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ABSTRACT

As training datasets grow larger, we aspire to develop models that generalize well
to any diverse test distribution, even if the latter deviates significantly from the
training data. Various approaches like domain adaptation, domain generalization,
and robust optimization attempt to address the out-of-distribution challenge by
posing assumptions about the relation between training and test distribution. Dif-
ferently, we adopt a more conservative perspective by accounting for the worst-
case error across all sufficiently diverse test distributions within a known domain.
Our first finding is that training on a uniform distribution over this domain is opti-
mal. We also interrogate practical remedies when uniform samples are unavailable
by considering methods for mitigating non-uniformity through finetuning and re-
balancing. Our theory aligns with previous observations on the role of entropy and
rebalancing for o.o.d. generalization and foundation model training. We also pro-
vide new empirical evidence across tasks involving o.o.d. shifts which illustrate
the broad applicability of our perspective.

1 INTRODUCTION

Machine learning usually starts with the assumption that the test data will be independent and iden-
tically distributed (i.i.d.) with the training set. In practice, distributional shifts are the norm rather
than the exception, leading to models that perform well in training but may stumble when faced with
the diversity the real world has to offer.

The challenge of out-of-distribution (o.o.d.) generalization has inspired a variety of approaches
aimed at bridging the training and inference gap. For example, approaches like domain adaptation
and generalization address o.o.d. challenges by assuming knowledge of the unlabeled test distri-
bution or by learning invariant features (Bengio et al., 2013; Peters et al., 2016; Arjovsky et al.,
2019; Rosenfeld et al., 2020; Koyama & Yamaguchi, 2020), whereas robust optimization (Ben-Tal
et al., 2009; Rahimian & Mehrotra, 2019) methods can be used to defend against data uncertainty
by modifying and regularizing training.

We take a different perspective and seek models that perform well under any diverse test distribution
within a known domain. This is formalized through the concept of distributionally diverse (DD)
risk, which quantifies the worst-case error across all distributions with sufficiently high entropy.
Our postulate that test entropy is large reflects our intention to characterize a model’s performance
on a sufficiently diverse set of natural inputs rather on adversarial examples. Our focus on entropy
is also motivated by the previous empirical finding that higher entropy in training and test data is a
strong predictor of o.o.d. generalization (Vedantam et al., 2021).

The introduced framework provides a new angle to study o.o.d. generalization. Differently from
domain generalization, we do not assume that the training data are composed of multiple domains.
Further, unlike domain adaptation and robust optimization, we do not assume to know the unlabeled
test distribution nor that the latter lies close to the training distribution. A more comprehensive
discussion of how our ideas relate to previous work can be found in Appendix A.

Our analysis starts in Section 3 by showing that DD risk minimization has a remarkably simple
solution when we have control over how training data are sampled. Specifically, we prove that
training on the uniform distribution over the domain of interest is optimal in the worst-case scenario
and derive a matching bound on the corresponding DD risk.
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Section 4 then explores what happens when the training data is non-uniformly distributed. We ana-
lyze two approaches. First, we show that gentle finetuning of a pretrained model (as opposed to con-
siderably deviating from the pre-training initialization) can suffice to overcome the non-uniformity
issue. Second, we draw inspiration from test-time adaptation and formally consider the re-weighting
of training examples to correct distributional imbalances. Therein, we provide an end-to-end gen-
eralization bound that jointly captures the trade-off that training set rebalancing introduces between
in- and out-of-distribution error.

The above results agree with past observations in the training of large models. Our analysis of
finetuning provides an explanation for the observation of Chen et al. (2024) (specifically Figure 4)
that when finetuning large language models to respect human preferences, i.i.d. and o.o.d. met-
rics correlate only close to finetuning initialization. Further, our findings on the role of uniformity
and on benefit of rebalancing align with emerging empirical observation within foundation model
training, such as large language models (Gao et al., 2020; Furuta et al., 2023; Dai et al., 2024)
and AlphaFold (Jumper et al., 2021; Abramson et al., 2024), where heuristic ways to do training
set rebalancing, such as clustering or controlling the data source mixture, are adopted to improve
generalization and to remove bias.

Our insights are further evaluated in syntetic and real world tasks featuring distribution shifts. After
first validating the theory in a controlled and tractable setup involving a mixture of Gaussian dis-
tributions, we turn our attention to complex tasks involving covariate shift. Therein, we find that
rebalancing can enhance empirical risk minimization when the density can be reasonably estimated.
These results exemplify the practical benefits and pitfalls of the considered approaches.

2 DISTRIBUTIONALLY DIVERSE RISK

A holy grail of supervised learning is to identify a function that minimizes the worst-case risk

rwc(f) = max
x∈X

l
(
f(x), f∗(x)

)
, (1)

where l is a loss function, such as the zero-one or cross-entropy loss for classification, x ∈ X are
examples from some domain of interest, and f∗(x) is some unknown target function. Unfortunately,
it is straightforward to deduce that minimizing the worst-case risk by learning from observations is
generally impossible unless one is given every possible input-output pair.

The usual way around the impossibility of worst-case learning involves accepting some probability
of error w.r.t. a distribution p. The expected risk is defined as

rexp(f ; p) = Ex∼p

[
l
(
f(x), f∗(x)

)]
. (2)

The above definition is beneficial because it allows us to tractably estimate the error of our model
using a validation set or a mathematical bound. However, the obtained guarantees are limited to
i.i.d. examples from p, and the model’s predictions can be due to spurious correlations and entirely
unpredictable, otherwise. The focus of this work is to propose an alternative requirement that bridges
the gap between the worst- and average-case perspectives.

We instead look for models whose average-case error under any sufficiently diverse distribution
within a domain X is bounded. Concretely, consider a compact domain of interest X that contains
the test data under consideration as a subset with sufficiently high probability, i.e., q(X ) ≈ 1 for any
test distribution q. In the small and medium data regimes, the domain X should be defined by prior
knowledge about the task in question. In the large data regime, such as when training foundation
models, we may consider X as the set of all natural objects. Further, let Qγ be the set of distributions
q supported on X with entropy H(q) ≥ H(u) − γ, where H(u) = log(vol(X )) is the entropy of
the uniform distribution on X expressed in ‘nat’ (log indicates the natural logarithm). We define the
distributionally diverse (DD) risk as follows:

rdd(f ; γ) = max
q∈Qγ

Ex∼q

[
l
(
f(x), f∗(x)

)]
. (3)

In simple terms, DD risk seeks to measure performance across a broad range of diverse distributions,
rather than a single, known distribution. Further justification can be found in Appendix B). We
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emphasize that the DD risk focuses on covariate shift but not other types of distribution shift, such
as label and concept drift.

DD risk subsumes the worst-case risk as a special case,

lim
γ→∞

rdd(f ; γ) = rwc(f) , (4)

which follows from that, as γ increases, Qγ contains distributions all of whose mass lies arbitrarily
close to the point of maximal loss. Though it is easy to also deduce that the DD risk is always larger
than the expected risk, it turns out that the gap between the two can be zero when considering the
optimal learner. We refer to Appendix D for a more in depth analysis of this theoretical topic and
turn our attention to more practical matters.

3 UNIFORM IS OPTIMAL AND IMPLIED GUARANTEES

This section argues that –all other things being equal– it is preferable in terms of distributionally
diverse risk to train your classifier on the uniform distribution. We then characterize the DD risk of
a classifier that achieves a certain expected risk on the uniform distribution.

3.1 LEARNING FROM A UNIFORM DISTRIBUTION IS DD RISK OPTIMAL

Suppose that there exists some unknown function f∗ : X → Y and that the learning algorithm
determines a classifier f : X → Y whose expected risk with respect to a distribution p is ε.

Denote by Fp,ε the set of all classification functions that the learner may have selected:

Fp,ε := {f : X → Y such that Ex∼p[ℓ
(
f(x), f∗(x)

)
] = ε}. (5)

In the following theorem, we consider how the choice of the training distribution p affects the worst-
case DD risk within Fp,ε.
Theorem 3.1. Consider a zero-one loss and suppose that we can train a classifier up to some fixed
expected risk ε < 1/2 under any distribution. A classifier optimized for the uniform distribution will
yield the smallest DD risk:

max
f∈Fu,ε

rdd(f ; γ) ≤ max
f∈Fp,ε

rdd(f ; γ) for all p ̸= u. (6)

The proof can be found in Appendix E. Intuitively, a uniform distribution is optimal because it
balances the model’s performance across the entire input space, preventing overemphasis of specific
areas. The reader might suspect that this result is a consequence of the maximum entropy principle,
stating that within a bounded domain the uniform distribution has the maximum entropy. This
is indeed accurate, although the derivation is not a straightforward application of this result: the
maximum entropy principle constrains the choice of the worst-case distribution q∗ within Qγ .

A particularly appealing consequence of the theorem is that the exact entropy gap γ is not necessary
to determine the optimal training strategy. As we shall see later, γ does affect the DD risk that we
can expect. However, from a practical perspective it is preferable to have a training strategy that is
independent of γ, as it may not be straightforward to define it.

It is also important to discuss when a uniform distribution is not the optimal choice for training.
Our first disclaimer is that the theorem does not account for any inductive bias in learning, e.g.,
as afforded by the choice of data representation, model type, and optimization. The theorem also
does not consider the pervasive issue of i.i.d. generalization, meaning how close the empirical risk
approximates the expected one, which is analysed in Section 4.3. Finally, the theorem is less relevant
when there is additional information about the test distribution, such as unlabeled test samples.

3.2 THE GAP BETWEEN EXPECTED AND DISTRIBUTIONALLY DIVERSE RISK

Our next step entails characterizing the relation between distribution DD risk and expected risk. We
will show that the DD risk can be upper bounded by the expected risk with respect to the uniform
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distribution, implying that expected risk minimization with a uniform distribution is a good surrogate
for DD risk minimization.

Supposing we know the expected risk rexp(f ;u) of our classifier on the uniform distribution, the
following result upper bounds the DD risk as a function of γ:
Theorem 3.2. The DD risk of a classifier under the zero-one loss is at most

rdd(f ; γ) ≤ min

 γ − log
(

1−α
1−rexp(f ;u)

)
log
(

α
1−α

)
+ log

(
1

rexp(f ;u)
− 1
) , rexp(f ;u) +

√
γ

2

 ,

where α ∈ (rexp(f ;u), 1) may be chosen freely. The DD risk is below 1 for rexp(f ;u) < e−γ .

We defer the proof to Appendix F. Our experiments confirm that Theorem 3.2 is non-vacuous.

To gain intuition, we set α = 1
2 and make further simplifications to obtain the following simpler (but

less tight) expression:

rdd(f ; γ) ≤ min

{
γ + log(2)

− log (rexp(f ;u))
, rexp(f ;u) +

√
γ

2

}
. (7)

For convenience, we refer to the two arguments to min in this bound based on their dependency
on the expected risk, as “inverse-negative-logarithmic” (first argument) and “additive” (second ar-
gument). The additive bound is more informative for smaller entropy gaps γ. Indeed, the bound
reveals that the DD-uniform gap tends to 0 as γ → 0. On the other hand, the inverse-negative-
logarithmic bound captures more closely the behavior of the DD risk as the expected risk tends to
zero, since the function h(x) = 1/(− log(x)) also approaches zero. More generally, our analysis
shows that the uniform expected risk should be below e−γ to ensure that the DD risk is small, point-
ing towards a curse of dimensionality unless the test distribution is sufficiently diverse. Specifically,
we cannot expect to have a model that is robust to any diverse test distribution shift unless γ = O(1).

4 DISTRIBUTIONALLY DIVERSE RISK WITHOUT UNIFORM SAMPLES

Although uniform is worst-case optimal, in practice we have to content with samples Z = {zi}ni=1
with z = (x, f∗(x)) and x drawn from some arbitrary training distribution with probability density
function p. Let us denote by pZ the empirical measure pZ =

∑n
i=1 1{x = xi}/n of the training

set. In the following, we explore ways to mitigate the effect of non-uniformity in the context of
finetuning pretrained models and by input-space rebalancing.

