of antibodies in real wet-lab experiments,
including functionality and specificity, using computational methods, and there is a lack of reliable
approaches. Therefore, we focus on evaluating antibody design models. Superior models can often
provide a better understanding of interactions between antibodies and antigens, potentially leading
to the production of improved antibodies. Although both the evaluation of design models and
antibodies involve assessing antibodies, their approaches differ. The former directly evaluates the
structures and sequences generated by the models without modifications, whereas the latter focuses
on the actual performance of antibodies in experiments, meaning that their structures may change
and differ from the design. Existing studies also evaluate the Accuracy of designed antibodies
by measuring their similarity to natural antibodies as natural ones are confirmed to be effective.
However, using accuracy as an evaluation metric is inadequate in many cases, we demonstrate the
misleadingness of AAR and RMSD in 2.1.6.

Accuracy:

• AAR: AAR is the accuracy evaluation of generated sequences compared to reference/natural se-
quences. For the calculation of AAR (Amino Acid Recovery Rate), similar to existing work,
we calculated the number of residues in the generated CDR-H3 sequences that match the natural
antibody.

• RMSD: RMSD is the consistency evaluation of generated structures compared to reference/natural
structures. In the calculation of RMSD (Root Mean Square Deviation), we measured the RMSD
of the generated and natural antibodies in the CA coordinates of the CDR-H3 region. For methods
other than dyMEAN, since their task setting provides the true binding pose of the antibody FR
region and antigen, there is no need to align the generated structure with the natural structure
when calculating RMSD. For dyMEAN, we aligned the 2 FR residues at each end of CDR-H3
with the corresponding residues in the natural antibody, applied the obtained transformation to
CDR-H3, and then calculated the RMSD.

• TM-score: TM-score is also the consistency evaluation of generated structures compared to refer-
ence/natural structures. We calculated the TM-score only for the CDR-H3 region. To this end, we
saved the generated CDR-H3 part as a .pdb file and used TMalign (Zhang & Skolnick, 2005) to
calculate the TM-score between the generated CDR-H3 and the natural CDR-H3.

Functionality:

• Binding Energy: Binding Energy indicates the strength of antibody-antigen binding with the gen-
erated structures and we use Rosetta to calculate the Binding Energy. The calculation of binding
energy requires the all-atom structure of the protein, while most methods only generate the back-
bone atom structure. Therefore, we first used Rosetta to pack the missing side-chain atoms. Sub-
sequently, we optimized the side-chains in the CDR-H3 region using Rosetta minimization while
keeping the backbone structure unchanged to ensure that the CDR-H3 generated by the model
reaches the minimum energy state in the binding environment with the antigen. During minimiza-
tion, we set the step to 100 (we tried using more steps and repeats, although the energy did further
decrease, the reduction was very limited and much smaller than the energy difference between
different methods; however, the time consumption significantly increased). After minimization,
we calculated the energy on the all-atom structure. Finally, we used the InterfaceAnalyzer
in Rosetta to calculate the binding energy between CDR-H3 and the antigen.

Specificity:
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• SeqSim: We use SeqSim to detect the mode collapse in sequence generation (or sequence speci-
ficity towards different antigens), which indicates that the generated antibodies lost the specificity
for specific antigens. SeqSim is defined as the average similarity between any sequence pairs
among the generated sequences. First, we introduce the definition and implementation of similar-
ity. The similarity between two sequences is defined as the percentage of matched amino acids
over the aligned length after alignment (thus, this metric is affected by the length gap between
the two sequences). Given that our goal is to calculate the number of matches rather than the
matching score and that the two ends of CDR-H3 are fixed to FR3 and FR4, we need an align-
ment method that: (1) assigns a score of 1 for matches, and 0 for gaps and mismatches; (2) does
not introduce gaps at the two ends of CDR-H3. We used the PairwiseAligner in Biopython
(Cock et al., 2009) for sequence alignment, setting match score to 1, all other scores to 0, and
the end gap score to -inf so that the alignment process meets our requirements. For methods
that generate only one antibody per antigen, we directly calculate the average SeqSim among the
55 generated CDR-H3 sequences as SeqSim-outer. For methods that generate multiple antibod-
ies, we calculate the average SeqSim between two sets of sequences generated for two antigens
as SeqSim-outer and also calculate the average SeqSim within each set as SeqSim-inner. The
formulas for calculating SeqSim-outer and SeqSim-inner are as follows:

SeqSim-outer =
1

N ∗ (N − 1) ∗M2

N∑
i=1

N∑
j=1|j ̸=i

M∑
x=1

M∑
y=1

SeqSim(sxi , s
y
j ), (1)

SeqSim-inner =
1

N ∗M ∗ (M − 1)

N∑
i=1

M∑
x=1

M∑
y=1|y ̸= x

SeqSim(sxi , s
y
i ), (2)

where N denotes the number of antigens in the test set (N=55 in this study), M denotes the
number of samples generated for each antigen (M=64 in this study), and sxi represents the x-th
CDR-H3 sequence generated for the i-th antigen.

• PHR: PHR is the proportion of hydrophobic residues in the generated CDR-H3 sequences, can
also reflect the lack of specificity, as the binding caused by the interactions generated by these
residues is generally considered to lack antigen specificity. Although both PHR and SeqSim are
used to represent the specificity of antibody design methods, they focus on different aspects. Thus,
the same method may exhibit different tendencies in these two metrics (SeqSim can be understood
as an evaluation of the method’s specificity, while PHR is an evaluation of the specificity of the
generated antibodies. When SeqSim performs poorly, the performance of PHR is of limited sig-
nificance). For example, AbDPO achieves high SeqSim-outer but does not perform well in PHR.
This indicates that AbDPO can specifically design antibodies for different antigens, but these an-
tibodies contain many hydrophobic residues, leading to potential nonspecific interactions with
multiple proteins.

Rationality:

• CN-Score: CN-Score is the evaluation of the rationality of the structure by scoring the distribution
of generated peptide bond length. To evaluate the consistency of the peptide bond length of
generated antibodies with that of natural antibodies, we fit a Kernel Density Estimation (KDE)
function using the length of peptide bonds found within the CDR-H3 regions of natural antibodies.
The density of the generated peptide bond length, CN-Score, is used to represent the consistency.
For generated peptide bonds shorter than the minimum natural peptide bond length or longer than
the maximum, the density is defined as 0. The final CN-Score for a generated antibody is defined
as the average density of the lengths of all its peptide bonds. It is important to note that the length
variation of peptide bonds is very small, which leads to a very narrow distribution of natural
peptide bond lengths. When the generated peptide bond length deviates slightly from the average
length (1.3310), its density in the KDE function will sharply decrease, which explains why all
methods show a significant difference in CN-Score compared to natural antibodies.

