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ABSTRACT

Generating complex discrete distributions remains as one of the challenging prob-
lems in machine learning. Existing techniques for generating complex distribu-
tions with high degrees of freedom depend on standard generative models like
Generative Adversarial Networks (GAN), Wasserstein GAN, and associated vari-
ations. Such models are based on an optimization involving the distance between
two continuous distributions. We introduce a Discrete Wasserstein GAN (DW-
GAN) model which is based on a dual formulation of the Wasserstein distance
between two discrete distributions. We derive a novel training algorithm and
corresponding network architecture based on the formulation. Experimental re-
sults are provided for both synthetic discrete data, and real discretized data from
MNIST handwritten digits.

1 INTRODUCTION

Generative Adversarial Networks (GAN) (Goodfellow et al., 2014) have gained significant attention
in the field of machine learning. The goal of GAN models is to learn how to generate data based
on a collection of training samples. The GAN provides a unique training procedure by treating the
learning optimization as a two player game between a generator network and discriminator network.
Since the learning process involves optimization over two different networks simultaneously, the
GAN is hard to train, often times unstable (Salimans et al., 2016). Newly developed models such
as the Wasserstein GAN (Arjovsky et al., 2017) aim to improve the training process by leveraging
the Wasserstein distance in optimization, as opposed to the Kullback-Leibler or Jensen-Shannon
divergences utilized by the original GAN.

A source of interest in generative models arises from natural language processing. In natural lan-
guage applications, a generative model is necessary to learn complex distributions of text documents.
Although both the GAN and Wasserstein GAN approximate a distance between two continuous dis-
tributions, and use a continuous sample distance, prior research efforts (Gulrajani et al., 2017; Sub-
ramanian et al., 2017; Press et al., 2017) have applied the models to discrete probability distributions
advocating for a few modifications. However, using a continuous sample distance for the discrete
case may lead to discrepancies. More precisely, as will be demonstrated via explicit examples, a
small continuous distance does not necessarily imply a small discrete distance. This observation has
potentially serious ramifications for generating accurate natural language text and sentences using
GAN models.

To address the above issues, we propose a Discrete Wasserstein GAN (DWGAN) which is directly
based on a dual formulation of the Wasserstein distance between two discrete distributions. A prin-
cipal challenge is to enforce the dual constraints in the corresponding optimization. We derive a
novel training algorithm and corresponding network architecture as one possible solution.

2 GENERATIVE ADVERSARIAL NETWORKS (GANS)

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) model a sample generating
distribution by viewing the problem as a two-player game between a generator and a discriminator
which is an adversary. The generator takes an input from a random distribution p(z) over a latent
variable z, and maps it to the space of data x. The discriminator takes inputs from real data and
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Table 1: Example of a mismatch between continuous distance and discrete distance.

TRAINING
SAMPLE

GENERATOR’s
SOFTMAX OUTPUT

GENERATOR’S SAMPLE
(ARGMAX, ONE-HOT)

DISCRETE
DISTANCE

CONTINUOUS
DISTANCE[

0 0 1
0 1 0

] [
0.3 0.3 0.4
0.3 0.4 0.3

] [
0 0 1
0 1 0

]
0 1.04[

0 0 1
0 1 0

] [
0.1 0.1 0.8
0.5 0.3 0.2

] [
0 0 1
1 0 0

]
1 0.92

Table 2: Example of a large gap between discrete and continuous distances for a discrete sample
with 9 classes.

SAMPLES
DISCRETE
DISTANCE

CONTINUOUS
DISTANCE

Training sample:[
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0

]
Generator’s softmax output:[

0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1

]
Generator’s sample (argmax, onehot):[

0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0

]

0 1.2

samples from the generator, and attempts to distinguish between the real and generated samples.
Formally, the GAN plays the following two player minimax game:

min
G

max
D

Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log(1−D(G(z)))] , (1)

where D is the discriminator network and G is the generator network. In theory, the GAN approxi-
mates the Jensen-Shannon divergence (JSD) between the generated and real data distribution.

