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Abstract

In recent years, endomicroscopy imaging has become increasingly used for diagnos-
tic purposes. It can provide intraoperative aids for real-time tissue characterization
and can help to perform visual investigations aimed to discover epithelial cancers.
However, accurate diagnosis and correct treatments are partially hampered by the
low numbers of informative pixels generated by these devices. In the last decades,
progress has been made to improve the hardware acquisition and the related image
reconstruction in this domain. Nonetheless, due to the imaging environment, and
the associated physical constraints, images with the desired resolution are still diffi-
cult to produce. Post-processing techniques, such as Super Resolution (SR), are an
alternative solution to increase the quality of these images. SR techniques are often
supervised, requiring aligned pairs of low-resolution (LR) and high-resolution (HR)
patches to train a model. However, in some domains, the lack of HR images hinders
the generation of these pairs and makes supervised training unsuitable. For this
reason, we propose an unsupervised SR framework based on an adversarial deep
neural network with a physically-inspired cycle consistency, designed to impose
some acquisition properties on the super-resolved images. Our framework can ex-
ploit HR images, regardless of the domain where they are coming from, to transfer
the super-resolution to the initial LR images. This property can be particularly
useful in all situations where pairs of LR/HR are not available during the training.
Our quantitative analysis, validated using a database of 238 endomicroscopy video
sequences, shows the ability of the pipeline to produce convincing super-resolved
images. A Mean Opinion Score (MOS) study also confirms this quantitative image
quality assessment.

1 Introduction

According to a recent report by the World Health Organization, cancer is the second leading cause
of death after cardiovascular disease and was responsible for 8.8 million deaths in 2015. Early
detection, such as the ability to detect precancerous lesions, plays an important role in reducing
cancer incidence and related mortality [15]. Optical endomicroscopy, based for example on confocal
microscopy, optical coherence tomography or spectroscopy, has the ability to perform optical biopsies
and identify early pathology in tissues or organs including the colon, esophagus, pancreas, bladder,
liver and cervix [11]. Although, in the last years, progress has been made to build reliable optical
endomicroscopy devices [10], the need to operate at micron scale through the use of endoscopes,
fibre bundles, laparoscopes, and needles, limits the final resolution of the images. Further hardware
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Figure 1: Example of aligned-paired and unpaired patches used for training super-resolution neural
networks.

improvements are very difficult to achieve and one possibility to improve the image quality is to
post-process them using SR techniques.

Recent methods for SR are based on training models that learn how to improve image resolution by
exploiting a database of aligned pairs of LR and HR images. Nonetheless, due to the lack of HR
endomicroscopy images, these pairs are not always available in this domain. An option is to generate
these pairs synthetically, but this is only feasible when the acquisition process is well defined. In
most of the cases, the acquisition process is unknown or hard to define and supervised methods may
not be applicable.

For this reason, we designed a deep learning architecture trained in an unsupervised manner where
the aforementioned one-to-one alignment between LR and HR is not required anymore. We formalize
our framework so that LR images from an initial input domain ILR can be transformed into images
of any target domain THR. The target domain can be the same or different from the initial one. An
example of the difference between initial and target domain with paired and unpaired patches is
shown in Fig. 1.

To allow the use of unpaired patches in the training procedure, we make use of an adversarial network,
a class of artificial intelligence algorithms which train two separate models that challenge each other
in a zero-sum game. The first model is a SR network that learns how to improve the resolution of
the images, and the second is a discriminative network DS that, looking at the target domain, tries
to distinguish images generated by the SR network from the real THR images. The aim of SR is
to understand how to fool the DS network and this leads to a generation of better super-resolved
images.