• Clashes: Clashes is the assessment of the potential clashes. Although atomic clashes within pro-
teins mainly occur between the side chains, most methods do not generate the side chains of
residues. Using packing methods to complete side chains can always find a side-chain confor-
mation with the fewest clashes through extensive searching. Therefore, we instead evaluate the
potential clash level in the generated structures rather than the specific number of clashes. To do
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this, we calculate the CA distance between two residues; when the CA-CA distance between two
residues not connected by a covalent bond is less than the minimum CA-CA distance commonly
found in covalently bonded residues (3.6574, derived from the CA-CA distance statistics in the
CDR-H3 region of the RAbD dataset), we consider these two residues to have potential clashes.
We then calculate the number of residue pairs with distances below this threshold to measure the
clash level in the generated structures. The difference between Clashes-inner and Clashes-outer
is: Clashes-inner measures the clash level within the generated CDR-H3 structure, while Clashes-
outer measures the clash level between the generated CDR-H3 structure and other components,
including the antigen, the heavy chain FR region, and the light chain of the antibody.

• SeqNat: SeqNat, Sequence naturalness, is the evaluation of the rationality of the generated se-
quence. To measure how close the designed CDR-H3 sequences are to natural sequences, we used
the pLL predicted by the AntiBERTy model. We input the entire heavy chain sequence into the
model, which means that AntiBERTy makes predictions based on the entire heavy chain of the
antibody, but unlike the standard procedure in AntiBERTy, the pLL calculation area is only within
the CDR-H3 region (the standard procedure calculates pLL over the entire input sequence).

• Total Energy: Total Energy is the evaluation of the joint rationality of the generated sequence
and structure from the perspective of physical energy. Before calculating the total energy, we
performed the same energy optimization process on the designed CDR-H3 regions as described
in the Functionality section. We then used Rosetta’s full atom score function with the default
weights from REF15 (Alford et al., 2017) to calculate the total energy of each residue in the CDR-
H3 region. The Total Energy of the CDR-H3 region is defined as the sum of the total energy of all
its residues.

• scRMSD: We use scRMSD to evaluate the model’s ability of structural modeling by calculating
the difference between the designed structure and the simulated structure. In this metric, we used
a two-stage method to predict the structure of the generated sequences. In the first stage, we used
IgFold to predict the structure based on the sequence pair of the antibody’s light and heavy chains
(although the region we evaluate only exists in the heavy chain, and IgFold also supports single-
chain input, we found that inputting two chains results in higher accuracy). The real structure
of the non-CDR-H3 regions of the antibody was also provided as a template to obtain the initial
predicted structure. We then used the Kabsch algorithm to align the non-CDR-H3 regions of the
heavy chain with the real structure and applied the resulting transformation to the predicted CDR-
H3 structure. This aligns the predicted CDR-H3 structure to its original complex. At this point, the
CA-RMSD between the predicted CDR-H3 structure and the real structure in the RAbD dataset
is 1.95. The structure predicted by IgFold is unrelated to the antigen, and since the antibody
undergoes conformational changes in the binding interface after binding with the antigen, we
used Rosetta to relax the predicted CDR-H3 in the presence of the antigen in the second stage.
The relaxation involves changes in both the backbone and side-chain structures. Specifically, we
repeated relaxation runs five times for each structure predicted by IgFold, with 200 steps each
time, and selected the structure with the lowest energy as the final predicted structure. At this
stage, the CA-RMSD with the real structure decreased to 1.77. We then calculated the RMSD of
the CA coordinates between the predicted structure and the backbone CA coordinates generated
by the model, which is referred to as scRMSD.

[Datasets] The Structural Antibody Database (SAbDab Dunbar et al. (2013)) is the commonly used
dataset for antibody design. It contains structural data of the antibody-antigen complex, but the data
size is limited and contains numerous redundancies. Although SAbDab’s official statistics indicate
that the database includes over 8,000 entries of complexes containing antigens, only more than 3,000
entries remain after deduplication. Furthermore, researchers typically cluster the SAbDab data
based on the sequence identity of CDR-H3, with a clustering threshold generally set at 40% iden-
tity. Subsequently, within different clusters, the data is divided into training, validation, and test sets.

[Model Implementations] We retrained all the methods with unified training data and the official
training config for a fair comparison and evaluated the methods with unified test data.

Training data:
To build the unified training data, we use antibody-antigen complex structural data from the
SAbDab dataset under the IMGT scheme (Lefranc et al., 2009) as the training dataset. We collected
antigen-antibody complexes with both heavy and light chains and protein antigens. We then
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discarded duplicate data with the same CDR-L3 and CDR-H3 sequence. The remaining complexes
are used to cluster via MMseqs2 (Steinegger & Söding, 2017) with 40% sequence similarity as the
threshold based on the CDR-H3 sequence of each complex. Finally, we select the clusters that do
not contain complexes in the RAbD dataset and split the complexes into training and validation sets
with a ratio of 9:1 (1786 and 193 complexes respectively).

Test data:
To build the unified test data, we extracted 55 antibody-antigen complexes from the RAbD dataset.
The original RAbD dataset contains 60 antibody-antigen complexes. In this study, we hope that
the evaluation of antibody design methods is based on antibodies that contain both light and heavy
chains, and simultaneously the antigen contains at least one protein chain. In practice, 2ghw and
3uzq lack light chains, while 3h3b lack heavy chains. 5d96 is excluded because of the incorrect
chain ID information in rabd summary.jsonl4, where heavy chain J and light chain I do not bind to
antigen chain A. 4etq is excluded as HERN reported an error when running for this complex.