Arjovsky et al. (2017) showed that several divergence metrics including the JSD do not always
provide usable gradients. Therefore, optimization based on JSD minimization, as incorporated in the
GAN, will not converge in certain cases. To overcome the problem, Arjovsky et al. (2017) proposed
the Wasserstein GAN which is an approximation to the dual problem of the Wasserstein distance.
The authors showed that the Wasserstein distance provides sufficient gradients almost everywhere,
and is more robust for training purposes. The dual problem of the Wasserstein distance involves an
optimization over all 1-Lipschitz functions (Villani, 2008). The Wasserstein GAN approximates the
dual problem by clipping all network weights to ensure that the network represents a k-Lipschitz
function for some value of k. A recent variant of the Wasserstein GAN (Gulrajani et al., 2017)
enforced the k-Lipschitz property by adding a gradient penalty to the optimization.

Although the formulation of the Wasserstein GAN approximates the Wasserstein distance between
two continuous distributions, using a continuous sample distance ‖x− y‖, existing research efforts
(Gulrajani et al., 2017; Subramanian et al., 2017; Press et al., 2017) have directly used it to model
discrete probability distributions by adding the following modifications. Each component of the
input vectors of training data is encoded in a one-hot representation. A softmax nonlinearity is
applied in the last layer of the output of the generator to produce a probability that corresponds with
the one-hot representation of the training data. During training, the output of the softmax layers
becomes the input to the critic network without any rounding step. To generate a new sample, an
argmax operation over each generator’s softmax output vectors is applied to produce a valid discrete
sample.

The usage of continuous sample distance in the standard Wasserstein GAN for discrete problems
as described above creates some discrepancies in the model. These discrepancies are illustrated in
Table 1 and Table 2. In Table 1, we have two different outputs from the generator’s softmax with the
same real sample reference. Although the first softmax output produces the same value as the real
sample when it is rounded using argmax (hence has discrete distance 0 to the real sample), it has
a larger continuous distance compared to the second softmax output which produces one mistake
when rounded (has discrete distance 1 to the real sample). In the discrete case, with a large number
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Table 3: Example of the sample distance d(xi,xj) when xi, and xj consists of two variables where
each can takes value from {1, 2, 3}.

“11” “12” “13” “21” “22” “23” “31” “32” “33”

“11” 0 1 1 1 2 2 1 2 2
“12” 1 0 1 2 1 2 2 1 2
“13” 1 1 0 2 2 1 2 2 1
“21” 1 2 2 0 1 1 1 2 2
“22” 2 1 2 1 0 1 2 1 2
“23” 2 2 1 1 1 0 2 2 1
“31” 1 2 2 1 2 2 0 1 1
“32” 2 1 2 2 1 2 1 0 1
“33” 2 2 1 2 2 1 1 1 0

of classes, as shown in Table 2, even though the generator output produces a discrete sample with
the same value as the real sample when rounded, there still exists a very large continuous distance.
This difference between continuous and discrete distance becomes greater for a larger number of
discrete classes.

3 DISCRETE WASSERSTEIN GENERATIVE ADVERSARIAL NETWORKS
(DWGAN)

Motivated to correct modeling discrepancies as described in Section 2, which occur due to the mis-
matched use of the standard Wasserstein GAN in discrete problems, we propose a new GAN archi-
tecture that is directly based on the Wasserstein distance between two discrete distributions.

3.1 WASSERSTEIN DISTANCE FOR DISCRETE DISTRIBUTION

Let a vector x = (x(1),x(2), . . .) be a discrete multivariate random variable where each component
x(i) can take discrete values from {1, 2, 3, . . . , k}. Let Pr and Ps be two probability distributions
over the set of values for x. The Wasserstein distance between two probability distributions Pr and
Ps is defined as:

W(Pr,Ps) = min
γ∈Π(Pr,Ps)

E(x,x′)∼γ [d(x,x′)] = min
γ∈Π(Pr,Ps)

∑
i

∑
j

γ(xi,xj)d(xi,xj). (2)

The notation Π(Pr,Ps) denotes the set of all joint probability distributions γ(x,x′) whose marginals
are Pr and Ps respectively, and d(xi,xj) denotes the elementary distance between two samples xi
and xj . We are particularly interested with the sample distance that is defined as the hamming
distance (the sum of zero-one distance of each component), i.e:

d(xi,xj) =
∑
k

I(xi(k) 6= xj(k)). (3)

Table 3 shows an example of the sample distance metric.