4.1 APPROACH 0: HOPE THAT p IS CLOSE TO UNIFORM

Before considering any solutions, let us quantify how large the DD risk can be when we train our
model on a distribution different from the uniform. We can derive a simple bound on the difference
between expected risks of two distributions by the ℓ1 distance δ(u, p) between their densities:

rexp(f ;u)− rexp(f ; p) =

∫
x

u(x) l (f(x), f∗(x)) dx−
∫
x

p(x) l (f(x), f∗(x)) dx

=

∫
x

(u(x)− p(x)) l (f(x), f∗(x)) dx ≤
∫
x

|u(x)− p(x)|dx = δ(u, p), (8)

where w.l.o.g. we assume that the loss is bounded by 1, such as in the case of the 0-1 loss function.
By plugging this result within Theorem 3.2 we find that the DD risk will not change significantly
if we train and validate our model on some density p that is very similar to u. However, we cannot
guarantee anything when the densities differ.

We should also remark that perturbation bounds of the form proposed above might not correlate
with empirical observations. Specifically, Ben-David et al. (2006) performed a similar analysis in
the context of domain adaptation, showing that rexp(f ; q) ≤ rexp(f ; p) + dH(p, q) + λ, where dH
is the H-divergence between the training p and test density q and λ measures the closeness of the
respective domains. However, the empirical analysis of Vedantam et al. (2021) “indicates that the
theory cannot be used to great effect for predicting generalization in practice”.
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4.2 APPROACH 1: GENTLE FINETUNING

We next focus on finetuning and argue that, independently of how close the training distribution p
is to uniform, one may still control the DD risk by controlling the distance between the pretrained
model at initialization and the fine-tuned model in the weight space.

Concretely, we adopt a PAC-Bayesian perspective (Alquier et al., 2024) and suppose that the learner
uses the training data Z to determine a distribution πZ : F → [0, 1] over classifiers f ∈ F (equiva-
lently over model weights). We will also assume a prior density π that is unbiased, meaning that for
any x and every y, we have π(f(x) = y) = 1/|Y|. In Appendix G we prove:
Theorem 4.1. For any unbiased prior π, the DD risk of a stochastic learner is at most

rdd(πZ ; γ) := max
q∈Qγ

Ef∼πZ
[rexp(f, q)] ≤ Ef∼πZ

[rexp(f, pZ)] + 2 δ(πZ , π),

where l is a loss such that
∑

y∈Y l (y, y′) =
∑

y∈Y l (y, y′′) ∀y′, y′′ ∈ Y , such as the zero-one loss.

This result suggests that minimal finetuning on pZ helps maintain robustness against o.o.d. shifts by
not over-fitting the finetuning training set. To make the connection with finetuning more concrete,
we remark that the unbiased prior considered may correspond to that induced by a pretrained model.
The stochasticity of the prior π may stem from the initialization of a readout layer or of low-rank
adapters (Hu et al.), mixout (Lee et al.), or may correspond to a Gaussian whose covariance is given
by the weight Hessian as in elastic weight consolidation (Kirkpatrick et al., 2017). The posterior πZ

can be chosen as the ensemble obtained by repeated (full or partial) finetuning, as is common in the
domain generalization literature (Wortsman et al., 2022; Rame et al., 2022; Pagliardini et al.; Rame
et al., 2023). Theorem 4.1 states that the DD risk will be close to the empirical risk if finetuning
does not change the (posterior over) weights significantly. Intuitively, the effect of a non-uniformly
chosen finetuning set to an o.o.d. set can be expected to be small when the ensemble weights remain
close to initialization.

Note that our results differ from standard PAC-Bayes generalization bounds (Alquier et al., 2024)
as we consider the gap w.r.t. pZ and the worst distribution in Qγ rather than the training density p.
However, both theories correlate distance between prior and posterior with better generalization in
the i.i.d. and o.o.d. settings, respectively. Both theories are also subject to a trade-off between the
ability to fit the training and test data. PAC-Bayesian arguments are usually applied when training
a network from scratch. However, we argue that it can be more relevant to employ them within
the context of finetuning. The emergence of foundation models has shown that it is often possible
to learn general representations that can act as strong priors on any downstream task. The more
powerful the foundation model is, the better the prior, and the more plausible it becomes to fine-tune
a model without deviating much from the pretrained weights.

From a practical standpoint, one criticism of Theorem 4.1 is that it is impractical to estimate
the ℓ1 distance in practice. This may be partially mitigated by relying on the known inequality
δ(π, πZ) ≤

√
2DKL(π, πZ) to bound the distance in terms of the KL divergence. Further, though

the theory discusses stochastic predictors, in practice the benefits of gentle finetuning (i.e., models
whose weights have not veered far from initialization) may transfer also to deterministic models.
This will be tested empirically by using distance to initialization as an early stopping criterion.

4.3 APPROACH 2: TRAINING AND VALIDATION SET REBALANCING

We finally consider the scenario where we use a separate model w : X → R+ trained on a held-out
set drawn from p to estimate weights w(x). These weights are now used to rebalance the training
and validation set of our classifier leading to the following empirical risk:

rw(f, pZ) =
1

n

n∑
i=1

w(xi) l(f(xi), yi), (9)

The choice w(x) ∝ u(x)/p(x) is an instance of importance sampling. Importance weights are
employed in domain adaptation when the test distribution q was known, whereas we exploit The-
orem 3.1 to re-weight towards the uniform. In Appendix I we apply results from importance sam-
pling (Chatterjee & Diaconis, 2018) to characterize the number of validation samples needed to
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accurately estimate the convergence of rw(f, pZ) to rexp(f, u), where f is chosen independently of
Z. In our experiments, we will make use of validation set rebalancing for early stopping.

We next account for training set rebalancing by considering instances where f does depend on Z,
whereas w is any general weighting function:

Theorem 4.2. For any Lipschitz continuous loss l : X → [0, 1] with Lipschitz constant λ, weighting
function w : X → [0, β] independent of the training set Z = (xi, yi)

n
i=1, and any density p, we have

with probability at least 1− δ over the draw of Z:

rexp(f ;u) ≤ rw(f ; pZ) + (βλµ+ ∥w∥L) EZ∼pn [W1(p, pZ)] + 2β

√
2 ln(1/δ)

n
+ δ(u, û),

where the classifier f : X → Y is a function dependent on the training data with Lipschitz constant
at most µ, δ(u, û) =

∫
x
|u(x)− p(x)w(x)|dx is the ℓ1 distance between the uniform distribution u

and the re-weighted training distribution û(x) = p(x)w(x), W1(p, pZ) is the 1-Wasserstein distance
between p and the empirical measure pZ , and ∥w∥L is the Lipschitz constant of w.

The proof is provided in Appendix H. Similarly to recent generalization arguments (Chuang et al.,
2021; Loukas et al., 2024), the proof relies on Kantorovich-Rubenstein duality to capture the effect
of the data distribution p through the Wasserstein distance W1(p, pZ) between the empirical and
expected measures (subsuming analyses that make manifold assumptions). Akin to previous results,
the more concentrated p is, the faster the convergence of the empirical measure pZ will be, implying
better i.i.d. generalization (left-most term on the RHS). In addition, a less expressive classifier
(quantified by the Lipschitz constant µ) will require fewer samples to generalize.

Where Theorem 4.2 differs from previous arguments (Chuang et al., 2021; Loukas et al., 2024) is
that it bounds the rebalancing gap rexp(f ;u) − rw(f ; pZ) (relevant to DD risk as per Theorem 3.2)
rather than the typical generalization gap rexp(f ; p)−r(f ; pZ). By selecting w(x) ∝ 1/p(x) we can
control the ℓ1 distance term δ(u, û), but this may be at the expense of worse i.i.d. generalization if
the maximum weight value β and the Lipschitz constant ∥w∥L is increased as a result.

From a practical perspective, the theorem suggests two weighting functions that balance in- and out-
of-distribution: enforced upper bound w(x) = min{1/p(x), β} and enforced smoothness w(x) =
p(x)τ with τ ≤ 1. The two choices discount the effect of ∥w∥L and β, respectively, by assuming
that they do not correspond to the dominant factor in the bound. Note also that, since u(x) is
a constant, optimizing the model parameters with gradient-based methods will result to the same
solution independently of whether one includes u(x) on the numerator of w(x) or not. Clipping is
especially important when there are outliers due to noise and thus 1/p(x) is very large.

5 EXPERIMENTS

The following experiments to validate our theory empirically, examine the effectiveness of the ap-
proaches considered in improving o.o.d. generalization, and identify pitfalls. In summary they
demonstrate that, when the training density can be fit aptly, rebalancing consistently improves per-
formance in scenarios with significant covariate shift.

5.1 THEORY VALIDATION IN A CONTROLLED EXPERIMENTAL SETUP

We start by testing our theoretical predictions on a mixture of Gaussians classification task, where
each mode is assigned a random class label and the goal of the classifier is to classify each point
based on whether its likelihood ratio is above or below 1. We train a multi-layer perceptron on either
a uniform or non-uniform training distribution, with a training set size n ranging from 100 to 10,000
examples. To obtain confidence intervals, in the following we sample 35 tasks and repeat the analysis
for each one. The controlled setting allows for precise evaluation of entropy, accurate approximation
of the worst-case distribution, and exploration of the limits of data. Further information about the
experimental setup can be found in Appendix C.2.

We first examine how the DD risk evolves as a function of the training set size when the model
is trained on a uniform distribution. We approximate the risk of the worst-case distribution q∗ =
argmaxq∈Qγ

rexp(f ; q) using a greedy adversarial construction (see Appendix C.2). The DD risk

6
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Figure 1: Influence of training set size and entropy gap on DD risk rdd(f ; γ) on the mixture of Gaus-
sians task. Here the DD risk is greedily approximated by constructing adversarial test distributions
that satisfy the desired entropy bound. The number of training data required to achieve a low DD
risk increases sharply with the entropy gap γ between the uniform and the test distribution, interpo-
lating between the uniform expected risk and the worst-case risk. The adversarial test distribution
risk is always below our rdd bound from Theorem 3.2.

Figure 2: Effect of rebalancing on model error. Left: In red, we depict the area over which the model
predicts the wrong label when trained without rebalancing. The black line denoted the ground-truth
decision boundary. Middle: The plot shows the training set (sampled from a Gaussian distribution)
and the importance weights used for rebalancing. These focus the model’s attention to more sparsely
sampled regions. Right: When trained with rebalancing, the model approximates more closely the
ground-truth decision boundary.

is then approximated by the risk of the classifier on the adversarial set. The plotted shaded regions
indicate the 5-th and 95-th risk percentiles across repeats. As shown in Figure 1, the empirical (and
approximate) DD risk decreases more rapidly for smaller entropy gaps as the number of samples
increases. The theoretical bound is non-vacuous and tracks the performance against the o.o.d. test
distribution. The remaining gap between theory and practice can be partially explained by the fact
that we employed a greedy construction to construct the test distribution that provides a 1 − 1/e
approximation of the true optimum giving rise to the DD risk.

Next, we examine the impact of non-uniformity in the training distribution. We select a Gaussian
training distribution centered at the center of the domain with an increasing standard deviation, trun-
cated to the unit square. We fix n = 500 and vary σ. As expected, Figure 3 shows that the DD
risk decreases as σ increases, indicating that broader coverage of the domain improves generaliza-
tion. We also investigate how well rebalancing can mitigate the effects of non-uniformity. Figure 3
shows that by controlling the re-weighting strategy it is possible to improve o.o.d. generalization,
thereby partially overcoming the challenges posed by non-uniform training sets. We describe how
we implement reweighting in practice in Appendix C.1.

To gain intuition, we also plot the model output on a specific task instance in Figure 3 with the
true decision boundary shown in black. The left- and right-most sub-figures show the miss-classifier
points in red, respectively without and with rebalancing. The training set is Gaussian-distributed and
can be seen in the middle sub-figure. This model exhibits poor test error for distribution that assign
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Figure 3: The achieved DD risk is smaller for models trained on more uniform training data. The
training data is drawn from a truncated Gaussian distribution with increasing standard deviation,
such that the sampling becomes gradually more uniform over our sample space. As theorized, the
DD risk decays for larger σ, following the trend of the uniform expected risk. rebalancing reduces
uniform expected and DD risk risk (here for γ = 0.99). We use a masked auto-regressive flow p̂
to fit the density p of the training data and set w(x) ∝ min(1/p̂(xi)

τ , β), with τ = 1 controlling
the smoothness of the weights and β set based on a quantile of the training likelihood capping the
effect of outliers. Naturally, increasing dataset size reduces DD risk. However, rebalancing remains
equally beneficial across all training set sizes tested, showing that increase in data size does not
remove the need for uniformity.