Adversarial training can learn how to produce outputs with the same distribution as the target domain.
However, the target domain distribution can be matched by simply mapping the input images to any
random permutation of images in the target domain. Therefore, without specific constraints, the
network could produce arbitrary THR images with no direct relationship with the input image. In
other words, an adversarial loss, alone, cannot guarantee that the learned function maps an input to
a desired corresponding super-resolved image. Following the idea proposed by [19], we add in the
adversarial training a further component that imposes a consistency between the HR images and the
initial LR images. This consistency is obtained by constraining the super-resolved THR image to
have similar physical acquisition properties to the initial ILR image.

To the best of our knowledge, this paper is the first to propose an adversarial network that takes
advantage of the knowledge of the physical acquisition process to impose a cycle consistency
and perform unsupervised SR of medical images. In our experiment, we show that the proposed
framework does not require paired aligned patches for the training. This is an important property in
all the domains where HR images are not available. The rest of the paper is organized as follows:
Section 2 presents the state-of-the-art for unsupervised SR methods. Section 3 presents the proposed
training methodology based on an adversarial training with cycle consistency. Section 4 presents the
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results obtained using a quantitative image quality assessment and a Mean Opinion Score (MOS)
study and section 5 summarizes the contribution of this research.

2 Related work

With the recent outbreak of deep learning, example-based super-resolution (EBSR) has led to a
dramatic leap in SR performance [13]. These approaches are mainly based on a supervised training
procedure where a database of aligned pairs of LR and HR images is required to create the model.
Being supervised, these SR methods are restricted to specific training data, where the LR images
are usually predetermined from their HR counterparts. However, in many contexts, such as in
endomicroscopy, HR images are not available due to physical constraints and therefore these paired
aligned images cannot be generated. A first attempt to train an EBSR network for endomicroscopy,
was proposed by [12] where a video-registration technique is used to estimate the HR images from a
sequence of LR images. A pipeline for generation of synthetic data is finally presented to produce the
desired aligned pairs. Although models trained with generated synthetic data can obtain convincing
SR images, the domain gap between reconsecrated HR images and original pCLE images raises
questions about their reliability for clinical use. For this reason, we believe that unsupervised
super-resolution techniques would be more suitable in these cases. For example, [3] presented an
unsupervised method for image SR. The approach uses a Variational Bayesian (VB) algorithm that
combines a Bayesian technique with a Markovian model. The main issue with this approach is
the difficulty to hand-craft a good perceptual loss function and the final images tend to be blurred.
Rather than designing a suitable similarity loss function, [5] proposed a general framework called
Generative Adversarial Network (GAN) where the perceptual loss function is trained directly using
a discriminative network. This allows the method to automatically verify if a generated sample
is similar to the real one. In particular, the adversarial process uses two models: i) a generative
model G, and ii) a discriminative model D that are trained playing a zero-sum game. Following
this general framework, [7] proposed a single image super-resolution architecture called SRGAN.
Although this approach is unsupervised, part of its loss is still supervised. In fact, a content loss
term based on a per-pixel loss between the output and ground-truth images is used there. This term
requires again alignment between LR and HR and limiting its applicability in our context. Another
drawback of SRGAN is its difficulty to train, often generating SR images that are too sharp or have
artifacts. To reduce these drawbacks, [4] proposed to combine a VB approach with GAN. They show
that an asymmetric loss function obtained using a cross-entropy loss for the discriminative network
and a mean discrepancy objective for the generative network, make the GAN training more stable.
Similarly to this idea, an Adversarial Variational Bayes was proposed by [9] where a Variational
Autoencoder (VAE) is trained using an auxiliary discriminative network. Contrary to the previous
case, this approach provides a more clear theoretical justification. However, the problem of using
paired LR/HR has not been resolved by any of the approaches described so far. One of the first
approaches that formalize the possibility to translate images from a source domain X to a target
domain Y in the absence of paired examples was proposed by [19] and is called CycleGAN. Using
an adversarial training the goal of this method is to learn a mapping G : X → Y such that the
distribution of images from G(X) is indistinguishable from the distribution Y . Since this mapping is
highly under-constrained, the authors also introduced an inverse mapping F : Y → X and a cycle
consistency loss to push F (G(X)) ≈ X . Thanks to this two-step consistency, the need for the paired
images is eliminated. Varying the input-output domain, this framework can be used to perform artistic
style transformation [6] (where, for example, a horse can be converted into a zebra) or, as in our case,
transfer the resolution from one domain to another.