Visible in the formulation above, computing the Wasserstein distance between two discrete prob-
ability distributions is a Linear Program (LP) problem for which the runtime is polynomial with
respect to the size of problem. However, for generating real-world discrete distributions, the size
of problem grows exponentially. For example, if the number of variables in vector x is 100, and
each variable can take values in the set {1, 2, . . . , 10} so that k = 10, the size of the LP problem is
O(10100) reflecting the number of configurations for x. The resulting LP is intractable to solve.

We follow a similar approach as in Arjovsky et al. (2017) by considering the dual formulation of
Wasserstein distance. Kantorovich duality (Evans, 1997; Villani, 2008) tells us that the dual linear
program of the Wasserstein distance can computed as:

max
f

Ex∼Pr
[f(x)]− Ex∼Ps

[f(x)] (4)

subject to: f(xi)− f(xj) ≤ d(xi.xj), (5)
The function f maps a sample to a real value. Note that unlike for the continuous Wasserstein
distance, in which the maximization is over all 1-Lipschitz functions without additional constraints,
the maximization above is over all functions that satisfy the inequality constraints in Eq. 5.
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3.2 DWGAN ARCHITECTURE AND LEARNING ALGORITHM

The dual formulation of the Wasserstein distance is still intractable since the maximization is over
all functions that satisfy the inequality constraints. We aim to approximate the dual Wasserstein
distance formulation by replacing f with a family of parameterized functions fw that satisfy the
inequality constraints. The parameterized functions fw are modeled using a neural network. Unfor-
tunately, it is difficult to construct a neural network architecture to model fw while also explicitly
satisfying the inequality constraints involving the discrete sample distance defined in Eq. 3.

To overcome the problem of approximating f with neural networks, we note that the maximization
in the dual formulation is equivalent to the following optimization:

max
h

E(x,x′)∼(Pr,Ps) [h(x,x′)] (6)

subject to: h(xi,xj) ≤ d(xi,xj), (7)

where h(x,x′) = f(x)− f(x′). Instead of approximating f(x), we aim to design a neural network
architecture that approximates h(x,x′) and satisfies the inequality constraints in Eq. 5. The key
idea is that this new optimization is equivalent to the original dual formulation of the Wasserstein
distance (explained in the sequel), even though the optimal form for h is not explicitly specified.

Our selected architecture for the generator network employs the same softmax nonlinearity trick for
the standard Wasserstein GAN described in Section 2. The generator network is a parameterized
function gθ that maps random noise z to a sample in one-hot representation. The last layer of the
generator network utilizes softmax nonlinearity to produce a probability which corresponds with the
one-hot representation of the real sample. Our key modeling difference lies in the critic network.
The critic network takes two inputs, one from the real samples, and one from the output of the
generator. The architecture of the critic network is visualized in Figure 1.

Let y ∈ [0, 1]m×k be the one-hot representation of x where m is the number of variables and k
is the number of classes for each variable. The critic network takes two inputs: y from the real
training data, and y′ from the output of the generator network. Let us define ρw as a parameter-
ized function that takes input (y,y′) ∈ [0, 1]2×m×k and produces an output vector v ∈ [−1, 1]m.
From the generator output y′, we compute the rounded sample x̃′. Let u ∈ {0, 1}m be a vector
that contains the element-wise zero one distance between a real training sample x and rounded
sample x̃′ from the generator, i.e. u(i) = I(x(i) 6= x̃′(i)). We define our approximation to
the function h as a parameterized function hw that is defined as hw = uTv = uT ρw(y,y′).
The “filter” vector u ensures that the output of hw always satisfies the inequality constraints
hw(onehot(xi),onehot(xj)) ≤ d(xi,xj) as stated in Eq. 5. An illustration of this neural
network architecture and construction is provided in Figure 1.