Model:
All the models are retrained with their default training config. It should be noted that [dyMEAN-

FixFR] is not an official variant of dyMEAN, and we implemented this variant for a fair comparison
with other methods. Unlike other methods, which are designed to accept the true structure of
the antibody-antigen complex and generate the missing CDR-H3 region, dyMEAN is set up to
accept only the structure of the antigen and the sequence of the non-CDR-H3 regions of the
antibody. Therefore, the model needs to both generate the CDR-H3 region and predict the overall
structure of the antibody as well as the binding pose between the antibody and antigen. Incorrect
pose estimation can severely affect the interactions between CDR-H3 and the antigen, making a
direct comparison between dyMEAN and other methods unfair. To compare dyMEAN with other
methods more fairly, we made some modifications to dyMEAN by providing the true structure of
the non-CDR-H3 regions of the antibody and the binding pose, aligning dyMEAN with the other
methods. In dyMEAN-FixFR, we also used Rosetta (Alford et al., 2017) to repack the side chains,
consistent with other methods, to avoid the influence of the side chains generated by dyMEAN
on the evaluation results. Additionally, we introduced some randomness in the initialization of
the structure, which allows dyMEAN-FixFR to generate multiple different antibodies for the same
antigen.

[Extended Explanations and Discussion on Model Performance]
Specificity:

• In SeqSim-outer, we noted that MEAN and dyMEAN generated highly similar sequences for dif-
ferent antigens (the maximum SeqSim-outer in our test set was 0.79, indicating that all antibody
differences came only from length variations). This suggests that their excellent AAR might stem
from learning high-frequency patterns in antibody sequences, generating antibodies according to
these patterns for different antigens. In contrast, DiffAb and AbDPO performed the best.

• For methods that can generate different antibodies for the same antigen, we also measured the
sequence similarity among different antibodies generated for the same antigen (SeqSim-inner).
We expect antibodies generated for the same antigen to be more similar. In this aspect, dyMEAN-
FixFR and AbDPO performed the best. However, the 0.96 SeqSim-inner of dyMEAN-FixFR
indicates that despite introducing randomness during model initialization, the final sequence gen-
eration showed almost no differences. Additionally, DiffAb, which performed best in SeqSim-
outer, generated less similar antibodies for the same antigen, suggesting possible underfitting in
sequence generation. Considering both types of SeqSim, AbDPO achieved the best performance.

• In PHR, HERN and dyMEAN performed the best, but overall, almost all methods performed bet-
ter than natural antibodies. Only AbDPO generated an excessive number of hydrophobic residues,
reducing specificity. However, its variant, AbDPO++, controlled PHR well, closely matching nat-
ural antibodies among all methods.

Rationality:

4https://github.com/THUNLP-MT/MEAN/blob/main/summaries/rabd_summary.
jsonl
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• In structural rationality, we focused on the score for peptide bond lengths conforming to the natural
peptide bonds length distribution (CN-score), the number of potential internal clashes in the gen-
erated structure (Clashes-inner), and the clashes between the generated structure and other parts
(Clashes-outer). It was evident that irrational structures were prevalent in generated antibodies,
but overall, diffusion-based methods performed better. AbDPO++ and DiffAb achieved the best
performance among all methods. HERN and MEAN/dyMEAN exhibited different tendencies in
Clashes-inner/outer, corresponding to our observations of the generated samples. HERN tends
to generate large CDR-H3 structures, leading to fewer internal clashes but more clashes with the
antigen, whereas MEAN/dyMEAN tends to generate smaller CDR-H3 structures.

• In sequence rationality, we used the inverse perplexity of AntiBERTy (Ruffolo et al., 2021) to
represent sequence naturalness, SeqNat, showing that HERN performed the best, possibly due to
HERN being the only auto-regressive model. AbDPO++ achieved the second-best performance
and was closest to natural antibodies.

• In the joint evaluation of structure and sequence, we mainly focused on the consistency between
the generated structure and sequence from two perspectives: physical energy and structure predic-
tion. In terms of physical energy, we calculated the total energy of the generated CDR-H3s (Total
Energy), which would be severely affected by the clashes caused by sidechains and thus reflect the
irrationality between the generated structure and sequence. In this energy-related metric, AbDPO
and AbDPO++ performed best among all methods. From the perspective of structure prediction,
we used IgFold (Ruffolo et al., 2023) to predict the structure of the generated sequence, performed
a post-optimization with the antigen as the condition, and calculated the CA-RMSD between the
predicted structure and the generated structure (scRMSD). dyMEAN and dyMEAN-FixFR per-
formed best in scRMSD. Although these two metrics both reflect the consistency between se-
quence and structure, they focus on different aspects. Moreover, both energy calculations and
structure predictions have inherent errors, so the performance of different methods may not be
consistent across these two metrics.

B.2 PROTEIN CONFORMATION PREDICTION

B.2.1 PROTEIN FOLDING: SINGLE-STATE PREDICTION

[Task Definition] Protein folding task predicts the three-dimensional (3D) structure of a protein
based on its sequence. Folding models such as AlphaFold2 (Jumper et al., 2021) have achieved
unprecedented accuracy in predicting protein structures at scale, complementing experimental char-
acterizations and driving advancements in biology and drug discovery (Varadi et al., 2022). From a
modeling perspective, sequence-to-structure prediction is a critical measure of a model’s understand-
ing of these two modalities. Furthermore, the ability to translate sequences into structures forms the
foundation for recent progress in protein conformation prediction (Jing et al., 2024; Zheng et al.,
2024; Wang et al., 2024c). As such, we recognize the necessity of including protein folding in
this benchmark, viewing it as a specific instance of protein conformation prediction for a single
conformational state.
[Evaluation Metrics] The primary goal of evaluating protein folding models is to assess their ac-
curacy in predicting 3D structures of unseen proteins. This is done by comparing the predicted
structures to reference structures, such as experimentally determined ones available in the Protein
Data Bank (PDB). To ensure an unbiased evaluation, time-based splits are commonly employed, us-
ing recently deposited structures of previously unseen proteins for benchmarking (cas, 2022; Robin
et al., 2021). Beyond accuracy, the ability to predict protein structures with minimal structural vi-
olations provides a reference-free measure of a model’s capability to generate high-quality protein
conformations. Unlike the design tasks discussed earlier, structural diversity is not a focus in this
evaluation. Detailed implementations are provided below:

• Accuracy: Structural accuracy is measured by the structural similarity with reference struc-
tures. Specifically, global similarity metrics including TM-score, RMSD and global distance
test (GDT) are calculated using TMscore Zhang & Skolnick (2004) obtained from https:
//zhanggroup.org/TM-score/. We use -seq option to align sequences before structural
alignment. Local distance difference test (lDDT) is an alignment-free method to compare local
structural similarity. We calculate the value using the original implementation (Mariani et al.,
2013) from https://swissmodel.expasy.org/lddt/downloads/.
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• Quality: The structural quality of generated conformations are assessed by CA clash % and
PepBond-break %:

– CA clash % is the rate of potential clashes based on the positions of alpha-carbon atoms. A
clash is determined if the distance between a pair of alpha carbon atoms is less than 3.0 Å,
similar to Lu et al. (2024). And CA clash % is calculated as

CA clash % =
number of residues with clashes

sequence length
× 100%.