Table 1: iWildCam. Macro F1 and average classification accuracy (higher is better). o.o.d. results
are on images from wildlife cameras not present in the training set, while i.d. results are from the
cameras in the training set taken on different days. Parentheses show standard deviation across 3
replicates. We modified C-Mixup* (Yao et al., 2022) for categorical labels (see Appendix C.4).

Validation (i.d.) Validation (o.o.d.) Test (i.d.) Test (o.o.d.)
Algorithm Macro F1 Avg acc Macro F1 Avg acc Macro F1 Avg acc Macro F1 Avg acc

ERM 48.8 (2.5) 82.5 (0.8) 37.4 (1.7) 62.7 (2.4) 47.0 (1.4) 75.7 (0.3) 31.0 (1.3) 71.6 (2.5)
CORAL 46.7 (2.8) 81.8 (0.4) 37.0 (1.2) 60.3 (2.8) 43.5 (3.5) 73.7 (0.4) 32.8 (0.1) 73.3 (4.3)
IRM 24.4 (8.4) 66.9 (9.4) 20.2 (7.6) 47.2 (9.8) 22.4 (7.7) 59.9 (8.1) 15.1 (4.9) 59.8 (3.7)
Group DRO 42.3 (2.1) 79.3 (3.9) 26.3 (0.2) 60.0 (0.7) 37.5 (1.7) 71.6 (2.7) 23.9 (2.1) 72.7 (2.0)
C-Mixup* 44.1 (0.8) 80.5 (0.7) 33.1 (0.6) 57.2 (2.6) 43.1 (0.9) 71.9 (0.5) 26.8 (1.4) 70.2 (2.5)
Label reweighted 42.5 (0.5) 77.5 (1.6) 30.9 (0.3) 57.8 (2.8) 42.2 (1.4) 70.8 (1.5) 26.2 (1.4) 68.8 (1.6)

Rebalancing 49.1 (1.5) 82.8 (1.7) 38.8 (0.7) 62.7 (0.6) 48.1 (3.1) 76.1 (1.0) 31.5 (1.8) 71.6 (1.2)
Rebalancing (PCA-256) 51.4 (1.8) 83.9 (1.3) 39.7 (0.6) 65.4 (0.5) 47.0 (3.1) 76.7 (1.2) 33.5 (1.0) 75.3 (0.6)
Rebalancing (label cond.) 54.0 (1.5) 84.5 (1.4) 39.5 (0.5) 66.7 (1.5) 50.1 (1.8) 77.5 (1.1) 34.9 (1.1) 77.4 (0.8)
Rebalancing (PCA, label cond.) 53.9 (0.7) 84.2 (0.4) 40.2 (0.8) 66.5 (1.5) 49.8 (1.4) 77.0 (0.3) 35.5 (0.8) 75.3 (2.8)

higher probability of the domain boundaries. rebalancing mitigates this effect leading to a tighter
approximation of the true function across the entire domain and thus improved o.o.d. test error.

5.2 MITIGATING COVARIATE SHIFT IN PRACTICE

We proceed to evaluate generalization on various classification tasks involving o.o.d. shifts from
popular benchmarks (Koh et al., 2021; Gulrajani & Lopez-Paz, 2021). We select tasks focusing pri-
marily on those that involve covariate shift rather than concept, domain, or label drift. We compare
to vanilla empirical risk minimization (ERM) and the baselines reported by the original studies; we
do not claim state-of-the-art performance. To examine the effect of rebalancing, we require a den-
sity estimator. After experimentation in the mixture of Gaussians task, we settled in favor of masked
auto-regressive flow (MAF) (Papamakarios et al., 2017a) fit on the embeddings of the pretrained
model that is then fine-tuned to solve the task at hand. Further details can be found in Appendix C.1.

Tables 1, 2, and 3 present the results on the iWildCam (Beery et al., 2021), PovertyMap (Koh
et al., 2021), and ColorMNIST (Arjovsky et al., 2019) tasks, respectively. Our theory motivates
rebalancing as a strategy for improving worst-group performance and, indeed, we observe higher
gains for the worst-group in ColorMNIST and PovertyMap (iWildCam has no such split).
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Table 2: PovertyMap. Pearson correlation (higher is better) on in-distribution and out-of-distribution
(unseen countries) held-out sets, incl. rural subpopulations. All results are averaged over 5 different
o.o.d. country folds, with standard deviations across different folds in parentheses.

Validation (i.d.) Validation (o.o.d.) Test (i.d.) Test (o.o.d.)
Algorithm Overall Worst Overall Worst Overall Worst Overall Worst

ERM 0.82 (0.02) 0.58 (0.07) 0.80 (0.04) 0.51 (0.06) 0.82 (0.03) 0.57 (0.07) 0.78 (0.04) 0.45 (0.06)
CORAL 0.82 (0.00) 0.59 (0.04) 0.80 (0.04) 0.52 (0.06) 0.83 (0.01) 0.59 (0.03) 0.78 (0.05) 0.44 (0.06)
IRM 0.82 (0.02) 0.57 (0.06) 0.81 (0.03) 0.53 (0.05) 0.82 (0.02) 0.57 (0.08) 0.77 (0.05) 0.43 (0.07)
Group DRO 0.78 (0.03) 0.49 (0.08) 0.78 (0.05) 0.46 (0.04) 0.80 (0.03) 0.54 (0.11) 0.75 (0.07) 0.39 (0.06)
C-Mixup 0.84 (0.01) 0.64 (0.05) 0.81 (0.04) 0.55 (0.06) 0.85 (0.01) 0.64 (0.05) 0.80 (0.04) 0.51 (0.08)

Rebalancing 0.83 (0.01) 0.62 (0.02) 0.80 (0.03) 0.53 (0.04) 0.84 (0.02) 0.63 (0.04) 0.75 (0.07) 0.44 (0.06)
Rebalancing (UMAP-64) 0.85 (0.01) 0.66 (0.03) 0.80 (0.03) 0.53 (0.04) 0.85 (0.01) 0.65 (0.04) 0.78 (0.04) 0.47 (0.10)
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Figure 4: Log-likelihoods used for training set rebalancing as well as i.d. and o.o.d. set log-
likelihood distributions. iWildCam and ColorMNIST feature covariate shift, as the density support
is largely the same across all sets. The o.o.d. PovertyMap set contains a notable domain shift.

Interestingly, in both PovertyMap and iWildCam, rebalancing yields performance improvements
also in the in-distribution (i.d.) sets. Closer inspection reveals that the i.d. validation and test sets
for iWildCam were not sampled i.i.d.. This can be also seen in Figure 4 which depicts the estimated
log-likelihoods distributions for the training, i.d., and o.o.d. sets. These plots confirm a gradual
increase in covariate shift from i.d. to o.o.d. validation sets. On the other hand, inspection of the
PovertyMap o.o.d. set likelihoods reveals a noticeable domain shift for a large fraction of the set,
which explains why rebalancing is less effective in this instance.

While our base approach often results in improvements, we found that better results could be
achieved by introducing a dimensionality reduction step prior to density estimation (UMAP McInnes
et al. (2018) or PCA) or by fitting a label-conditioned density on the training set. Both are described
in Appendix C.1. The best configuration was selected through ablation over relevant hyperparame-
ters. However, the larger number of moving parts reveals the brittleness of our MAF density estima-
tor, which influences the gains achieved. This issue is further discussed in Section 5.3.

We further explore the effect of gentle finetuning by modifying the model selection process in Col-
orMNIST. We focus on the -90% group which features the largest covariate shift. In DomainBed
it is standard practice to use a held-out training subset for early stopping. As shown in Table 3, re-
moving early stopping but using the held out set for hyperparameter selection slightly improves the
performance of ERM, indicating a substantial mismatch between the training and worst-group dis-
tributions. Performance improves further when we use the weight distance to initialization (WDL2)
instead of validation error to select model configurations, as motivated by our gentle finetuning
analysis in Section 4.2, also with no early stopping. Further gains are observed when we add rebal-
ancing of the training set while also using the WDL2 model selection. The best result was obtained
by combining the above with dimensionality reduction prior to fitting the density estimator. WDL2
was used only in ColorMNIST as in WILDS benchmarks it is a convention to use an appropriate
o.o.d. validation set for model selection. When such a set is available, it is the preferred choice. See
Appendix C.3 for further investigation of the impact rebalancing has on different hyperparameters.
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Table 3: ColoredMNIST. Binary classification accuracy (higher is better). Our methods bring ben-
efits w.r.t. model performance on the group (-90%) that entails the largest covariate shift. Since
model selection strategies are crucial for this task, in addition to the official implementation that
uses validation-based early stopping (first part of the table), we also test the effect of the follow-
ing model selection strategies: WDL2 entails using the weight distance to initialization for model
selection, motivated by our gentle finetuning argument.

Algorithm +90% +80% -90% Avg
ERM 71.7 ± 0.1 72.9 ± 0.2 10.0 ± 0.1 51.5
IRM 72.5 ± 0.1 73.3 ± 0.5 10.2 ± 0.3 52.0
GroupDRO 73.1 ± 0.3 73.2 ± 0.2 10.0 ± 0.2 52.1
Mixup 72.7 ± 0.4 73.4 ± 0.1 10.1 ± 0.1 52.1
MLDG 71.5 ± 0.2 73.1 ± 0.2 9.8 ± 0.1 51.5
CORAL 71.6 ± 0.3 73.1 ± 0.1 9.9 ± 0.1 51.5
MMD 71.4 ± 0.3 73.1 ± 0.2 9.9 ± 0.3 51.5
DANN 71.4 ± 0.9 73.1 ± 0.1 10.0 ± 0.0 51.5
CDANN 72.0 ± 0.2 73.0 ± 0.2 10.2 ± 0.1 51.7
MTL 70.9 ± 0.2 72.8 ± 0.3 10.5 ± 0.1 51.4
SagNet 71.8 ± 0.2 73.0 ± 0.2 10.3 ± 0.0 51.7
ARM 82.0 ± 0.5 76.5 ± 0.3 10.2 ± 0.0 56.2
VREx 72.4 ± 0.3 72.9 ± 0.4 10.2 ± 0.0 51.8
RSC 71.9 ± 0.3 73.1 ± 0.2 10.0 ± 0.2 51.7

ERM (no early stopping) 71.1 ± 0.4 72.8 ± 0.2 10.2 ± 0.2 51.4
ERM (WDL2) 66.9 ± 0.8 71.4 ± 0.8 11.0 ± 0.5 49.8

Rebalancing (no early stopping) 71.6 ± 0.3 72.6 ± 0.4 10.1 ± 0.2 51.4
Rebalancing (UMAP-8, label cond., no early stop.) 70.4 ± 0.3 73.6 ± 0.3 10.8 ± 0.3 51.6
Rebalancing (WDL2) 70.7 ± 0.4 70.9 ± 2.0 12.0 ± 1.0 51.2
Rebalancing (UMAP-8, label cond., WDL2) 69.5 ± 1.0 72.7 ± 0.7 37.0 ± 10.7 59.7

5.3 PITFALLS

A key prerequisite for rebalancing to work is that we can successfully fit a density over the training
set to derive importance weights. Our theory suggests that rendering the training set more uniform
can lead to models that are more robust to high entropy test distributions.

We already saw in the experiments above that introducing carefully tuned dimensionality reduction
or label conditioning when fitting the density could yield significant benefits. Unfortunately, we also
encountered datasets for which the density fit was so poor that the aforementioned modifications did
not suffice to improve performance. In Appendix C.5 we take a deeper dive into these failures,
showing how the failure of the density estimator impacts test performance.

Finally, we re-iterate that this work focuses on test distributions supported in the same domain as
the training distribution. Many tasks in the popular DomainBed and WILDS benchmarks contain
significant domain and label shifts which require a different approach.

6 CONCLUSION

As machine learning progresses toward larger-scale datasets and the development of foundation
models, it becomes increasingly important to move beyond traditional i.i.d. guarantees and to con-
sider worst-case scenarios in o.o.d. generalization. In this spirit, our work introduces a novel per-
spective that prioritizes minimizing worst-case error across diverse distributions. We have shown
that training on uniformly distributed data offers robust guarantees, making it a powerful strategy
as models scale in complexity and scope. Even when uniformity cannot be achieved, we find that
rebalancing strategies can provide practical avenues to enhance model resilience.