As we can see from Figure 1, the critic network consists of two separate sub-networks. The first
sub-network takes input from a batch of samples of the training data, while the second sub-network
takes input from a batch of samples produced by the generator. Each sub-network has its own set
of intermediate layers. The outputs of the first and second layers are concatenated and taken as an
input to a fully connected layer which produces a tensor of size n ×m. The dimension n indicates
the number of samples in a batch, and m is the number of variables. To produce a tensor v whose
values range from -1 to 1, a tanh nonlinearity is applied. The “filter” tensor u is applied to v via
an element-wise multiplication. The output of the critic network is calculated by taking the sum of
the result of the element-wise multiplication of u and v, yielding a vector of n elements containing
the value of hw(y,y′) for each pair of real and generated samples.

We also included additional modifications based on theory to facilitate the training of networks.
Note that since h(x,x′) = f(x)− f(x′), we can attempt to enforce this optimum condition known
from theory. If we flip the inputs to hw we will get the negative of the output; i.e. hw(y′,y) =
−hw(y,y′). To model this fact, we randomly swapped the sample from the real training data and
generator output so that some of the real data was fed to the first sub-network and some to the
second sub-network. If a pair of samples was flipped, we multiplied the output of the network with
−1. Another modification that we applied to the network was to introduce a scaling factor to the
softmax function such that the output of the scaled softmax was closer to zero or one. Specifically,
we applied the function: softmax(x)(i) = exp(k·x(i))∑

j exp(k·x(j)) , for some constant k ≥ 1. The training
algorithm for our proposed architecture is described in Algorithm 1.
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Figure 1: An example of the Discrete Wasserstein GAN architecture. The tensor dimensions indicate
a batch of samples. In the architecture, n,m, k, l denote the number of samples in a batch, the
number of variables, the number of classes, and the number of noise variables respectively.

Algorithm 1 Discrete Wasserstein GAN

1: Input: learning rate α, batch size n, the number of critic iteration per generator iteration ncritic
2: repeat
3: for t = 1, . . . ,ncritic do
4: Sample a batch from real data {xi}ni=1 ∼ Pr
5: Sample a batch of random noise {zi}ni=1 ∼ p(z)
6: w ← w + α · ∇w[ 1

n

∑n
i=1 hw(xi, gθ(zi))]

7: end for
8: Sample a batch from real data {xi}ni=1 ∼ Pr
9: Sample a batch of random noise {zi}ni=1 ∼ p(z)

10: θ ← θ − α · ∇θ[ 1
n

∑n
i=1 hw(xi, gθ(zi))]

11: until converge

4 RELATED WORKS

In contrast with the continuous GANs where many models have been proposed to improve the per-
formance of GAN training, only a few GAN formulations have been proposed for modeling discrete
probability distributions. Gulrajani et al. (2017) use the standard continuous Wassersten GAN with
adjustments described in Section 2. Similar techniques are used by Subramanian et al. (2017) to
address several natural language generation tasks. Che et al. (2017) augment the original GAN
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architecture with a maximum likelihood technique and combine the discriminator output with im-
portance sampling from the maximum likelihood training. Hjelm et al. (2017) propose a Boundary-
seeking GAN (BGAN) that trains the generator to produce samples that lie in the decision boundary
of the discriminator. BGAN can be applied for discrete cases provided that the generator outputs
a parametric conditional distribution. Other GAN models (Yu et al., 2016; Li et al., 2017) exploit
the REINFORCE policy gradient algorithm (Williams, 1992) to overcome the difficulty of back-
propagation in the discrete setting. Kim et al. (2017) combine adversarial training with Variational
Autoencoders (Kingma & Welling, 2014) to model discrete probability distributions.

5 EXPERIMENTS

5.1 SYNTHETIC EXPERIMENTS WITH OBJECTIVE EVALUATION

Evaluating the performance of generative models objectively and effectively is hard, since it is dif-
ficult to automatically tell whether a generated sample is a valid sample from the real distribution.
Previous research advocates user studies with human graders, especially in image generation tasks,
or proxy measures like perplexity and corpus-level BLEU in natural language generation. However,
such techniques are far from ideal to objectively evaluate the performance of GAN models.