Another interesting approach was proposed by [14]. Here the authors question that the predetermined
LR images obtained from standard bi-cubic down-sampling rarely look like the real LR images. So
they introduce a method called Zero-Shot SR, that does not rely on prior training. To do so they
exploit the internal recurrence of information inside a single image and train a small image-specific
CNN at test time. This facilitates self-training SR for biological data, old photos, noisy images, and
other images where the acquisition process is unknown.

Following the idea proposed by [19] and [14] we propose an unsupervised framework that uses
unpaired images and that can be used in the case where aligned pairs of LR/HR images are missing.
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Figure 2: Pipeline used for training the proposed adversarial network with cycle consistency. Each
component of the pipeline is identified by a different color.

3 Materials and methods

3.1 Database

To validate our solution, we used the database proposed by [1] containing 238 anonymized probe-
based Confocal Laser Endomicroscopy (pCLE) video sequences of the colon and oesophagus. This
database does not provide the real ground truth of the HR images. Only estimated ĤR, computed
using a video-registration technique on the LR images are available here.

The database was divided into three subsets: a train set (70%), a validation set (15%), and a test
set (15%). Images from each clinical setting were distributed equally in the three subsets. After
following the same data-normalization proposed by [12], we used non-overlapping patches of 64×64
pixels extracted from the train and validation set for training purposes. The patches in the validation
set were used to monitor the loss and avoid overfitting. Full-size images from the test set were instead
processed to compute the final results. The full-size processing of the test images is possible since
the inference network is fully convolutional and no specific image size is required as input.

3.2 Adversarial training

The pipeline used for training our framework is presented in Fig. 2 and it is divided into different
sub-sections, each coded by a specific colour.

We formalize our training as an adversarial min-max problem where two networks, a discriminative
network defined as DSγ (red sub-sequence in Fig. 2), and a super-resolution network defined as SRθ
(grey sub-sequence in Fig. 2) are trained simultaneously. More specifically, the first network DSγ is
trained solving:

max
γ

Ex∼pILR

[
log
(
1−DSγ

(
SRθ(x)

))]
+ Ey∼pTHR

[
logDSγ(y)

]
, (1)

where pILR and pTHR are respectively the patch distributions on the input and target domain, DSγ(∗)
gives the probability that a patch comes from the target domain, whereas SRθ(x) is the predicted
super-resolved patch obtained from x. The meaning of Eq.1 is that the discriminator has to maximize
how to discriminate predicted super-resolved images from real THR patches.
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The second network SRθ, is trained instead through the minimization of a composite loss function
losst obtained solving:

min
θ

Ex∼pILR

[
losst

(
x, SRθ(x)

)]
(2)

The proposed losst, defined in Eq. 3, is a combination of three terms: lV ec that models the physical
acquisition characteristics of the predicted super-resolved patch, lAdv that models the adversarial loss
function and lReg used to regularize the network training. The details of each term are provided later
in this section.

losst = lV ec + lAdv + lReg (3)

Both SRθ and DSγ are simultaneously trained using the back-propagation algorithm that gradually
adjusts the parameters θ and γ through a stochastic gradient descent for the former and a stochastic
gradient ascent for the latter.

3.3 Input domain and cycle consistency

3.3.1 Input domain

The green blocks in Fig. 2 represent the data structures required as input for the proposed pipeline.
The first input is the reconstructed ILR that is used by the SRθ network to infer the super-resolved
patch SRθ(ILR).