Further empirical work focusing on obtaining more robust density estimates as well as investigation
of gentle finetuning in the context of ensembles and foundation model training could bring additional
benefits. Other potential avenues to mitigate training data non-uniformity could include adding noise
to the input data (Bishop, 1995) and mixup (Zhang, 2017). We also note that the observations we
have made about how our theory aligns with previous evidence in the literature on the training of
foundation models do not establish a causal relation between our theory and reality. Further work
will be needed to rigorously establish these links.

Overall, the shift in focus from average-case to worst-case generalization presents a compelling
framework for the next generation of machine learning models, particularly as they are trained on
increasing larger datasets and deployed in increasingly unpredictable environments.
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Figure 5: Conceptual illustration of the differences between the distributionally robust optimization
(DRO) and distributionally diverse risk (DD) frameworks, respectively shown in the top and bottom
rows. We here consider the example of a 1-dimensional density. The training distribution is given in
blue, whereas in green and orange we depict example admissible test distributions according to DRO
and DD, respectively: DRO assumes that the test distribution will be close to the training one (small
train-test divergence). In the DD framework, the admissible test distributions have high entropy
but may have arbitrarily large train-test divergence. In gray, we depict examples of non-admissible
distributions for DRO (top) and DD (bottom). We provide examples of admissible distributions for
the DD framework that are inadmissible in DRO and vice-versa.

A RELATED WORK

Out-of-distribution generalization is a central challenge in machine learning, where models trained
on a specific data distribution are required to perform well on unseen distributions that may differ
significantly. For an in-depth survey of the flurry of work on o.o.d. generalization, we refer to
the following surveys (Liu et al., 2023; Zhou et al., 2022; Wang et al., 2022). In the following,
we discuss the various approaches that have been developed to this challenge, emphasizing their
similarities and differences with this work.

Domain generalization. Domain generalization and invariant risk minimization aim to enhance a
model’s ability to generalize across different environments or domains. These methods define a set
of environments from which data is gathered and seek to ensure that the model’s outputs are invari-
ant (i.e., indistinguishable) with respect to the environment from which the data originated (Bengio
et al., 2013; Peters et al., 2016; Arjovsky et al., 2019; Rosenfeld et al., 2020; Koyama & Yamaguchi,
2020). The ultimate goal is to capture features that are discriminative across domains while ignoring
spurious correlations. Similarly to these methods, our work acknowledges potential shifts between
training and test distributions and aims to promote robust generalization. Unlike domain general-
ization approaches, we do not assume that the data comes from multiple pre-defined environments.
Recent advances, particularly those that combine finetuning of pretrained models with ensembling
strategies, are relevant to our approach as they have shown promise in enhancing generalization
across varied domains (Gulrajani & Lopez-Paz, 2021). Ensemble-based methods such as model
soups (Wortsman et al., 2022), DiWA (Rame et al., 2022), agree-to-disagree (Pagliardini et al.), and
model Ratatouille (Rame et al., 2023) have further extended these concepts, aligning closely with
our objectives.

Robustness to uncertainty and perturbation. Robust optimization (RO) is a well-established field
in optimization that deals with uncertainty in model parameters or data (Ben-Tal et al., 2009). In the
context of machine learning, RO has been applied to scenarios where the test distribution is assumed
to be within a set of known plausible distributions, with the goal of minimizing the worst-case loss
over this set (Caramanis et al., 2011; Singla et al., 2020; Zhang et al., 2022). Distributionally robust
optimization (DRO) (Rahimian & Mehrotra, 2019; Duchi & Namkoong, 2019; 2021) extends this
concept by considering a set of distributions over the unknown data, usually inferred through a prior
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on the data, such as distributions that are close to the training distribution by some distance measure
such as the Wasserstein distance (Kuhn et al., 2019). Our approach shares similarities with DRO in
that the DD risk in that we both consider the worst case behavior over a set of distributions and that,
at the limit, both DRO and DD converge to the worst case risk over the domain. However, our work
diverges from traditional RO and DRO frameworks in significant ways. RO typically focuses on the
optimization aspect, often assuming a convex cost function and providing theoretical justification
for various regularizers such as Tikhonov and Lasso (Caramanis et al., 2011). These approaches
are particularly concerned with uncertainty within a bounded region near the training data, such as
noisy or partial inputs and labels (Singla et al., 2020; Zhang et al., 2022). In contrast, our focus
is on scenarios where the training data is neither noisy nor partial but where the test distribution
can change almost arbitrarily within the support of the training distribution, provided that its en-
tropy is not too small. Critically, as illustrated in Figure 5, the assumptions posed by DRO and our
framework about the relation of the train and test distribution are different: we do not consider the
worst-case bounded distribution shift (as is done in DRO) but the worst case risk under any distribu-
tion of sufficient entropy. As such, the training distribution holds no special role in our framework,
whereas in practice DRO defines the set of potential test distributions as those some distance away
from it. This is a consequential conceptual and practical difference: Conceptually, whereas in DRO
one needs to think about how similar is the test distribution to the training distribution, we here
consider arbitrary distributions on the test domain and pose a constraint on entropy. Practically, the
two approaches lead to very different solutions to the problem of distribution shift. Within the deep
learning community, significant efforts have also been made to train models that are robust to small
input perturbations, referred to as adversarial examples (Goodfellow et al., 2015; Madry et al., 2018;
Alayrac et al., 2019; Bai et al., 2021). While these methods have influenced our understanding of
robustness, our work is distinct in that we address broader shifts in the test distribution rather than
specific adversarial perturbations.

Domain adaptation and covariate shift. Domain adaptation is a sub-area of transfer learning (Pan
& Yang, 2009) focused on transferring knowledge from a source domain to a target domain where
the data distribution differs (Farahani et al., 2021). This is crucial when a model trained on one
domain is expected to perform well on a new domain. Domain adaptation falls into three types of
domain shifts: covariate, concept, and label shift. Our work is most closely related to the covari-
ate shift scenario, in which the distribution of input features changes between the training and test
phases. Similarly to some domain adaptation methods that address covariate shift, we also con-
sider re-weighting strategies to account for differences between training and test distributions (Shi-
modaira, 2000; Huang et al., 2006) (other approaches consider ensemble disagreement (Jiang et al.;
Kirsch & Gal), model confidence (Garg et al., 2022), and neighborhood invariance (Ng et al.) on
the unlabeled data). A key difference is that we do not assume that we have access to unlabeled
target domain data but instead consider re-weighing to uniformly rebalance the training set. This
choice motivated the proven optimality of the uniform distribution when considering the worst-case
scenario across all possible distributions that are constrained by a given entropy threshold. This
broader DD framework enables robust generalization across diverse scenarios, without relying on
prior knowledge of specific target distributions or adaptations tailored to known shifts.

Active learning. Active Learning (AL) aims to efficiently train models by selecting the most in-
formative data points for labeling, thereby reducing the amount of labeled data needed to achieve
high performance (Cohn et al., 1996; Settles, 2009). Within AL, entropy maximization is a com-
mon practice, where the focus is on maximizing the entropy of the predictive distribution p(y|x)
to identify the most uncertain and thus informative data points. Other acquisition functions in-
clude Variation Ratios (which select data points based on the disagreement among multiple model
predictions), mean standard deviation (Kendall et al., 2017) provide alternative ways to measure un-
certainty. Additionally, methods like mutual information between predictions and model posterior
have been used to target data points that most influence the model’s posterior distribution (Houlsby
et al., 2011). The use of density estimation to bias the sampling towards low-density areas was also
considered in (Zhu et al., 2008). Therein, they define the density×entropy measure which combines
H(y|x) and p(x). For a recent overview of these sampling strategies in computer vision, refer to Gal
et al. (Gal et al., 2017). Despite the overlap in techniques, our work focuses on o.o.d. generalization
rather than iterative sample acquisition: while AL aims to improve model performance by selecting
specific data points during training, our study seeks to optimize generalization across all possible
distributions within a domain, offering a different perspective on managing uncertainty.
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B JUSTIFICATION OF THE DD RISK FORMULATION

The DD risk, that we defined as follows:

rdd(f ; γ) = max
q∈Qγ

Ex∼q

[
l
(
f(x), f∗(x)

)]
,

measures the behavior of a classifier across any test distribution of sufficiently high-entropy within
a domain. In the following, we justify this definition from a mathematical, intuitive, and empirical
perspective.

Mathematical justification. Our definition of DD risk follows from two desiderata about how to
model the generalization of a predictive model under covariate shift:

1. We know very little about the relation between the training and test distributions.
2. We wish to avoid judging the behavior of a classifier based on pathological examples, thus

the test distribution should not assign high likelihood to any small set of examples.

Desideratum 1 is posed because the distance between training and test distribution (also referred
to as train-test discrepancy) is often large in practice. This is supported by the literature where,
train-test discrepancy has been empirically found to correlate poorly with generalization (Vedantam
et al., 2021) and concurrent theoretical work also advocates against it (Bhattacharjee et al., 2024).
On the other hand, desideratum 2 addresses the reason why worst-case analysis is non-meaningful
in learning: if no such constraint is placed, an adversary may always construct a pathological test
distribution that concentrates all its mass on a small set of inputs where the predictive model is
wrong. We directly avoid this situation by asserting that no such small high likelihood set can exist.

Asserting that the test distribution entropy is high satisfies both these desiderata without imposing
any further assumptions. Lower bounding the test entropy ensures that the spread of a distribution is
large and does not constrain the shape of the test distribution based on that of the training one given
a fixed domain.

Intuitive explanation. We argue that, a generally performant model is one that generally performs
well on many test instances that the world throws at it—even if it might fail in specific instances.
In other words, though we cannot hope that our model will generalize to any arbitrary sharp test
distribution, we can reasonably expect that it will performs well on test distributions that are more
spread out and thus more typical of the data domain. Our assumption of high test entropy exactly
corresponds to the minimal and intuitive assumption that the classifier will be evaluated on a diverse
set of possible inputs, rather than on few pathological examples.

Empirical justification. Finally, to emphasize the practical applicability of our assumption in real-
world applications, we remark that, as mentioned in the introduction, test entropy has already been
identified in the literature (Vedantam et al., 2021) as an intuitive and empirically predictive measure
for o.o.d. generalization.

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 REBALANCING IN PRACTICE

The aim of rebalancing is to fit a density function to the training examples p(x) such that, after
rebalancing, the training examples with weights w(x) ∝ 1/p(x)τ resemble a uniform distribution.
While temperature τ can be tuned as a hyperparameter, we kept τ = 1.0 for simplicity. As per
Theorem 4.2, we cap the weights w(x) ∝ min(1/p̂(xi)

τ , β). In practice this is used as a way to
regularize the distribution and avoid oversampling outliers. From synthetic experiments we found
β = 0.99 quantile to be a robust choice and used it in all further real-world experiments.

We use a masked autoregresive flow (MAF) (Papamakarios et al., 2017b) to fit a density to the
training set embeddings as we found it performed better than alternatives in preliminary experiments.
In all setups we use a standard Gaussian as a base density. For real-world experiments we used MAF
with 10 autoregressive layers and a 2 layer MLP with a hidden dimension of 256 for each of them.
For synthetic experiments we used MAF with 5 autoregresive layers and a 2 layer MLP with a hidden
dimension of 64 for each of them. In all cases, when training MAF we hold out 10% random subset
of the training data for early stopping, with a patience of 10 epochs. The checkpoint with the best
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held-out set likelihood is used. MAF is trained with learning rate of 3e− 4 and the Adam (Kingma,
2014) optimizer.

When using label conditioning, we use the flow to estimate conditional density p(x) =
pMAF(x|y)p(y), where p(y) is computed from label frequency in the training set. Further, in this
case we ensure that final weights upsample minority label samples by scaling weights to inverse
label frequency w′ = w/p(y).

To achieve good quality rebalancing we need the sample weights to capture the data landscape as-
pects relevant to the given problem. As we focus on generalization tasks where it is standard to use
pre-trained models (Koh et al., 2021) as a starting point, we aim to fit a density on the embeddings
produced by the pre-trained backbone model. For real world experiments we use the hyperparam-
eters and experimental setup proposed for ERM in the respective original papers (Koh et al., 2021;
Gulrajani & Lopez-Paz, 2021).

All WILDS (Koh et al., 2021) datasets considered, except PovertyMap, use a pre-trained model that
is finetuned with a new prediction head. We use that pre-trained model as a featurizer to produce the
training set embeddings. For PovertyMap, the randomly initialized featurizer is used, to keep in line
with the original experimental setup, even though using a model pre-trained on ImageNet marginally
improves the results. In all cases the featurizer models used already produce one embedding vector
per training sample, except CodeGPT (Lu et al., 2021) used for Py150, for which we apply mean
pooling over the sequence to produce a single embedding vector to use for density estimation.