– PepBond break % evaluates the potential peptide bond (C-N) break between connecting
residues, providing a more rigorous metric about inter-residue disconnection than CA level
metrics used in Lu et al. (2024). We use a maximum peptide length threshold of 1.4 Å to de-
termine a chain break, as suggested by the BioPython implementation 5. Similarly, PepBond
break % is calculated as

PepBond break % =
number of C-N bond break

sequence length − 1
× 100%.

[Datasets] The folding models included in this benchmark are those that serve as base models for
protein conformational predictions and were established prior to 2022. We use CAMEO2022 from
Jing et al. (2023) for evaluation, which consists of 183 short-to-mid-length single protein chains (<
750 amino acids) from the targets of CAMEO (a continuous benchmarking initiative for structure
prediction of newly deposited protein structures) between Aug 1 and Oct 31, 2022. CAMEO2022
consists of 183 single protein chains collected from CAMEO targets between August and October
2022, with sequence lengths of less than 750 amino acids, following Jing et al. (2023). Protein
sequences and structures were extracted from the mmCIF files available at the RCSB Protein Data
Bank (https://www.rcsb.org/, Berman et al. (2000)). One of the proteins (PDB ID: 8AHP, chain A)
has since been superseded by a new PDB entry 8QCW and we have replaced this chain with the
updated record.
[Model Implementations] Several folding models, including AlphaFold2, OpenFold,
RoseTTAFold2, use Multiple Sequence Alignment (MSA) as sequence input. We standard-
ize MSA curation using the querying pipeline and the online server provided by ColabFold (Mirdita
et al., 2022). Templates are not provided in model inference. Additional model implementation
details for each model are as follows:

• AlphaFold2 (Jumper et al., 2021): We used the ColabFold implementation Mirdita et al. (2022)
for AlphaFold2 inference. All five models (with pTM) were used to predict five candidate struc-
tures, and the structure with the highest pLDDT confidence score was selected for performance
evaluation. All models were run with default settings.

• OpenFold (Ahdritz et al., 2022): We used openfold v2.0.0 for inference
with their pretrained OpenFold weights (with pTM). Since only one checkpoint
(finetuning no templ ptm 1) corresponding to the model configuration model 3 ptm
is available, we generated three structures using three random seeds and made a total of
5 predictions. The structure with the highest pLDDT score was selected for performance
evaluation.

• ESMFold (Lin et al., 2023a): We use the public ESM repository for inference with the model
esm.pretrained.esmfold v1. Since EMSFold predictions are deterministic, we generated
only one structure per protein for performance evaluation.

• RoseTTAFold2 (Baek et al., 2023): We follow their official repository and instructions for infer-
ence. Only one structure per protein was predicted for performance evaluation.

• EigenFold (Jing et al., 2023): We follow the official repository, weights, and the setups provided
by the authors for inference. In the protein folding task, we sampled 5 structures for each protein
and selected the one with the highest ELBO estimation for performance evaluation. Because
EigenFold can not predict sequences containing unknown amino acids (labeled ’X’), we removed
the ’X’ in the input sequences, as done in the original implementation.

5https://biopython.org/docs/dev/api/Bio.PDB.internal_coords.html#Bio.
PDB.internal_coords.IC_Chain

29

https://biopython.org/docs/dev/api/Bio.PDB.internal_coords.html#Bio.PDB.internal_coords.IC_Chain
https://biopython.org/docs/dev/api/Bio.PDB.internal_coords.html#Bio.PDB.internal_coords.IC_Chain


1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

[Extended Explanations and Discussion on Model Performance]
Our benchmarking results (Table 7 align with previous reports (Jing et al., 2023), showing that MSA-
bsaed folding model generally outperforms protein-language-model-based folding model. Eigen-
Fold (Jing et al., 2023), one of the first diffusion generative models for both protein folding and
conformation prediction, shows relatively weaker performance on the folding task. Its performance
could be limited by several design factors: it is built on OmegaFold Wu et al. (2022), uses a coarse-
grained representation with only alpha carbons, and has a small model size of 572K trainable pa-
rameters.

B.2.2 MULTIPLE-STATE PREDICTION

[Task Definition] Multiple-state prediction builds upon single-state prediction by aiming to accu-
rately generate two or more distinct conformational states of a protein. These states are typically
associated with functional conformational changes, such as those induced by ligand binding, or
metastable states observed during molecular dynamics simulations. The ability to predict these ”al-
ternative” conformations, in addition to the folded structure, offers valuable insights into a model’s
capability to generate plausible stable conformational states. This serves as an essential first step
toward understanding protein conformational dynamics.
[Evaluation Metrics] The accuracy and quality metrics for multiple-state prediction are naturally
derived from those used in single-state prediction, with some modifications. Unlike single-state pre-
diction, multiple-state prediction involves sampling an ensemble of conformations from the model.
Given a fixed sample size, the accuracy of recovering one state can be evaluated as the best accuracy
among all samples compared to the reference structure. For direct model comparison, a single accu-
racy score is preferred to represent the average performance across the recovery of different states.
Additionally, transitioning from folding to conformation generation introduces the need to evaluate
the diversity of the generated samples, reflecting the model’s ability to capture a range of plausible
conformational states. Implementation details are as follows:

• Accuracy: The accuracy of predicting a conformational state is determined by the best structural
similarity among the samples to the reference structure, measured by TM-score (for Apo-holo
with multiple proteins) or RMSD (for BPTI with one protein). Use RMSD as an example:

Accuracy of state k = min
xi∈samples

RMSD(xi,x
ref
k )

we then calculate the average accuracy across states as in Jing et al. (2023), referred as “ensemble
accuracy”:

Ensemble RMSD =
1

K

∑
k∈K states

Accuracy of state k

• Diversity: Diversity is evaluated by the average pairwise structural similarity among the generated
samples for a protein, measured using TM-score or RMSD. To reduce computation time, we
randomly sample 100 pairs of structures for estimation.