In the pCLE imaging, image acquisition is achieved by illuminating one fibre at a time. Each fibre
acts as an individual pinhole and a scan point for fibre confocality. The information from all the points
is then collected in a vector that we defined as vectorized image V (ILR), and represents another
input block in our pipeline. ILR images are reconstructed interpolating the values in V (ILR) from
the centres of the fibre positions to the points of a regular grid. Therefore the fibre positions are the
last input block required by our pipeline.

3.3.2 Cycle consistency

Starting from a generated high-resolution pCLE image SRθ(ILR), we can obtain a low-resolution
representation of it, by a process referred to as Voronoi vectorization V̂ (SRθ(I

LR)) which is
equivalent to the down-sampling for standard images.

The vectorized V (ILR) and the Voronoi vectorization V̂ (SRθ(I
LR)) are used in our pipeline to

create the cycle consistency (blocks coloured in cyan in Fig. 2). These blocks are used to impose
the requirements for the predicted super-resolved images SRθ(ILR) to have the same physical
acquisition properties as the initial ILR images. Without this cycle consistency, the network could
simply produce arbitrary images in the target domain with no relationship to the structures contained
in the input image, because our framework relies on unpaired patches. To avoid this, we force the
V (ILR) and V̂ (SRθ(I

LR)) to be similar using the lV ec term in the proposed loss function.

lV ec =
1

682

682∑
i=1

[
V (ILR)i − V̂ (SRθ(I

LR))i

]2
(4)

The details of the Voronoi vectorization used in our framework are described in Fig. 3. Here, the
first step is to compute the Voronoi diagram from the fibre positions. The result is a partition of the
plane where for each fibre there is a corresponding region, called Voronoi cell, consisting of all points
closer to it than to any other fibre. The next step is to average the pixels in the SRθ(ILR) patch that
belong to the same Voronoi cell, imitating the point spread function of the fibre acquisition process.
Since each patch may have a different number of fibres, the vectorization can produce vectors with
different sizes. Therefore, a 0-padding is introduced so that each vector always have 682 elements.
As a final step, all the elements in the vector are normalized in the range [0, 1]. This normalization
makes the training faster and reduces the chances of getting stuck in local optima.

In contrast to CycleGan [19], our cycle consistency block is not a trainable network, but rather is
used to constrain the SRθ network to generate images with the same physical acquisition properties
as the initial ILR images.
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Figure 3: Voronoi vectorization used in our pipeline to constrain the predicted super-resolved patches.

3.4 Super-resolution network

We decided to use the layout for the SR network propose in [7]. SRθ is aimed at producing images
that are similar to the one in the target domain by trying to fool the discriminator network. This is
achieved through the term lAdv in the proposed loss function defined as follows:

lAdv = −logDSγ(SRθ(I
LR)) (5)

where DSγ(SRθ(I
LR)) is the probability that the predicted image SRθ(ILR) is classified as a real

THR. In the inference phase, only SRθ is used for processing the ILR images.

3.5 Regularization

The blocks displayed in orange in Fig. 2 is used to regularize the network training. This regularization
is required since the Voronoi vectorization of each patch is normalized to the range [0-1] and this may
result in an expansion of its histogram range. To restore the correct histogram distribution, we impose
that the mean values in each row and each column of the patch are identical between the initial ILR
and the obtained THR. This is achieved in our framework through the lReg term of losst:

lReg =
1

H

H∑
y=1

[
1

W

W∑
x=1

SRθ(I
LR
xy )− 1

W

W∑
x=1

ILRxy

]2
+

1

W

W∑
x=1

[
1

H

H∑
y=1

SRθ(I
LR
xy )− 1

H

H∑
y=1

ILRxy

]2
(6)

3.6 Target domain

In our pipeline we considered four different target domains to transfer the super-resolution to the
LR images: i) THRnat where the HR patches are extracted from natural images (gray-scaled images
from the Sun2012 database [18]), ii) THRunpair containing unpaired HR patches obtained by a video-
registration technique on the LR images, iii) THRpair containing paired HR patches obtained using
a video-registration technique while the LR are synthetically aligned, and iv) THRres where the HR
patches are obtained by down-sampling the LR images by a factor of four. The idea behind this last
target domain is that patches in the images have recurrences at a different scale and down-sampling
large LR images may increase the high-frequency responses in the generated down-sampled HR
patches.