For ColorMNIST traditionally no pre-trained backbone is used (Gulrajani & Lopez-Paz, 2021).
Thus, we use a ResNet-50 model pre-trained on ImageNet to build the embeddings for density
estimation, but otherwise train the standard model architecture, with exactly the same experimental
setup as proposed by Gulrajani & Lopez-Paz (2021).

To combat the curse of dimentionality and to potentially fit smoother densities we also explore di-
mensionality reduction. In all real-world datasets we perform a small grid search over transforming
embeddings using UMAP (McInnes et al., 2018) to 8 or 64 dimensions or using PCA to 256 dimen-
sions before fitting the flow model. We use the validation loss to select the dimensionality reduction
technique. We selected on these grid-search hyperparameters from preliminary experiments where
we found that at lower target dimensions UMAP performs much better than PCA in our setup, while
for larger target dimensions PCA is at least as good. A more exhaustive hyperparameter search was
avoided to save computational resources. To facilitate the flow training, we normalize the embed-
dings. We grid search over two options: normalizing each embedding dimension to unit variance
and zero mean or normalizing all embeddings by the maximum vector length. To get a better be-
haved probability distribution, we scale log-likelihoods produced by MAF by the dimension size, to
get likelihoods in bits per dimension, before applying a softmax over the whole training set, to get
proper sample weights.

In the synthetic experiments, we directly fit the flow to the data without employing any dimension-
ality reduction.

C.2 MIXTURE OF GAUSSIANS

Figure 6: Different sampling strategies for our synthetic dataset. Points are sampled either uniformly
or using a truncated Gaussian, with varying standard deviations. To label the samples, we use four
randomly placed univariate Gaussian centroids and for each point x assign the label y (red or green)
of the Gaussian with the highest likelihood. Resulting decision boundary is in black.
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Figure 7: Effect of different threshold β and temperature τ values when using sample rebalancing
for training datasets with varying levels of uniformity (truncated gaussian σ. For visualization, error
values are clipped from above to the value achieved without rebalancing.
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Figure 8: Effect of different threshold β and temperature τ values on expected when using sample
rebalancing across training sets with different non-uniformity (captured by the standard deviation
σ). For visualization, error values are clipped from above to the value achieved without rebalancing.

We consider four isotropic Gaussians, where the means are uniformly selected within the unit square
[0, 1]2. Two of these Gaussians represent the positive class, and the other half represent the negative
class. A point in [0, 1]2 is labeled as positive if the likelihood ratio of positive to negative mixtures
exceeds one. We train a multi-layer perceptron on either a uniform or non-uniform training distribu-
tion, with a training set size n ranging from 100 to 10,000 examples. To obtain confidence intervals,
in the following we sample 35 tasks and repeat the analysis for each one. Illustrative examples of
the task are provided in Figure 6.

A key challenge we encountered was the reliable estimation of entropy, as the entropy estimators we
tried were biased, a common issue in entropy estimation. To address this, we partition the space into
100×100 bins B, sample a held-out set of m = 10, 000 examples, and estimate the discrete entropy
using the formula H(p) ≈

∑
b∈B p̂b(x) log(1/p̂b(x)), where p̂b(x) =

∑
x 1{x ∈ b}/m.

We select the test distribution using a greedy adversarial construction: first, we sample 10 000 points
uniformly, then starting with all test points that the model mislabels, an adversarial set is iteratively
expanded by adding the point that maximizes entropy at each step. Whereas set selection for entropy
maximization is NP-hard, this procedure provides a 1− 1/e approximation of the true optimum (Ko
et al., 1995; Krause & Guestrin, 2012; Sharma et al., 2015).

C.3 EFFECT OF REBALANCING ON DIVERSE SET OF HYPERPARAMETERS

While the WILDS datasets use a fixed set of hyperparameters proposed in the original paper (Koh
et al., 2021), the standard setup for ColorMNIST in DomainBed benchmark prescribes a standard
hyperparameter sweep (Gulrajani & Lopez-Paz, 2021). For each each environment (+90%, +80%,
-90%) 20 hyperparameters sets are considered and three trials with different random seed are per-
formed. This offers us an opportunity to investigate how rebalancing affects the model with various
hyperparameters. In Figure 9 we show that rebalancing causes a favorable shift in the distribution
of generalization performance over the different hyperparameters and trials.

The final performance in ColorMNIST is reported by choosing the best hyperparameter set in each
of the three trials and averaging the final test error. Traditionally, the i.i.d. validation split is used to

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

ERM Rebalancing

0.4

0.5

0.6

0.7
Te

st
 a

cc
ur

ac
y

+90%

ERM Rebalancing
0.50

0.55

0.60

0.65

0.70

0.75

Te
st

 a
cc

ur
ac

y

+80%

ERM Rebalancing
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 a
cc

ur
ac

y

-90%
Best validation performance Best weight distance (WD2)

Figure 9: Results of all training runs conducted for ColorMNIST with no rebalancing and the best
rebalancing (UMAP-8, label cond.). Results are reported for the final model for each training run
(no early stopping). We can observe that rebalancing causes a noticeable shift in the performance of
all hyperparameter sets, in the worst-case setting (-90% case). Here, we also observe, that choosing
the hyperparameter set based on weight distance of the trained model to initialization results in a
more favorable choice, compared to standard way of choosing the hyperparameter set using i.i.d.
validation set.

determine the best hyperparameter set in each trial. But as outlined in DomainBed paper (Gulrajani
& Lopez-Paz, 2021) model selection is key to achieve good generalization. In Figure C.3 we can see
that using i.i.d. validation split to make this selection can lead to us selecting the worst checkpoints
for generalization (-90% case). As discussed in Section 4.2, small weight distance of the trained
model to initialization can be informative of potential for o.o.d. generalization. In Figure C.3 we
indeed observe that selecting the hyperparameter set based on the weight distance at the end of
model training results in us making a more favorable choice for o.o.d. generalization.

C.4 COMBINING REBALANCING WITH OTHER DATA SMOOTHING APPROACHES

The main goal of rebalancing the training data is to more uniformly cover the data manifold, when
training the model. Other approaches, such as mixup (Zhang, 2017) that interpolates data points in
the training set, can also have a similar smoothing effect. As C-Mixup (Yao et al., 2022) achieves
state of the art performance on PovertyMap dataset, it is natural to ask if these smoothing approaches
can be combined. While C-Mixup was originally proposed for regression tasks and mixes datapoints
based on their label similarity, we also adopted it to the categorical classification setup by mixing
only points within the same class. We tested how combining C-Mixup with rebalancing would affect
results on PovertyMap and iWildCam datasets. In all cases C-Mixup was used with CutMix (Yun
et al., 2019) as proposed in the original paper for the PovertyMap task (Yao et al., 2022).

From Tables 4 and 5 we can see that combining C-Mixup and rebalancing tends to produce middle
of the road results. In PovertyMap (Table 5) where C-Mixup is state of the art, the combined meth-
ods achieve similar results (up to experimental variance0. While for iWildCam (Table 4), where
rebalancing is superior, the combined methods again perform worse than rebalancing alone but bet-
ter than C-Mixup. This shows that the approaches can be used together but their benefits do not
necessarily stack up.

C.5 RESULTS ON DATASETS WITH POOR DENSITY FIT

As discussed in the main body, we do not hope to achieve great results when using sample reweight-
ing if our density fit is poor or the test set features a domain shift. In this section we show the
remaining WILDS (Koh et al., 2021) datasets we have considered that rely on pre-trained models.
As can be seen in Figure 10 density fit quality is lacking, which translates in only small differences
to vanilla ERM performance as seen in Tables 6, 7, 8 and 9. However, even with such poor density,
rebalancing can occasionally help to improve worst-case o.o.d. performance, as seen in Table 7.

While our work shows the benefit of rebalancing, when we are able to fit a good density to the train-
ing data, further work is required to determine what embeddings should be used for each problem
and how best to fit a density on those embeddings.
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Table 4: iWildCam. Macro F1 and average classification accuracy (higher is better). o.o.d. results
are on images from wildlife cameras not present in the training set, while i.d. results are on images
from the cameras in the training set, but taken on different days. Parentheses show standard deviation
across 3 replicates.

Validation (i.d.) Validation (o.o.d.) Test (i.d.) Test (o.o.d.)
Algorithm Macro F1 Avg acc Macro F1 Avg acc Macro F1 Avg acc Macro F1 Avg acc

ERM 48.8 (2.5) 82.5 (0.8) 37.4 (1.7) 62.7 (2.4) 47.0 (1.4) 75.7 (0.3) 31.0 (1.3) 71.6 (2.5)
C-Mixup 44.1 (0.8) 80.5 (0.7) 33.1 (0.6) 57.2 (2.6) 43.1 (0.9) 71.9 (0.5) 26.8 (1.4) 70.2 (2.5)
Rebalancing 49.1 (1.5) 82.8 (1.7) 38.8 (0.7) 62.7 (0.6) 48.1 (3.1) 76.1 (1.0) 31.5 (1.8) 71.6 (1.2)
Rebalancing (PCA-256) 51.4 (1.8) 83.9 (1.3) 39.7 (0.6) 65.4 (0.5) 47.0 (3.1) 76.7 (1.2) 33.5 (1.0) 75.3 (0.6)
Rebalancing (label cond.) 54.0 (1.5) 84.5 (1.4) 39.5 (0.5) 66.7 (1.5) 50.1 (1.8) 77.5 (1.1) 34.9 (1.1) 77.4 (0.8)
Rebalancing (PCA, label cond.) 53.9 (0.7) 84.2 (0.4) 40.2 (0.8) 66.5 (1.5) 49.8 (1.4) 77.0 (0.3) 35.5 (0.8) 75.3 (2.8)

Rebalancing (C-Mixup) 44.8 (0.9) 80.9 (0.3) 33.7 (0.6) 58.8 (1.6) 43.7 (2.0) 72.0 (0.9) 26.7 (0.3) 70.6 (3.1)
Rebalancing (PCA-256, C-Mixup) 44.1 (2.1) 80.2 (1.7) 34.3 (0.7) 58.4 (0.9) 42.6 (0.5) 71.6 (0.6) 27.7 (0.6) 68.7 (1.6)
Rebalancing (label cond., C-Mixup) 47.0 (1.9) 80.8 (0.4) 35.0 (0.3) 58.8 (1.8) 44.9 (1.7) 72.6 (0.8) 29.1 (0.9) 69.7 (1.2)
Rebalancing (PCA, label cond., C-Mixup) 50.3 (2.4) 80.9 (1.0) 35.3 (0.2) 60.5 (2.7) 44.3 (1.5) 73.3 (0.6) 31.3 (0.7) 70.2 (0.2)

Table 5: PovertyMap. Pearson correlation (higher is better) on in-distribution and out-of-distribution
(unseen countries) held-out sets, incl. rural subpopulations. All results are averaged over 5 different
o.o.d. country folds, with standard deviations across different folds in parentheses.

Validation (i.d.) Validation (o.o.d.) Test (i.d.) Test (o.o.d.)
Algorithm Overall Worst Overall Worst Overall Worst Overall Worst

ERM 0.82 (0.02) 0.58 (0.07) 0.80 (0.04) 0.51 (0.06) 0.82 (0.03) 0.57 (0.07) 0.78 (0.04) 0.45 (0.06)
Rebalancing 0.83 (0.01) 0.62 (0.02) 0.80 (0.03) 0.53 (0.04) 0.84 (0.02) 0.63 (0.04) 0.75 (0.07) 0.44 (0.06)
Rebalancing (UMAP-64) 0.85 (0.01) 0.66 (0.03) 0.80 (0.03) 0.53 (0.04) 0.85 (0.01) 0.65 (0.04) 0.78 (0.04) 0.47 (0.10)
C-Mixup 0.84 (0.01) 0.64 (0.05) 0.81 (0.04) 0.55 (0.06) 0.85 (0.01) 0.64 (0.05) 0.80 (0.04) 0.51 (0.08)

Rebalancing (C-Mixup) 0.83 (0.02) 0.62 (0.09) 0.79 (0.04) 0.55 (0.05) 0.84 (0.03) 0.64 (0.07) 0.79 (0.05) 0.50 (0.06)
Rebalancing (C-Mixup, UMAP-64) 0.84 (0.01) 0.65 (0.04) 0.82 (0.04) 0.55 (0.05) 0.85 (0.02) 0.66 (0.05) 0.79 (0.03) 0.49 (0.07)
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Figure 10: Density fits with no dimensionality reduction for four WILDS (Koh et al., 2021) datasets,
where the fit was poor.