• Quality: The structural quality is evaluated using CA clash and PepBond-break, see single-state
prediction for details.

[Datasets] We benchmark the models on two datasets reflect common scenarios in the study of pro-
tein conformational changes: apo-holo captures the conformational changes related to specific pro-
tein function (i.e., ligand-binding processes) (Saldaño et al., 2022) and BPTI captures the metastable
states discovered from long-time MD simulations (Shaw et al., 2010). Specifically:

• Apo-holo consists of 91 single chain proteins curated by Saldaño et al. (2022), each featuring a
pair of experimentally determined conformations: apo (unbound) and holo (bound), representing
a two-state prediction task related to ligand-binding. The protein sequences and the structures
of both apo and holo conformations were extracted using the same pipeline as in CAMEO2022.
Consistent with Jing et al. (2023), we use the sequences of the apo state as the primary sequence
for model inference. Twenty (20) conformations are sampled for each protein for evaluation.

• BPTI (Bovine Pancreatic Trypsin Inhibitor) is a 58-amino-acid protein whose dynamics have been
extensively studied through long-time MD simulations (Shaw et al., 2010). We use the structures
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of the five cluster centers identified in the MD study as the reference structures. This represents a
five-state prediction task with Cluster 3 being the most challenging to sample (Wang et al., 2024c).
One thousand (1,000) conformations are sampled for evaluation.

[Model implementations]

• EigenFold (Jing et al., 2023): The implementation is the same as in the folding task. See the
section above for details.

• MSA-subsampling (Del Alamo et al., 2022): We implemented MSA-subsampling us-
ing the openfold v2.0.0 package by adjusting the two configuration parameters,
max msa clusters and max extra msa, following Del Alamo et al. (2022). Specifically,
we refer to max extra msa as the MSA depth and set max msa clusters to half that depth,
while keeping other OpenFold settings at their default values. The original MSAs were obtained
using the same ColabFold pipeline as in AlphaFold2.

• Str2Str (Lu et al., 2024): We followed the official implementation of Str2Str and used OpenFold-
predicted structure as the initial structures. Ensemble results were collected by uniformly sam-
pling from t values. For BPTI, we used the author-recommended noising schedule with max-
imum forward time of Tmax = 0.15 (t = 0.10, 0.15). For apo-holo and ATLAS datasets,
we experimented with Tmax = 0.1 (t = 0.06, 0.08, 0.10, 0.12, 0.14) and Tmax = 0.3 (t =
0.06, 0.12, 0.18, 0.24, 0.30) for both the SDE and ODE models.

• AlphaFlow/ESMFlow (Jing et al., 2024): We used the official repository and released model
weights for inference. The MSAs for AlphaFlow models were obtained through ColabFold’s
pipeline. We included models pretrained on PDB (-PDB) and fine-tuned on MD datasets (-MD).

• ConfDiff (Wang et al., 2024c): We followed the authors’ implementation and used the released
weights for inference. In this benchmark, we used recycle3 representations for both ConfDiff-
Open and ConfDiff-ESM models, with comparison between classifier-free guidance models (-
ClsFree), PDB base models (-PDB), and MD data fine-tuned models (-MD). The energy and force
guidance models are dataset-specific and are only available for the BPTI dataset with ESMFold
representations.

[Extended comparison on protein conformation models]
Recent works on protein conformational prediction been explored several strategies to extend folding
models to generate multiple conformations. A common goal across these studies is to enhance
sample diversity while ensuring that the generated conformations remain accurate and faithful to the
protein, given the high-dimensional space of protein structure. Below, we briefly highlight the key
differences among the studies and strategies evaluated in this benchmark:

• Perturbing the input of folding models. While AlphaFold2 is designed to predict the single
folded structure of a protein, several studies have proposed pertubing its MSA input to generate
alternative structures (as an proxy to conformations) without re-training the model (Del Alamo
et al., 2022; Wayment-Steele et al., 2024). In this benchmark, we assess MSA subsampling, a
method that reduces the number of input MSAs (referred to as “depth”) by subsampling the full
MSA, enabling the prediction of different structures due to the depletion of the input information.
The depths of MSA controls the trade-offs between the sample diversity and how faithful the
structure is to the protein.

• Perturbing folded structures. Instead of perturbing the input to a folding model, Str2Str (Lu
et al., 2024) perturbs the structure predicted from a folding model. It uses a structure-only dif-
fusion model (i.e., a backbone design model) to perturb the input structure through a forward-
backward diffusion process. The level of perturbation is controlled by the maximum diffusion
time, Tmax. They also used ensembling by sampling at various diffusion times t ≤ Tmax.

• Training generative models on large-scale structural data from experiments or simulations.
A more direct approach involves training sequence-conditioned generative models using diffusion
or flow frameworks. EigenFold (Jing et al., 2023), AlphaFlow (Jing et al., 2024), and ConfD-
iff (Wang et al., 2024c) follow similar approaches by fine-tuning a diffusion time t-dependent
score or denoising model based on folding models, using structural data from PDB. Specifically,
AlphaFlow finetunes all layers of AlphaFold2, while EigenFold and ConfDiff use pretrained rep-
resentations from folding models and train a lightweight add-on module for score or denoising
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prediction. Despite adopting a generative framework, models solely trained on PDB data are lim-
ited in predicting conformational distributions. To address this, AlphaFlow and ConfDiff further
fine-tuned their models on a recent MD dataset containing densely sampled conformations for
proteins (see Atlas in the Datasets section).

• Integrate physical priors in conformational training or sampling. Due to limited availability
of large-scale protein conformation data from MD simulation, some models have explored inte-
grating structural and physical priors during training. ConfDiff (Wang et al., 2024c) introduced
two guidance techniques to improve conformational sampling: (1) classifier-free guidance, which
combines a sequence-conditioned conformation model with an unconditional (structure-only)
model to explore conformational space (ConfDiff-ClsFree), and (2) energy/force guidance, which
directs sampling toward regions with lower potential energy (ConfDiff-Energy/Force) through
auxiliary prediction modules for intermediate energy/force guidance. However, such physical
prediction modules are dataset-specific and requires training additional modules.