3.7 Training details and parameters

In our implementation, Eq 1 is solved by minimizing the cross-entropy of the number of samples
correctly discriminated by DS. As proposed by [2] we add white noise to the inputs of the DSγ
network to stabilize the adversarial training. We trained our networks on an NVIDIA GTX TITAN-X
GPU card with 12 GB of memory. The training procedure converges after 50-80 thousand iterations
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Figure 4: Example of visual results obtained by the proposed approaches when trained with different
target domains. From left to right we have: Input, training with THRpair, training with THRunpair, training
with THRres , training with THRnat and ĤR.

of random mini-batch with 54 patches. For the optimization of the stochastic gradient descent, we
use Adam with β1 = 0.9, β2 = 0.999 and ε = 10e-8. The networks were trained with a learning
rate of 10e-4.

4 Experiments

Due to the lack of real ground truth in our database, the validation of our experiments is based
on complementary quantitative and qualitative analysis. The quantitative analysis, presented in
Section 4.1, uses four different metrics to evaluate the obtained images. The qualitative analysis
is instead based on a MOS study carried out by clinicians and medical imaging experts that gave
numerical indications of the perceived quality of the super-resolved images.

4.1 Quantitative analysis

The four metrics used in our quantitative analysis are: i) a Structural Similarity matrix (SSIM)
proposed by [17] that evaluates the similarity between SRθ(I

LR) and ĤR, ii) ∆GCF
ĤR

that
quantifies the improvement on the global contrast factor (a reference-free metric for measuring image
contrast [8]) that the super-resolved image yields with respect to ĤR, iii) ∆GCFILR that is the
improvement of the global contrast factor that the super-resolved image yields with respect to the
initial ILR, and iv) a composite score Totcs obtained by averaging the normalized value of SSIM
with the normalized value of ∆GCF

ĤR
. This composite score leads to a more robust evaluation of

the results since, SSIM alone is not reliable when the ground truth is only estimated, while the GCF
can be improved by merely adding random high frequency to the images.

Our first experiment is aimed at finding the best target domain for improving the pCLE images. These
results are reported in Table 1 and, as we can see, the network trained with natural images obtain the
best Totcs score. We can also see that training our network with paired images performs worse than
training it with the unpaired one. This is probably due to the fact that the paired images are obtained
synthetically and they may have a wide domain gap with the real images. With this result, we can
state that paired patches are not anymore a requirement for our framework. Finally, re-scaling LR
images to a low scale does not seem to provide good results and the high-frequency signals are not
recovered. These qualitative indications can be seen on reconstructed images reported in Fig. 4.

To further validate our framework, we compare our best approach (the network trained with the target
domain THRnat ), against some state-of-the-art single image super-resolution methodologies. These
results are presented in Table 2. In this experiment we consider three different approaches: i) the
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Table 1: Quantitative analysis results obtained by our approach when trained with different target
domains

THRpair THRunpair THRres THRnat

SSIM
ĤR

0.91 ± 0.03 0.91 ± 0.03 0.88 ± 0.04 0.87 ± 0.03
∆GCF

ĤR
0.01 ± 0.29 0.38 ± 0.27 -0.13 ± 0.39 0.66 ± 0.31

∆GCFILR -0.28 ± 0.18 0.09 ± 0.19 -0.41 ± 0.31 0.37 ± 0.26
Totcs 0.53 0.64 0.45 0.66

HRINPUT Proposed [Ravi-Szcz. 2018][Villena 2013]