To address the limitations above, we propose a synthetic experiment that captures the complexity of
modeling discrete distributions, but still has a simple strategy to objectively evaluate performance.
The synthetic experiment is based on a classic tic-tac-toe game. We generalize the classic 2 player
tic-tac-toe game to include arbitrary k players and arbitrary m-by-m board sizes (rather than the
default 3-by-3 board). The goal is to model the true generating distribution Pr which is the uniform
distribution over valid configurations of the board when a generalized tic-tac-toe game has ended
(e.g. the final game state). We generalized the concept of a valid board in 3-by-3 games, in which
one player has a winning state and marks filling a full column, row, or diagonal. For the purpose of
our experiment, we made a simplification to the valid rule, i.e. as long as the board has at least one
full column, row and diagonal taken by at least one player, it is considered to be a valid configuration.
Figure 2 shows examples of valid and non-valid board configurations.

Figure 2: Examples of valid and non-valid board configurations of the generalized and simplified
tic-tac-toe game with multiple players.

Figure 3: The example of maximum player’s gain
for three different board configurations.

In our construction above, it is easy to check
if a generated sample is a valid sample under
the real distribution. Hence it is possible to
validate objectively the performance of a gen-
erative model. Furthermore, it is also easy to
sample from the real distribution to create syn-
thetic training data. We uniformly sample ran-
dom board configurations, accepting a sample
if it is valid, and rejecting it if invalid. We con-
struct several metrics to track the performance
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Figure 4: Comparison between Discrete-WGAN (DWGAN) and the standard WGAN: (a) percent-
age of valid samples for a 3-by-3 board with 2 players, (b) average if maximum player’s gain for a
5-by-5 board with 8 players. The best results for both networks over several learning rates (lr) and
the number of iterations (it) for each learning rate decay are presented.
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Figure 5: Examples of mode collapse in Discrete-WGAN (DWGAN) on: (a) 5-by-5 board with 8
players, (b) 3-by-3 board with 2 players and the effect of adding a norm penalty.

of the model. The first measure is the percentage of valid samples which characterizes the qual-
ity of the samples generated by the generator network. For a bigger board the percentage of valid
samples does not tell much about the progress of learning since it takes a while to get to a valid
sample. We construct another metric which is the average of maximum player’s gain. The max-
imum player’s gain for a board configuration is defined as the maximum number of cells taken by
a player in a full column, row, or diagonal. Figure 3 shows the value of maximum player’s gain
for three different 5-by-5 board configurations. In the left board, player 2 and 4 have the maximum
(3 cells); in the middle board player 2 takes 4 cells; and in the right board, player 2 achieves the
maximum of 5 cells. Note that for k-by-k boards, if the average of maximum player’s gain is equal
to k, it means that all the samples are valid. Therefore, closer average of maximum player’s gain to
k indicates a better quality of samples. Besides those two metrics, we also track the percentage of
unique samples and the percentage of new samples, i.e. samples that do not appear in the training
data.

In the experiment, we compare our Discrete Wasserstein GAN model with the standard Wasserstein
GAN model (with tricks described in Section 2) on 3-by-3 and 5-by-5 board with 2 players and 8
players. Note that the number of classes is equal to the number of players plus one since we need
an additional class for encoding empty cells. We restrict the generator and critic networks in both
models to have a single hidden layer within fully connected networks to ease training. As we can
see from Figure 4, our DWGAN networks achieve good performance (in terms of the average of the
percentage of valid samples and the maximum player’s gain metrics) much faster than the standard
WGAN with softmax and one-hot representation tricks. In both 3-by-3 boards with 2 players and
5-by-5 boards with 8 players our DWGAN networks only take less than a third of the iterations taken
by the standard WGAN to achieve similar performance.
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Discrete WGAN,
Binarized Value

Epoch 12Epoch 0

Standard WGAN,
Continuous Value

Real Binarized Samples 
For Training DWGAN

Generated Samples 
Of Our DWGAN

Figure 6: An example of Discrete WGAN with binary values vs. Standard WGAN with continuous values
applied to generate MNIST handwritten digits. Both models feature 1 hidden layer for both the generator
and critic within a fully-connected network. Modeling complex discrete distributions with GANs still requires
future refinements in optimization, training, and stability.