Table 6: Baseline results on CivilComments. The reweighted (label) algorithm samples equally
from the positive and negative class; the group DRO (label) algorithm additionally weights these
classes so as to minimize the maximum of the average positive training loss and average negative
training loss. We show standard deviation across 5 random seeds in parentheses.

Algorithm Avg val acc Worst-group val acc Avg test acc Worst-group test acc

ERM 92.3 (0.2) 50.5 (1.9) 92.2 (0.1) 56.0 (3.6)

Reweighted (label) 90.1 (0.4) 65.9 (1.8) 89.8 (0.4) 69.2 (0.9)
Group DRO (label) 90.4 (0.4) 65.0 (3.8) 90.2 (0.3) 69.1 (1.8)

Rebalancing 92.1 (0.3) 49.7 (2.2) 92.1 (0.28) 55.7 (4.2)
Rebalancing (PCA-256) 92.0 (0.2) 49.9 (2.6) 92.0 (0.17) 55.8 (2.7)
Rebalancing (label cond.) 90.1 (0.5) 65.4 (2.7) 89.9 (0.46) 68.0 (2.2)
Rebalancing (PCA-256, label cond.) 90.3 (0.3) 65.7 (1.4) 90.1 (0.34) 69.4 (1.3)
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Table 7: Average and worst-region accuracies (%) under time shifts in FMoW. Models are trained
on data before 2013 and tested on held-out location coordinates from i.d. and o.o.d. test sets.
Parentheses show standard deviation across 3 replicates.

Validation (i.d.) Validation (o.o.d.) Test (i.d.) Test (o.o.d.)
Algorithm Overall Worst Overall Worst Overall Worst Overall Worst

ERM 61.2 (0.52) 59.2 (0.69) 59.5 (0.37) 48.9 (0.62) 59.7 (0.65) 58.3 (0.92) 53.0 (0.55) 32.3 (1.25)
CORAL 58.3 (0.28) 55.9 (0.50) 56.9 (0.25) 47.1 (0.43) 57.2 (0.90) 55.0 (1.02) 50.5 (0.36) 31.7 (1.24)
IRM 58.6 (0.07) 56.6 (0.59) 57.4 (0.37) 47.5 (1.57) 57.7 (0.10) 56.0 (0.34) 50.8 (0.13) 30.0 (1.37)
Group DRO 60.5 (0.36) 57.9 (0.62) 58.8 (0.19) 46.5 (0.25) 59.4 (0.11) 57.8 (0.60) 52.1 (0.50) 30.8 (0.81)

Rebalancing 60.5 (0.54) 58.4 (0.73) 58.6 (0.57) 50.9 (1.52) 59.0 (0.36) 57.4 (0.86) 52.4 (0.57) 33.6 (1.23)
Rebalancing (PCA-256) 60.9 (0.50) 58.5 (0.51) 58.9 (0.57) 52.0 (1.01) 59.6 (0.34) 57.8 (0.88) 52.7 (0.79) 33.7 (0.87)

Table 8: Amazon product reviews. We report the accuracy of models trained using ERM, CORAL,
IRM, and group DRO, as well as a reweighting baseline that reweights for class balance. To measure
tail performance across reviewers, we also report the accuracy for the reviewer in the 10th percentile.

Validation (i.d.) Validation (o.o.d.) Test (i.d.) Test (o.o.d.)
Algorithm 10th percentile Average 10th percentile Average 10th percentile Average 10th percentile Average

ERM 58.7 (0.0) 75.7 (0.2) 55.2 (0.7) 72.7 (0.1) 57.3 (0.0) 74.7 (0.1) 53.8 (0.8) 71.9 (0.1)
CORAL 56.2 (1.7) 74.4 (0.3) 54.7 (0.0) 72.0 (0.3) 55.1 (0.4) 73.4 (0.2) 52.9 (0.8) 71.1 (0.3)
IRM 56.4 (0.8) 74.3 (0.1) 54.2 (0.8) 71.5 (0.3) 54.7 (0.0) 72.9 (0.2) 52.4 (0.8) 70.5 (0.3)
Group DRO 57.8 (0.8) 73.7 (0.6) 54.7 (0.0) 70.7 (0.6) 55.8 (1.0) 72.5 (0.3) 53.3 (0.0) 70.0 (0.5)
Label reweighted 55.1 (0.8) 71.9 (0.4) 52.1 (0.2) 69.1 (0.5) 54.4 (0.4) 70.7 (0.4) 52.0 (0.0) 68.6 (0.6)

Rebalancing 57.8 (0.8) 75.0 (0.4) 54.7 (0.0) 71.9 (0.3) 57.8 (0.8) 73.7 (0.3) 53.8 (0.8) 71.2 (0.3)
Rebalancing (PCA-256) 57.8 (0.8) 75.2 (0.1) 55.1 (0.8) 72.1 (0.0) 57.8 (0.8) 73.9 (0.1) 53.3 (0.0) 71.2 (0.1)

D RELATION BETWEEN DD AND EXPECTED RISKS

The relation between DD and expected risks is subtle. Clearly, the DD risk is always larger than the
expected risk, however, the gap between the two can be zero when considering the optimal learner:

Theorem D.1. For any loss l : Y× Y → R+ that is convex w.r.t. its first argument, we have

max
q∈Qγ

min
f∈F

rexp(f ; q) = min
f∈F

rdd(f ; γ) ,

given that F is a compact convex set and all densities q : X → [0, 1] are defined over a bounded
domain.

This is a somewhat abstract result that we include mainly for completeness. We find its usefulness
only as a confirmation that the optimal distribution DD risk will not be worse than the best expected
risk over the worst distribution in Qγ .

D.1 PROOF THEOREM D.1

Proof. It follows from the max–min inequality, that the following relation generally holds:

max
q∈Qγ

min
f∈F

rexp(f ; q) ≤ min
f∈F

max
q∈Qγ

rexp(f ; q) = min
f∈F

rdd(f ; γ).

It is a consequence of Sion’s minimax theorem (Komiya, 1988) that the above is an equality when
rexp(f ; q) is quasi-convex w.r.t. f , quasi-concave w.r.t. q, and when both F and Qγ are compact
convex sets.

Convexity w.r.t. f and concavity w.r.t. q. We know that the expected risk is linear w.r.t q as

rexp(f ; q) =

∫
X
q(x) l

(
f(x), f∗(x)

)
dx .

Further, if we assume that the loss function is convex w.r.t. f then the expected risk is also convex,
since the convex combination of convex functions is also convex (see Appendix D.2).

Convexity of Qγ . Let Ω be a bounded domain in Rd. The set of distributions we are interested in
is those that have entropy at least γ +H(u). The entropy H(p) of a probability distribution p over
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Table 9: Results on Py150. We report both the model’s accuracy on predicting class and method
tokens and accuracy on all tokens trained using ERM, CORAL, IRM and group DRO. Standard
deviations over 3 trials are in parentheses.

Validation (i.d.) Validation (o.o.d.) Test (i.d.) Test (o.o.d.)
Algorithm Method/class All Method/class All Method/class All Method/class All

ERM 75.5 (0.5) 74.6 (0.4) 68.0 (0.1) 69.4 (0.1) 75.4 (0.4) 74.5 (0.4) 67.9 (0.1) 69.6 (0.1)
CORAL 70.7 (0.0) 70.9 (0.1) 65.7 (0.2) 67.2 (0.1) 70.6 (0.0) 70.8 (0.1) 65.9 (0.1) 67.9 (0.0)
IRM 67.3 (1.1) 68.4 (0.7) 63.9 (0.3) 65.6 (0.1) 67.3(1.1) 68.3 (0.7) 64.3 (0.2) 66.4 (0.1)
Group DRO 70.8 (0.0) 71.2 (0.1) 65.4 (0.0) 67.3 (0.0) 70.8 (0.0) 71.0 (0.0) 65.9 (0.1) 67.9 (0.0)

Rebalancing 75.1 (0.5) 74.4 (0.4) 67.0 (0.1) 69.0 (0.2) 74.9 (0.5) 74.2 (0.4) 67.2 (0.1) 69.2 (0.2)
Rebalancing (PCA-256) 75.2 (0.5) 74.3 (0.4) 67.1 (0.1) 69.0 (0.1) 75.0 (0.5) 74.2 (0.4) 67.2 (0.0) 69.1 (0.1)

a bounded domain Ω is a concave function. For any two distributions p and q on Ω, and for any
λ ∈ [0, 1], the entropy H satisfies

H
(
λp+ (1− λ)q

)
≥ λH(p) + (1− λ)H(q).

Given this property, if p and q are in the set Qγ (i.e., H(p) ≥ γ +H(u) and H(q) ≥ γ +H(u)),
then for any λ ∈ [0, 1],

H(λp+ (1− λ)q) ≥ λH(p) + (1− λ)H(q) ≥ λ
(
γ +H(u)

)
+ (1− λ)

(
γ +H(u)

)
= γ +H(u) .

Thus, λp+ (1− λ)q ∈ Qγ , demonstrating that Qγ is a convex set.

Compactness. In the space of probability distributions on a bounded domain Ω, the set of all
distributions is bounded because the total probability mass is 1, and Ω itself is bounded. We need
to check whether Qγ is closed in the weak topology. In the space of probability distributions, a
sequence of distributions {pn} converges weakly to p if for all bounded continuous functions f ,

lim
n→∞

∫
f dpn =

∫
f dp.

Entropy is lower semi-continuous in the weak topology, which means that if a sequence of distribu-
tions {pn} converges weakly to p, then lim infn→∞ H(pn) ≥ H(p).

To show that Qγ is closed, suppose we have a sequence {pn} in q such that pn → p weakly. Since
pn ∈ Qγ , we have H(pn) ≥ k for all n. Using the lower semi-continuity of entropy:

H(p) ≥ lim inf
n→∞

H(pn) ≥ k.

Therefore, p ∈ Qγ , showing that Qγ is closed in the weak topology.

Since Qγ is convex, closed, and bounded in the space of probability distributions on a bounded
domain Ω, we can conclude that Qγ is a compact convex set.

D.2 PROOF OF CONVEXITY OF rEXP(f ; p) W.R.T. THE FIRST ARGUMENT

Let rexp(f ; p) =
∑

x p(x)l(f(x), f
∗(x)), where l is convex with respect to f(x). We aim to show

that rexp(f ; p) is convex with respect to the function f .

Consider any two functions f1 and f2 and a scalar λ ∈ [0, 1]. We need to show that:

rexp(λf1 + (1− λ)f2; p) ≤ λrexp(f1; p) + (1− λ)rexp(f2; p).

First, express rexp(λf1 + (1− λ)f2; p):

rexp(λf1 + (1− λ)f2; p) =
∑
x

p(x)l((λf1 + (1− λ)f2)(x), f
∗(x)).

Since (λf1 + (1− λ)f2)(x) = λf1(x) + (1− λ)f2(x), we have:

rexp(λf1 + (1− λ)f2; p) =
∑
x

p(x)l(λf1(x) + (1− λ)f2(x), f
∗(x)).

By the convexity of l in its first argument, we have

l(λf1(x) + (1− λ)f2(x), f
∗(x)) ≤ λl(f1(x), f

∗(x)) + (1− λ)l(f2(x), f
∗(x)).
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Multiplying both sides by p(x) and summing over x gives,∑
x

p(x)l(λf1(x) + (1− λ)f2(x), f
∗(x)) ≤

∑
x

p(x)(λl(f1(x), y) + (1− λ)l(f2(x), f
∗(x))),

while distributing the sums leads to∑
x

p(x)(λl(f1(x), f
∗(x)) + (1− λ)l(f2(x), f

∗(x))) = λ
∑
x

p(x)l(f1(x), f
∗(x))

+ (1− λ)
∑
x

p(x)l(f2(x), f
∗(x)).

We have thus far shown that

rexp(λf1 + (1− λ)f2; p) ≤ λrexp(f1; p) + (1− λ)rexp(f2; p).

Since the above inequality holds for any f1, f2, and λ ∈ [0, 1], rexp(f ; p) is convex with respect to
f . This concludes the proof.