[Extended Explanations and Discussion on Model Performance]
The complete evaluation results for multiple-state prediction (BPTI and apo-holo) are shown in
Table 13 and Table 14.
For BPTI, as discussed in the main text, certain conformation exploration techniques, such as MSA
subsampling and guidance used in ConfDiff, have shown their ability to sample diverse structures
while staying faithful to the protein. In contast, structure-only approaches like Str2Str perform
poorly on this task, likely because these models do not ensure that the perturbed structure remains
faithful to the provided sequence. On the other hand, EigenFold shows limited diversity, as it was
trained solely on PDB structures and does not incorperate conformation exploration strategies. This
limits its effectiveness in sampling diverse samples. While AlphaFlow and ESMFlow demonstrate
competitive performance, fine-tuning on the MD dataset introduces trade-offs in quality, notably an
increased incidence of peptide bond breaking between residues.
For apo-holo, strategies to improve sample diversity – such as reducing MSA depth, applying
structural perturbation, fine-tuning on MD conformation data, or using classifier-free guidance
– generally do not improve (and sometimes even reduce) the TMens score. Interestingly, we
found that the best-performing models are those that most closely resemble folding models (e.g.,
MSA-depth256, AlphaFlow-PDB). The included baseline apo, that always predicts the perfect apo
structures, confirmed that a higher TMens score can result from accurate prediction of one of the
states. These findings suggest that using better folding model provide a strong baseline performance
for conformational sampling but none of the current models show clear evidence of effectively
modeling conformational changes during complex biological processes, such as ligand binding.

Table 13: Complete performance on the multiple-state prediction of BPTI. Accuracy metrics (RMS-
Dens, RMSD Cluster 3) are reported as the mean and standard deviations from 20 bootstrap samples
with replacement, at different sample sizes (N = 10 ∼ 1000). Diversity and Quality scores are
evaluated based on 1,000 conformations for each model. The best performance is highlighted in
bold, and the second-best is underlined. “N/A” indicates not applicable due to model resolution.
RMSD is measured in Å.

RMSDens ↓ RMSD Cluster 3 ↓ Diversity Quality

N=10 N=100 N=1000 N=10 N=100 N=1000 Pairwise
RMSD

CA
clash% ↓

PepBond
break%↓

EigenFold 1.56±0.02 1.50±0.01 1.46±0.00 2.54±0.03 2.48±0.01 2.46±0.01 0.85 1.4 N/A
MSA-depth256 1.58±0.01 1.54±0.01 1.52±0.01 2.51±0.02 2.48±0.01 2.44±0.01 0.20 0.0 9.2
MSA-depth64 1.60±0.01 1.55±0.02 1.51±0.01 2.46±0.03 2.41±0.04 2.34±0.03 0.55 0.0 7.9
MSA-depth32 1.66±0.03 1.54±0.04 1.41±0.02 2.43±0.06 2.19±0.16 1.85±0.05 2.14 0.6 10.6
Str2Str-ODE (Tmax = 0.15) 2.40±0.12 2.20±0.05 2.09±0.01 3.00±0.20 2.73±0.12 2.58±0.05 1.86 0.0 13.9
Str2Str-SDE (Tmax = 0.15) 2.76±0.16 2.46±0.08 2.26±0.04 3.26±0.25 2.86±0.25 2.55±0.16 3.60 0.3 16.0
AlphaFlow-PDB 1.53±0.03 1.46±0.01 1.41±0.01 2.48±0.04 2.43±0.01 2.40±0.01 0.86 0.0 13.2
AlphaFlow-MD 1.71±0.08 1.51±0.03 1.43±0.01 2.46±0.09 2.32±0.06 2.25±0.01 1.26 0.0 26.2
ESMFlow-PDB 1.59±0.04 1.49±0.02 1.42±0.01 2.49±0.03 2.41±0.03 2.34±0.01 0.74 0.0 6.0
ESMFlow-MD 1.68±0.06 1.47±0.04 1.39±0.03 2.44±0.11 2.27±0.10 2.18±0.02 1.17 0.0 14.3
ConfDiff-Open-MD 1.64±0.05 1.50±0.02 1.43±0.02 2.50±0.05 2.38±0.04 2.31±0.02 1.37 0.2 4.6
ConfDiff-Open-ClsFree 1.66±0.06 1.50±0.04 1.37±0.02 2.56±0.07 2.39±0.17 2.02±0.10 1.77 0.5 5.5
ConfDiff-ESM-MD 1.62±0.04 1.47±0.02 1.40±0.01 2.45±0.09 2.32±0.05 2.25±0.02 1.42 0.1 5.0
ConfDiff-ESM-ClsFree 1.57±0.04 1.45±0.02 1.40±0.01 2.48±0.04 2.40±0.03 2.34±0.02 1.80 0.5 7.5
ConfDiff-ESM-Energy 1.61±0.03 1.46±0.02 1.42±0.01 2.51±0.05 2.44±0.03 2.40±0.01 1.22 0.1 7.5
ConfDiff-ESM-Force 1.58±0.04 1.43±0.03 1.36±0.01 2.44±0.06 2.35±0.05 2.24±0.06 1.76 0.1 8.9

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Table 14: Performance on the conformation prediction task for the apo-holo dataset. apo/holo-
TM represents the maximum TM-score of the samples relative to the reference apo/holo structure.
Twenty conformations were sampled for each protein, and the results are reported as mean/median
across 91 proteins. The best performance is highlighted in bold, and the second-best is underlined.
“N/A” indicates not applicable due to model resolution.