Im
age2

X
 2

.5
X

2
.5

Im
age 1

Figure 5: Example of visual results obtained by our approach in comparison with other state-of-the-art
approaches. From left to right we have: Input image, proposed output, output from [12], output
from [16] and ĤR.

unsupervised Wiener deconvolution tuned on the train set, ii) the unsupervised variational Bayesian
inference approach with sparse and non-sparse priors [16], and the supervised EBSR proposed
by [12]. Finally, a contrast-enhancement approach obtained by sharpening the input was also used
as a baseline. Although the sharpening algorithm produces the best contrast improvements, our
approach is the one that obtains the highest SSIM and, according to Totcs, the overall performance
outperforms all the other approaches. The statistical significance of these improvements was assessed
with a paired t-test (p-value less than 0.0001). Visual examination for some of these images shown in
Fig. 5, confirms these quantitative results.

4.2 Semi-quantitative analysis (MOS)

To perform the MOS, we asked 10 trained individuals to evaluate, on average, 20 images each. At each
step, the SR images obtained with the proposed approach, with [12], and with a contrast-enhancement
approach (baseline) that sharpens the input, were shown to the user in a random order. The input and
the ĤR were also displayed on the screen as references for the participants. For each of the three
images, the user assigned a score between 1 (strongly disagree) to 5 (strongly agree) on the following
questions:

• Q1: Is the image artefact-free?

• Q2: Can you see an improvement in contrast with respect to the input?

• Q3: Can you see an improvement in the details with respect to the input?

• Q4: Would you prefer seeing the new image over the input?

To make sure that the questions were correctly interpreted, each participant received a short training
before starting the study. The results on the MOS presented in Fig. 6 show that the proposed approach
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Table 2: Quantitative analysis results of the proposed approach against state-of-the-art methods

Proposed Ravi-Szcz.
[2018]

[Villena 2013] Wiener Contrast-
enhancement

SSIM
ĤR

0.87 ± 0.03 0.86 ± 0.04 0.87 ± 0.05 0.84 ± 0.06 0.61 ±0.08
∆GCF

ĤR
0.66 ± 0.31 0.41± 0.23 0.27 ± 0.21 -0.01 ± 0.31 1.34 ± 0.36

∆GCFILR 0.37 ± 0.26 0.13± 0.12 -0.01 ± 0.00 -0.30 ± 0.18 1.05 ± 0.25
Totcs 0.66 0.59 0.55 0.43 0.53

Contrast enhancement Proposed Ravi-Szczotka[2018]

Strongly
Agree

Neutral   

Strongly
Disagree

Q1: No artefacts Q2: Contrast Q3: Details Q4: Final Preference

1

2

3

4

5

Figure 6: Mean and standard deviation of the participants’ replies to each of the four MOS questions
for the evaluation of the following approaches: contrast-enhancement (baseline), [12], and proposed.

and [12] provide complementary features. In fact, although the details (question Q3) and the contrast
(question Q2) in our approach seem to be worse than [12], our solution provides a better score for
the absence of artefacts (question Q1), which is an important characteristic in clinical applications.
Regarding the final preferred approach (question Q4), our solution shows the best results [12],
confirming the validity of our approach to perform super-resolution on pCLE images. The approach
that sharpens the images is, instead, the one that provides the lowest scores for Q2, Q3 and Q4,
probably because it enhances the noise.

5 Discussion and conclusions

We report a super-resolution framework for endomicroscopy images based on an unsupervised
adversarial deep neural network that takes advantage of the knowledge of the physical acquisition
process to impose a cycle consistency. The proposed framework results to be particularly useful in all
situations where there is a lack of HR images and pairs of LR/HR images are not available for the
supervised training.

To the best of our knowledge, we are the first to propose an unsupervised super-resolution approach
for medical images. Our results validated using a database of 238 endomicroscopy video sequences
show the ability of the pipeline to produce convincing super-resolved images. Further clinical
trials could validate the relevance of the proposed framework to specific clinical applications for
super-resolution.
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