E PROOF OF THEOREM 3.1

Theorem 3.1. Consider a zero-one loss and suppose that we can train a classifier up to some fixed
expected risk ε < 1/2 under any distribution. A classifier optimized for the uniform distribution will
yield the smallest DD risk:

max
f∈Fu,ε

rdd(f ; γ) ≤ max
f∈Fp,ε

rdd(f ; γ) for all p ̸= u. (6)

Proof. The theorem is asking the following question: assuming we learn a classifier w.r.t some
training distribution p, and we know that the expected risk w.r.t. p is ε, what is the worst case
expected risk over all possible data distributions q ∈ Qγ and learned functions f? To answer this
question, we first show that the DD risk grows proportionally with the volume of the set of examples
E ⊂ X that the classifier mislabels, and then argue that the worst classifier within Fu,ε has smaller
such volume as compared to the worst classifier within some Fp,ε where p ̸= u.

Denote by E ⊂ X the set which contains all instances that a classifier f mislabels:

E = {x ∈ X such that f(x) ̸= f∗(x)}

Our first step in proving the theorem entails characterizing the relation between DD risk and er-
ror volume vol(E). To that end, the following lemma characterizes the distribution q∗ ∈ Qγ that
maximizes (3):

Lemma E.1. Amongst all densities with q(E) = ϵ the one that has the maximum entropy is given by

q∗ϵ (x) =

{
ϵ/vol(E) x ∈ E
(1− ϵ)/vol(X − E) otherwise,

achieving entropy of H(q∗ϵ ) = ϵ (log(vol(E))− log(ϵ)) + (1− ϵ) (log(vol(X − E))− log(1− ϵ)).
Furthermore, if γ is chosen such that ϵ is the maximal value satisfying q∗ϵ ∈ Qγ , the DD risk is given
by rdd(f ; γ) = ϵ.

The proof of the Lemma is provided in Appendix E.1.

For any fixed γ, the worst-case distribution q∗ (equivalently, the distribution q∗ϵ ∈ Qγ with the
largest ϵ) will be piece-wise uniform in E and X−E , respectively, and the DD risk is exactly equal to
q∗(E) = ϵ. The DD risk is smaller than one when the mislabeled set is not sufficiently large to satisfy
the entropy lower bound H(u)− γ. In those cases, q∗ will assign the maximum probability density
to q∗(E) while ensuring that the entropy lower bound is met. Notice that, for any fixed ϵ, entropy
is a monotonically increasing function of vol(E) (since by assumption vol(E) ≤ vol(X − E)). As
such, the DD risk of a classifier f grows with the error volume.

With this in place, to prove the theorem it suffices to show that ∀p ̸= u Fp,ε always contains a
function whose error volume is greater than ε. More formally, there exists f ∈ Fp,ε such that
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vol(Ep) =
∫
X
ℓ
(
f(x), f∗(x)

)
dx > ε. Showing this suffices because it follows from the definition

that vol(Eu) =
∫
X
ℓ
(
f(x), f∗(x)

)
dx = ε for every f ∈ Fu,ε.

The aforementioned claim follows by noting that since p is non-uniform, there exists a region of
volume strictly greater than ε whose mass under p is exactly ε. If not, either p is the uniform
distribution or it cannot be a valid probability distribution as it must have a total probability mass
above 1. Then, we can always find some f ∈ Fp,ε so that ℓ

(
f(x), f∗(x)

)
is 1 in this region and 0

elsewhere. This concludes our argument.

E.1 PROOF OF LEMMA E.1

We repeat the lemma setup and statement here for completeness:

Denote by E ⊂ X the set which contains all instances that a classifier f miss-labels:

E = {x ∈ X such that f(x) ̸= f∗(x)}

Lemma E.1. Amongst all densities with q(E) = ϵ the one that has the maximum entropy is given by

q∗ϵ (x) =

{
ϵ/vol(E) x ∈ E
(1− ϵ)/vol(X − E) otherwise,

achieving entropy of H(q∗ϵ ) = ϵ (log(vol(E))− log(ϵ)) + (1− ϵ) (log(vol(X − E))− log(1− ϵ)).
Furthermore, if γ is chosen such that ϵ is the maximal value satisfying q∗ϵ ∈ Qγ , the DD risk is given
by rdd(f ; γ) = ϵ.

Proof. The distributionally diverse risk of f can be determined by identifying the distribution q∗ ∈
Qγ that maximizes q∗(E). Consider any partitioning of X into sets E and E⊥ = X − E . We claim
that, amongst all densities with q(E) = ϵ (and thus the same DD risk) the one that has the maximum
entropy is given by

q∗ϵ (x) =

{
ϵ/vol(E) x ∈ E
(1− ϵ)/vol(E⊥) otherwise,

achieving entropy of

H(q∗ϵ ) =

∫
E

ϵ

vol(E)
log(vol(E)/ϵ)dx+

∫
E⊥

1− ϵ

vol(E⊥)
log(vol(E⊥)/(1− ϵ))dx

= ϵ (log(vol(E))− log(ϵ)) + (1− ϵ)
(
log(vol(E⊥))− log(1− ϵ)

)
.

To see this, we notice that the entropy over X can be decomposed in terms of the entropy of the
conditional distributions defined on E and E⊥:

H(q) =

∫
E
q(x) log(1/q(x))dx+

∫
E⊥

q(x) log(1/q(x))dx

= q(E)
∫
E

q(x)

q(E)
log(

q(E)
q(x)q(E)

)dx+ q(E⊥)

∫
E⊥

q(x)

q(E⊥)
log(

q(E⊥)

q(x)q(E⊥)
)dx

= ϵ

∫
E
qE(x) log(

1

qE(x)q(E)
)dx+ (1− ϵ)

∫
E⊥

qE⊥(x) log(
1

qE⊥(x)q(E⊥)
)dx (∗)

= ϵ (H(qE)− log(ϵ)) + (1− ϵ) (H(qE⊥)− log(1− ϵ))

Where in (∗) we define qE(x) = q(x)/q(E) and qE⊥(x) = q(x)/q(E⊥) to be densities supported in
E and E⊥, respectively.

It is well known that the maximal entropy for distributions supported on a set E is achieved by the
uniform distribution and is given by maxqE H(qE) = −

∫
E qE(E) log(qE(E))dx = log(vol(E)) (and

similarly for qE⊥ , respectively), from which it follows that

H(q) ≤ ϵ (log(vol(E))− log(ϵ)) + (1− ϵ)
(
log(vol(E⊥))− log(1− ϵ)

)
= H(q∗ϵ ),

meaning that the upper bound is exactly achieved by q∗ϵ .
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It now easily follows that rdd(f ; γ) = ϵ. Note that in the case of the zero-one loss, the expectation
in the definition of rdd is simply q(E) = ϵ. Since q∗ϵ ∈ Qγ , we immediately have rdd(f ; γ) ≥ ϵ. The
reverse inequality, rdd(f ; γ) ≤ ϵ, follows from the maximality of ϵ. Otherwise, we would have some
q′ ∈ Qγ with q′(E) = ϵ′ > ϵ. But by the first part of the theorem, this would imply that q∗ϵ′ ∈ Qγ ,
contradicting the maximality of ϵ.

F PROOF OF THEOREM 3.2

Theorem 3.2. The DD risk of a classifier under the zero-one loss is at most

rdd(f ; γ) ≤ min

 γ − log
(

1−α
1−rexp(f ;u)

)
log
(

α
1−α

)
+ log

(
1

rexp(f ;u)
− 1
) , rexp(f ;u) +

√
γ

2

 ,

where α ∈ (rexp(f ;u), 1) may be chosen freely. The DD risk is below 1 for rexp(f ;u) < e−γ .

Proof. To characterize the DD risk rdd(f ; γ), we consider the density defined in Lemma E.1:

q∗ϵ (x) =

{
ϵ/vol(E) x ∈ E
(1− ϵ)/vol(X − E) otherwise ,

and proceed to identify the largest ϵ such that q∗ϵ ∈ Qγ :

rdd(f ; γ) = max
ϵ≤1

ϵ subject to H(q∗ϵ ) ≥ H(u)− γ.

We are interested in the regime log(vol(E)) < H(u)− γ or equivalently vol(E/X ) = rexp(f ;u) <
exp(−γ). When the above inequality is not met, the DD risk is trivially 1 as the entropy constraint
is not violated for any ϵ.

To proceed, we notice that the entropy can be written as a KL-divergence between a Bernoulli
random variable v1 that is equal to one with probability P (v1 = 1) = ϵ and a Bernoulli random
variable v2 that is equal to one with probability P (v2 = 1) = rexp(f ;u) and zero with probability
P (v2 = 0) = 1− rexp(f ;u).

H(q∗ϵ ) = ϵ

(
log

(
vol(E)
vol(X )

)
+ log(vol(X ))− log(ϵ)

)
+ (1− ϵ)

(
log

(
vol(X )− vol(E)

vol(X )

)
+ log(vol(X ))− log(1− ϵ)

)
= ϵ (log(rexp(f ;u))− log(ϵ)) + (1− ϵ) (log(1− rexp(f ;u))− log(1− ϵ)) + log(vol(X ))

= ϵ log

(
rexp(f ;u)

ϵ

)
+ (1− ϵ) log

(
1− rexp(f ;u)

1− ϵ

)
+ log(vol(X ))

= log(vol(X ))−DKL(v1||v2)
= H(u)−DKL(v1||v2)

or equivalently DKL(v1||v2) = H(u)−H(q∗ϵ ). We will derive two alternative bounds, each of which
is tight in a different regime.

For the first bound, we rely on Pinsker’s inequality:

DKL(v1||v2) ≥ (|ϵ− rexp(f ;u)|+ |(1− ϵ− (1− rexp(f ;u))|)2/2
= 2|ϵ− rexp(f ;u)|2

implying √
H(u)−H(q∗ϵ )

2
≥ |ϵ− rexp(f ;u)|.

We now take ϵ to be maximal, i.e., ϵ = rdd(f ; γ), and apply the constraint H(u) − H(q∗ϵ ) ≤ γ to
obtain

|rdd(f ; γ)− rexp(f ;u)| ≤
√

γ

2
.
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By definition of the DD risk, we note that the optimal choice of ϵ must abide to ϵ ≥ rexp(f ;u)
(otherwise, u leads to a worse expected error than q∗ϵ ), meaning

rdd(f ; γ) ≤ rexp(f ;u) +

√
γ

2
,

which shows that the gap converges to zero as γ → 0, but wrongly suggests that the DD risk is never
below

√
γ
2 even when rexp(f ;u) = 0.

We may also derive a tighter (and more involved) bound if we take a Taylor-series expansion of
f(ϵ) = DKL(v1||v2) at ϵ = α ∈ (rexp(f ;u), 1):

f(ϵ) ≥ f (α) + f ′ (α) (ϵ− α)

= ϵ

(
log

(
α

1− α

)
+ log

(
1

rexp(f ;u)
− 1

))
+ log

(
1− α

1− rexp(f ;u)

)
Substituting DKL(v1||v2) ≤ γ as above and solving for ϵ then yields:

γ − log

(
1− α

1− rexp(f ;u)

)
≥ ϵ

(
log

(
α

1− α

)
+ log

(
1

rexp(f ;u)
− 1

))
.

implying

rdd(f ; γ) ≤ min
a∈(rexp(f ;u),1)

 γ − log
(

1−α
1−rexp(f ;u)

)
log
(

α
1−α

)
+ log

(
1

rexp(f ;u)
− 1
)
 .

For our simplified bound, we will utilize the following inequality involving the KL-divergence:

DKL(v1||v2) ≥ ϵ log

(
1

rexp(f ;u)

)
− log(2)

which can be derived by a Taylor-series expansion of f(ϵ) = DKL(v1||v2) at ϵ = 0.5:

f(ϵ) ≥ f

(
1

2

)
+ f ′

(
1

2

)(
ϵ− 1

2

)
= ϵ log

(
1

rexp(f ;u)

)
− log(2) + (1− ϵ) log

(
1

1− rexp(f ;u)

)
≥ ϵ log

(
1

rexp(f ;u)

)
− log(2)

Substituting DKL(v1||v2) ≤ γ as above and solving for ϵ then yields:

γ + log(2) ≥ ϵ log

(
1

rexp(f ;u)

)
.

We thus have

rdd(f ; γ) ≤
γ + log(2)

log
(

1
rexp(f ;u)

) ,
which reveals that, as expected, the DD risk converges to zero as rexp(f ;u) → 0 for any γ.