Accuracy Diversity Quality

apo-TM ↑ holo-TM ↑ TMens ↑ Pairwise TM CA clash % ↓ PepBond break % ↓

apo model 1.000 0.790 0.895 N/A N/A N/A
EigenFold 0.831 0.864 0.847 0.907 3.6 N/A
MSA-depth256 0.845 0.889 0.867 0.978 0.2 4.6
MSA-depth64 0.844 0.883 0.863 0.950 0.2 5.7
MSA-depth32 0.824 0.857 0.841 0.864 0.2 8.9
Str2Str-ODE (Tmax = 0.1) 0.762 0.778 0.770 0.954 0.2 14.0
Str2Str-ODE (Tmax = 0.3) 0.766 0.781 0.774 0.872 0.2 14.7
Str2Str-SDE (Tmax = 0.1) 0.682 0.693 0.688 0.760 0.2 22.6
Str2Str-SDE (Tmax = 0.3) 0.680 0.689 0.684 0.639 0.2 21.1
AlphaFlow-PDB 0.855 0.891 0.873 0.924 0.3 6.6
AlphaFlow-MD 0.857 0.863 0.860 0.894 0.2 20.8
ESMFlow-PDB 0.849 0.882 0.866 0.935 0.3 4.8
ESMFlow-MD 0.851 0.864 0.858 0.897 0.1 10.9
ConfDiff-Open-PDB 0.847 0.886 0.867 0.909 0.5 5.5
ConfDiff-Open-ClsFree 0.838 0.879 0.859 0.870 0.8 5.8
ConfDiff-Open-MD 0.839 0.874 0.857 0.863 0.4 6.8
ConfDiff-ESM-PDB 0.845 0.873 0.859 0.890 0.5 4.1
ConfDiff-ESM-ClsFree 0.837 0.864 0.850 0.846 0.7 4.6
ConfDiff-ESM-MD 0.836 0.862 0.849 0.846 0.3 4.1

B.2.3 DISTRIBUTION PREDICTION

[Task Definition] Distribution prediction challenges models to generate distributions that closely
resemble a target distribution, such as the empirical distribution obtained from molecular dynamics
(MD) simulations. Unlike previous two tasks, which focus on recovering specific conformations,
this task requires models to demonstrate an understanding of ”physics and energy” to accurately
predict the conformational landscape at the distribution level. This approach further bridges the
gap between protein conformation prediction models and MD-based methods for studying protein
dynamics and thermodynamic properties.
[Evaluation Metrics] The diversity and quality evaluation are the same as in the previous task.
We also included the average RMSF (root mean square fluctuation) as an additional metrics for
atom-level diversities. To evaluate the accuracy of capturing the conformational distribution and
dynamics of proteins, we extended the implementation 6 from Jing et al. (2024), with a modification
to explicitly align atom orders in mdtraj before comparing sample and reference structures. The
accuracy are evaluated from three sub-categories:

• Flexibility: This metric assesses how accurately the generated samples reflect the protein’s flexi-
bility at both the protein and atom levels. It is quantified by the Pearson correlation coefficient (r)
between the diversity measures, such as Pairwise RMSD for protein or RMSF for atoms, of the
model-generated samples and those of the reference MD samples.

• Distributional accuracy: This category evaluates the model’s accuracy on recovering the target
distributions. Wasserstein-2 distances are used to measure the similarity between model-generated
and reference distributions. RMWD is the root mean Wasserstein distance between the distribu-
tions of aligned coordinates, modeled as multivariate Gaussians. We also evaluate the W2 distance
in the PCA projected subspace (PCA W2). Additionally, the cosine similarity between the first
principal components from PCA analysis of model-generated and reference conformations serves
as another indicator of how well the model captures the correct subspace.

• Ensemble observables: Another objective of conformational sampling is to identify certain func-
tionally relevant behaviors (so called observables), such as transient residue-residue contacts ob-
served in molecular dynamics. The accuracy on recovering such observables is assessed by com-
paring those derived from the model generated conformations to reference conformations, using
metrics like Jaccard similarity or Spearman correlation.

[Datasets] We evaluate performance using the ATLAS dataset (Vander Meersche et al., 2024), a
recent database of MD simulation results for diverse proteins. To avoid data leakage for models

6https://github.com/bjing2016/alphaflow/blob/master/scripts/analyze_
ensembles.py
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trained on portions of the ATLAS dataset, we follow Jing et al. (2024) and benchmark on 82 proteins
whose PDB entries were deposited after May 1, 2019 and are not part of the training or validation
set. ATLAS is a recently published dataset containing triplicated 100 ns MD simulations for 1,390
diverse single-chain proteins. In this work, we use a subset of 82 proteins whose PDB entries
were deposited after May 1, 2019, following Jing et al. (2024). “Protein-only” trajectories were
downloaded from the ATLAS database 7 for evaluation. We sample 250 conformations for each
protein for evaluation.
[Model Implementations] The models are implemented the same as in the multiple-state prediction
task. See the previous Section B.2.2 for details.
[Extended Explanations and Discussion on Model Performance]
The complete evaluation results for distribution prediction (Atlas) are shown in Table 15. When
comparing the effects of structure exploration strategies, classifier guidance used in ConfDiff stands
out as the only approach that improves upon the base PDB model. In contrast, strategies such as
MSA subsampling and structural perturbation in Str2Str negatively impact most accuracy metrics.
However, as discussed in the main text, fine-tuning models on protein conformational data from
MD simulations proved to be the most effective strategy, offering significant improvements over
the base models. This contrasts with the challenges observed in multiple-state prediction tasks.
The likely reason is that capturing conformational distributions requires detailed physical insights,
which are difficult to extract solely from PDB structural data.

C DETAILED DISCUSSION OF KEY OBSERVATIONS

Valid evaluation of protein foundation models requires accurate and comprehensive evalua-
tion metrics. The emergence of folding models like AlphaFold2 and ESMFold offers opportunities
for precise assessment of quality, stability, and accuracy in protein generative tasks. However, cer-
tain complex tasks may still lack sufficiently accurate evaluation methods. For example, within
the realm of antibody design, researchers have at times been misled by reconstruction metrics like
Amino Acid Recovery (AAR) and Root Mean Square Deviation (RMSD) related to accuracy, result-
ing in overly optimistic conclusions. In this study, we intend to tackle this challenge by proposing
an evaluation strategy integrating reconstitution and physical rationality metrics. Also, we provide a
multifaceted evaluation strategy to capture various facets of protein structure and function, foster-
ing a more holistic understanding of the performance of foundation models. Furthermore, metrics
alone are insufficient. In the development of generative models for protein, the primary objective
is to accurately fit the distribution of the training data. Our evaluation adopts a more comprehensive
strategy that includes measuring the same metrics for the training data (which encompasses native
proteins, antibodies, and molecular dynamics conformations in various lengths). This provides a
high-resolution gold reference for protein generative targets.
No single model currently excels across all protein design objectives. The choice of model
should be carefully aligned with the intended applications. In the field of protein foundation
models, two primary approaches have emerged: language models and geometric models. Each ap-
proach has its strengths and limitations, which are reflected in the performance of ProteinBench.
We found language models show good performance in capturing nature evolution distributions, ev-
idenced by their high accuracy in native sequence recovery (inverse-folding) and high quality in
scaffolding evolution-conserved motifs. However, language models show limitations in robustness
when designing sequences for de novo backbones, and in generating novel sequences for sequence-
based protein design. In contrast, structure-based models exhibit greater robustness and tolerance
for structural noises in de novo design task, and show greater potential for creating proteins with
new folds or functions. These findings underscore the importance of carefully considering specific
design objectives when researchers are selecting a model to use.