G PROOF OF THEOREM 4.1

Theorem 4.1. For any unbiased prior π, the DD risk of a stochastic learner is at most

rdd(πZ ; γ) := max
q∈Qγ

Ef∼πZ
[rexp(f, q)] ≤ Ef∼πZ

[rexp(f, pZ)] + 2 δ(πZ , π),

where l is a loss such that
∑

y∈Y l (y, y′) =
∑

y∈Y l (y, y′′) ∀y′, y′′ ∈ Y , such as the zero-one loss.
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Proof. The expected risk difference is given by:

|r(πZ , q)− r(πZ , pZ)| = |
∑
f∈F

πZ(f)rexp(f, q)−
∑
f∈F

πZ(f)rexp(f, pZ)|

= |
∑
f∈F

(πZ(f)− π(f)) rexp(f, q)−
∑
f∈F

(πZ(f)− π(f)) rexp(f, pZ)

+
∑
f∈F

π(f) (rexp(f, pZ)− r(f, q)) |

≤
∑
f∈F

|πZ(f)− π(f)| (sup
f∈F

rexp(f, q) + sup
f∈F

rexp(f, pZ))

+ |
∑
f∈F

π(f) (rexp(f, pZ)− rexp(f, q)) |

= 2 δ(πZ , π) + |Ef∼π[rexp(f, pZ)]− Ef∼π[rexp(f, q)]|
= 2 δ(πZ , π) + |rexp(π, pZ)− rexp(π, q)|

implying
Ef∼πZ

[rexp(f, q)] ≤ Ef∼πZ
[rexp(f, pZ)] + 2 δ(πZ , π) + |rexp(π, pZ)− rexp(π, q)|

Taking the maximum over all distributions q of sufficient entropy yields:
max
q∈Qγ

Ef∼πZ
[rexp(f, q)] ≤ Ef∼πZ

[rexp(f, pZ)] + 2 δ(πZ , π) + max
q∈Qγ

|rexp(π, pZ)− rexp(π, q)|

If we select π to be an uninformed prior and our hypothesis class to sufficiently diverse, we expect
the right-most term to be negligible for typical distributions.

More precisely, in the standard case the term is zero if the prior assigns to every possible data
labeling the same probability. Formally, we say that a prior π over the hypothesis class is unbiased
if, for any x and every y, we have π(f(x) = y) = 1/|Y|. In this case, the right-most term vanishes
as

Ef∼π[rexp(f, q)] =
∑
f

π(f)
∑
z

q(z) l (f(x), f∗(x))

=
∑
z

q(z)
∑
f

π(f) l (f(x), f∗(x))

=
∑
z

q(z)

 1

|Y|
∑
y∈Y

l (y, f∗(x))

 (unbiased π)

= c (balanced loss)
= Ef∼π[rexp(f, pZ)]

In the last step, we assumed that the loss is balanced such that for any y′, y′′ ∈ Y:∑
y∈Y

l (y, y′) =
∑
y∈Y

l (y, y′′) (10)

Thus, the error induced by covariate shift reduces to the distance between prior and posterior:
rdd(πZ ; γ) := max

q∈Qγ

Ef∼πZ
[rexp(f, q)] ≤ Ef∼πZ

[rexp(f, pZ)] + 2 δ(πZ , π)

In other words, the smaller the distance between prior and posterior in weight space, the better they
will generalize also out of distribution.

H PROOF OF THEOREM 4.2

Theorem 4.2. For any Lipschitz continuous loss l : X → [0, 1] with Lipschitz constant λ, weighting
function w : X → [0, β] independent of the training set Z = (xi, yi)

n
i=1, and any density p, we have

with probability at least 1− δ over the draw of Z:

rexp(f ;u) ≤ rw(f ; pZ) + (βλµ+ ∥w∥L) EZ∼pn [W1(p, pZ)] + 2β

√
2 ln(1/δ)

n
+ δ(u, û),
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where the classifier f : X → Y is a function dependent on the training data with Lipschitz constant
at most µ, δ(u, û) =

∫
x
|u(x)− p(x)w(x)|dx is the ℓ1 distance between the uniform distribution u

and the re-weighted training distribution û(x) = p(x)w(x), W1(p, pZ) is the 1-Wasserstein distance
between p and the empirical measure pZ , and ∥w∥L is the Lipschitz constant of w.

Proof. The expected worst-case generalization error w.r.t. the uniform is given by
sup
f∈F

(rexp(f ;u)− rw(f ; pZ)) = sup
f∈F

(rexp(f ;u)− rw(f ; p) + rw(f ; p)− rw(f ; pZ))

≤ sup
f∈F

(rw(f ; p)− rw(f ; pZ)) + sup
f∈F

(rexp(f ;u)− rw(f ; p)) .

Let us start with the first term:

EZ∼pn [T1] = EZ∼pn

[
sup
f∈F

(rw(f ; p)− rw(f ; pZ))

]

= EZ∼pn

[
sup
f∈F

Ez∼p [w(x) l (f(x), y)]− Ez∼pZ
[w(x)l(f(x), y)]

]

For any f ∈ F and z, define g(z) = l(f(x), y). By the sub-multiplicity of Lipschitz constants, we
have

∥g∥L ≤ ∥l∥L∥f∥L = λµ

Further,
∥w(x)g(x, y)− w(x′)g(x′, y′)∥
≤ ∥w(x)g(x, y)− w(x)g(x′, y′)∥+ ∥w(x)g(x′, y′)− w(x′)g(x′, y′)∥
≤ sup

x
|w(x)|∥g(x, y)− g(x′, y′)∥+ sup

x,y
|g(x, y)|∥w(x)− w(x′)∥

≤ sup
x

|w(x)|∥g∥L∥(x, y)− (x′, y′)∥+ sup
x,y

|g(x, y)|∥w∥L∥x− x′∥

Substituting g(x, y) = l(f(x), y) ∈ [0, 1], we get
∥w(x)l(f(x), y)− w(x′)l(f(x′), y′)∥

∥(x, y)− (x′, y′)∥
≤ sup

x
|w(x)|∥l∥L∥f∥L + ∥w∥L

∥x− x′∥
∥(x, y)− (x′, y′)∥

= βλµ+ ∥w∥L
∥x− x′∥2√

∥x− x′∥22 + ∥y − y′∥22
≤ βλµ+ ∥w∥L.

Next, denote by h(z) = w(x)l(f(x), y) and let H be the corresponding hypothesis class. We have

T1 = EZ∼pn

[
sup

∥f∥L≤µ

Ez∼p [w(x) l (f(x), y)]− Ez∼pZ
[w(x)l(f(x), y)]

]

≤ EZ∼pn

[
sup

h:∥h∥L≤βλµ+∥w∥L

(Ez∼p [h(z)]− Ez∼pZ
[h(z)] )

]
= (βλµ+ ∥w∥L) EZ∼pn [W1(p, pZ)] .

where in the last step, we used the Kantorovich-Rubenstein duality theorem. Moving on to the next
term:

T2 = sup
f∈F

(rexp(f ;u)− rw(f ; p))

= sup
f∈F

(∫
x

u(x) l (f(x), f∗(x)) dx−
∫
x

p(x)w(x) l (f(x), f∗(x)) dx

)
= sup

f∈F

∫
x

(u(x)− p(x)w(x)) l (f(x), f∗(x)) dx

≤
∫
x

|u(x)− p(x)w(x)|dx

= δ(u, û)
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where û(x) = p(x)w(x).

To characterize the generalization error difference between a random training set and the expectation
we will need the following technical result:

Lemma H.1. For any l : X → [0, 1], the maximal generalization error

φw(Z) = sup
f∈F

(rw(f, p)− rw(f, pZ)) (11)

obeys the bounded difference condition

|φw(Z)− φw(Z
′)| ≤ 2

n
max

x
|w(x)| , (12)

where we have used the notation

Z = {z1, . . . , zj , . . . , zn} and Z ′ = {z1, . . . , z′j , . . . , zn}. (13)

Proof. We first rewrite the difference as

|φw(Z)− φw(Z
′)| =

∣∣∣∣∣supf∈F
(rw(f, p)− rw(f, pZ))− sup

f∈F
(rw(f, p)− rw(f, pZ′))

∣∣∣∣∣ (14)

≤ sup
f∈F

|rw(f, pZ)− rw(f, pZ′)| , (15)

where we have used that supx f1(x)− supx f2(x) ≤ supx(f1(x)− f2(x)) in the last step.

We continue by expanding the above expression:

sup
f∈F

|rw(f, pZ)− rw(f, pZ′)| = sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

w(xi) l(f(xi), yi)−
1

n

n∑
i=1

w(x′
i) l(f(x

′
i), y

′
i)

∣∣∣∣∣
=

1

n
sup
f∈F

∣∣w(xj) l(f(xj), yj)− w(x′
j) l(f(x

′
j), y

′
j)
∣∣

=
1

n
sup
f∈F

∣∣w(xj) l(f(xj), yj)− w(x′
j) l(f(xj), yj) + w(x′

j) l(f(xj), yj)− w(x′
j) l(f(x

′
j), y

′
j)
∣∣

≤ 1

n
sup
f∈F

(
|l(f(xj), yj)|

∣∣w(xj)− w(x′
j)
∣∣ + ∣∣w(x′

j)
∣∣ ∣∣l(f(xj), yj)− l(f(x′

j), y
′
j)
∣∣)

≤ 2

n
max

x
|w(x)| ,

as claimed, where in the last step we used that the loss is between zero and one, whereas the weights
are always positive.

Since φw fulfils the bounded difference condition (see Lemma H.1), we can apply McDiarmid’s
inequality to obtain

P [φw(Z)− EZ [φw(Z)] ≥ ϵ] ≤ exp

(
− ϵ2n

4maxx |w(x)|2

)
(16)

This probability is below δ for ϵ∗ ≥ 2maxx |w(x)|
√

ln(1/δ)
n , which immediately implies that

P [φw(Z) < EZ [φw(Z)] + ϵ∗] = 1− P [φw(Z)− EZ [φw(Z)] ≥ ϵ∗ ] ≥ 1− δ,

from which we conclude that the following holds

sup
f∈F

(rw(f ; p)− rw(f ; pZ)) ≤ EZ∼pn [φw(Z)] + 2max
x

|w(x)|
√

2 ln(1/δ)

n
(17)
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with probability at least 1− δ. Combining (17) with the previous results yields:

sup
f∈F

(rexp(f ;u)− rw(f ; pZ)) ≤ sup
f∈F

(rw(f ; p)− rw(f ; pZ)) + sup
f∈F

(rexp(f ;u)− rw(f ; p))

≤ EZ∼pn [φw(Z)] + 2max
x

|w(x)|
√

2 ln(1/δ)

n
+ δ(u, û)

≤ (βλµ+ ∥w∥L) EZ∼pn [W1(p, pZ)] + 2max
x

|w(x)|
√

2 ln(1/δ)

n
+ δ(u, û),

as claimed.

I ESTIMATING THE UNIFORM EXPECTED RISK BY IMPORTANCE SAMPLING
ON A VALIDATION SET

We consider that the validation samples used to estimate the uniform risk are drawn from some den-
sity p(x) that is known up to normalization and are held out from training (crucially, f is independent
of the validation samples).

We will estimate rexp(f ;u) by the importance sampling estimate

rρ̂(f ; pZ) =
1

n

n∑
i=1

ρ̂(xi) l(f(xi), yi) with ρ̂(x) = p(x)−1 n∑
x′∈Z p(x′)−1

∝ ρ(x) =
u(x)

p(x)

(18)

To apply the theorem of Chatterjee and Diaconis (Chatterjee & Diaconis, 2018), we note that for the
0-1 loss:

∥f∥L2 =
√
E(x,y)∼u[l(f(x), y)2] =

√
E(x,y)∼u[l(f(x), y)] =

√
rexp(f ;u),

whereas the KL-divergence is given by

DKL(u∥p) =
∑
x∈X

u(x) log
1

p(x)
−
∑
x∈X

u(x) log
1

u(x)
= H(u, p)−H(u).

Suppose that n = eDKL(u∥p)+t for some t > 0 and fix

ε2 = e−t/4 + 2
√
ζ

with ζ ≤ Px∼u (log(ρ(x)) < DKL(u∥p) + t/2). Then it follows from Chatterjee & Diaconis (2018)
that

P

(
|rρ̂(f ; pZ)− rexp(f ;u)| ≥

2
√
rexp(f ;u)

1/ε− 1

)
≤ 2ε.
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