7https://www.dsimb.inserm.fr/ATLAS/index.html
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Table 15: Performance on distribution prediction for the ATLAS test set. A total of 250 conforma-
tions were sampled for each protein, and the median values across 82 proteins are reported. The
best performance is highlighted in bold, and the second-best is underlined. *These metrics require
all-atom or backbone predictions; therefore, EigenFold and Str2Str do not have sufficient resolution
for evaluation (indicated as “N/A”).

Diversity Flexibility: Pearson r on Distributional accuracy

Pairwise
RMSD *RMSF Pairwise

RMSD ↑
*Global
RMSF ↑

*Per target
RMSF ↑ *RMWD ↓ MD PCA

W2 ↓
Joint

PCA W2 ↓
PC sim
> 0.5 %↑

MD iid 2.76 1.63 0.96 0.97 0.99 0.67 0.73 0.71 93.9
MD 2.5ns 1.54 0.98 0.89 0.85 0.85 2.22 1.55 1.89 36.6
EigenFold 5.96 N/A -0.03 N/A N/A N/A 2.31 7.96 12.2
MSA-depth256 0.83 0.53 0.25 0.34 0.59 3.60 1.79 2.91 29.3
MSA-depth64 2.03 1.51 0.25 0.30 0.57 4.00 1.94 3.34 18.3
MSA-depth32 5.70 7.96 0.08 0.17 0.53 6.09 2.56 5.70 17.1
Str2Str-ODE (Tmax = 0.1) 1.66 N/A 0.13 N/A N/A N/A 2.14 4.39 6.1
Str2Str-ODE (Tmax = 0.3) 3.15 N/A 0.13 N/A N/A N/A 2.19 4.80 9.8
Str2Str-SDE (Tmax = 0.1) 4.74 N/A 0.11 N/A N/A N/A 2.54 8.82 9.8
Str2Str-SDE (Tmax = 0.3) 7.54 N/A 0.01 N/A N/A N/A 3.24 12.28 7.3
AlphaFlow-PDB 2.58 1.20 0.27 0.46 0.81 2.97 1.61 2.61 37.8
AlphaFlow-MD 2.87 1.63 0.53 0.66 0.85 2.64 1.55 2.29 39.0
ESMFlow-PDB 2.99 1.68 0.14 0.27 0.71 4.15 1.87 3.61 28.0
ESMFlow-MD 3.33 2.13 0.19 0.30 0.76 3.61 1.66 3.25 25.6
ConfDiff-Open-ClsFree 3.68 2.12 0.39 0.54 0.83 2.91 1.54 2.46 46.3
ConfDiff-Open-PDB 2.89 1.43 0.38 0.51 0.82 2.96 1.59 2.46 34.1
ConfDiff-Open-MD 3.43 2.21 0.59 0.67 0.85 2.75 1.41 2.27 35.4
ConfDiff-ESM-ClsFree 4.04 2.84 0.31 0.43 0.82 3.78 1.73 3.07 37.8
ConfDiff-ESM-PDB 3.42 2.06 0.29 0.40 0.80 3.62 1.68 3.13 34.1
ConfDiff-ESM-MD 3.90 2.79 0.35 0.48 0.82 3.62 1.73 3.00 37.8

Ensemble observables Quality

Weak
contacts J ↑

Transient
contacts J↑

*Exposed
residue J ↑

*Exposed MI
matrix ρ ↑

CA clash
% ↓

*PepBond
break % ↓

MD iid 0.90 0.80 0.93 0.56 0.0 3.4
MD 2.5ns 0.62 0.45 0.64 0.25 0.0 3.4
EigenFold 0.36 0.19 N/A N/A 5.6 N/A
MSA-depth256 0.30 0.29 0.36 0.06 0.0 5.5
MSA-depth64 0.38 0.28 0.40 0.16 0.0 7.6
MSA-depth32 0.40 0.24 0.40 0.19 0.1 11.2
Str2Str-ODE (Tmax = 0.1) 0.42 0.18 N/A N/A 0.0 12.1
Str2Str-ODE (Tmax = 0.3) 0.42 0.17 N/A N/A 0.0 13.2
Str2Str-SDE (Tmax = 0.1) 0.40 0.13 N/A N/A 0.1 21.9
Str2Str-SDE (Tmax = 0.3) 0.36 0.13 N/A N/A 0.2 20.2
AlphaFlow-PDB 0.45 0.36 0.50 0.25 0.1 6.7
AlphaFlow-MD 0.62 0.41 0.69 0.35 0.0 22.2
ESMFlow-PDB 0.42 0.30 0.46 0.21 0.2 5.1
ESMFlow-MD 0.55 0.34 0.57 0.29 0.1 10.9
ConfDiff-Open-ClsFree 0.58 0.36 0.60 0.28 0.8 5.7
ConfDiff-Open-PDB 0.50 0.36 0.54 0.25 0.5 5.6
ConfDiff-Open-MD 0.63 0.39 0.65 0.33 0.5 6.5
ConfDiff-ESM-ClsFree 0.57 0.34 0.59 0.23 0.9 4.3
ConfDiff-ESM-PDB 0.50 0.33 0.50 0.24 0.5 4.0
ConfDiff-ESM-MD 0.61 0.36 0.61 0.31 0.4 4.3

While generative models extended from classic folding models have shown an ability to sample
protein conformations, challenges remain in both multiple-state prediction and distribution
prediction. Protein conformation prediction is a new but crucial assessment of the multi-modal
capabilities and physical understanding of protein foundation models. While strategies proposed
in current models may benefit certain tasks, they often provide limited improvement in others. For
example, although fine-tuning models using the MD conformation dataset showed promising results
on the ATLAS benchmark, little to no improvement was observed in the multi-state prediction of
apo-holo conformations. Additionally, the common trade-off between diversity and quality in cur-
rent models underscores the importance of consistent evaluation across the dimensions of accuracy,
diversity, and quality in protein conformation prediction tasks.
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