We observe that our DWGAN networks have a mode collapse problem that occurs after achieving
top performances. Figure 5a shows that the DWGAN can achieve the average of maximum player’s
gain close to 5 for a 5-by-5 board in 500 iterations while maintaining the percentage of unique
samples close to 100%. After it produces those diverse samples, the network model begins to suffer
from a mode collapse and the percentage of unique samples decrease to less than 10% after iteration
550. Based on our analysis, this behavior is caused by the fact that the network optimizes the
function difference 1

n

∑n
i=1 hw(xi, gθ(zi)) = 1

n

∑n
i=1[f(xi)− f(gθ(zi))], which tends to cause an

advantage if the values of gθ(zi) are not diverse. To overcome this issue, we add a norm penalty to
the critic network optimization, i.e:

1
n

n∑
i=1

hw(xi, gθ(zi)) + λ

√√√√ n∑
i=1

hw(xi, gθ(zi))2, (8)

where λ is the penalty constant. Figure 5b shows the effect of the norm penalty to the performance
of DWGAN and its sample diversity. We observe that the DWGAN network with a norm penalty
can achieve 96% valid samples while maintaining the diversity in samples it generates (around 50%
unique samples).

5.2 EXPERIMENTS WITH REAL DATA

To model more complex discrete distributions, we used MNIST digits discretized to binary values
(LeCun et al., 1998) as the training data with the goal to generate new digits with our proposed Dis-
crete Wasserstein GAN. As a baseline, we trained a standard Wasserstein GAN on the continuous
digit dataset. Similar to our synthetic experiments, we restricted the generator and critic networks
to have only a single hidden layer within fully connected networks. Figure 6 shows that our model
produces a similar quality of discretized digit images compared to the continuous value digits pro-
duced by the standard Wasserstein GAN trained on continuous-valued data. We further generated
100 samples from our DWGAN model, prior to mode collapse, illustrating the diversity of samples.

6 CONCLUSION

We proposed the Discrete Wasserstein GAN (DWGAN) which approximates the Wasserstein dis-
tance between two discrete distributions. We derived a novel training algorithm and corresponding
network architecture for a dual formulation to the problem, and presented promising experimental
results. Our future work focuses on exploring techniques to improve the stability of the training
process, and applying our model to other datasets such as for natural language processing.
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SUPPLEMENTARY MATERIALS

A DISCRETE WASSERSTEIN DISTANCE

A.1 STANDARD LP AND DUAL LP CONVEX OPTIMIZATION PROBLEMS

A linear program (LP) is a convex optimization problem in which the objective and constraint func-
tions are linear. Consider a vector variable x ∈ Rn, matrix A ∈ Rn×m, and vectors c ∈ Rn, and
b ∈ Rm. An LP is given in the following standard form,

min cTx

subject to Ax = b,

x � 0.

The Lagrange dual function is given by,

g(λ, ν) ,

{
−bT ν, AT ν − λ+ c = 0;

0, otherwise.

The Lagrange dual problem is to maximize g(λ, ν) subject to λ � 0. Equivalently, the dual problem
may be written as an LP in inequality form with vector variable ν ∈ Rm,

max − bT ν

subject to AT ν + c � 0.

The dual of the above problem is equivalent to the original LP in standard form. Due to the weaker
form of Slater’s condition, strong duality holds for any LP in standard or inequality form provided
that the primal problem is feasible. Similarly, strong duality holds for LPs if the dual is feasible.

A.2 LP FOR WASSERSTEIN DISTANCE OF DISCRETE PROBABILITY DISTRIBUTIONS

Consider discrete probability distributions over a finite set X with cardinality |X |. Assume an
elementary sample distance dX (x1,x2) for x1,x2 ∈ X . The sample distance evaluates the semantic
similarity between members of setX . Define Pr(x) and Ps(x) for x ∈ X as two discrete probability
distributions. In this case, we may define the exact discrete Wasserstein distance between Pr and Ps
as a linear program as follows, with D ∈ R|X |×|X|+ whose matrix entries correspond to the sample
distance Dx1,x2 = dX (x1,x2).

W (Pr,Ps) = inf
T∈R|X|×|X|+

〈T ,D〉,

subject to T1 = Pr, T
T 1 = Ps.

The dual LP is given as follows.

Wdual(Pr,Ps) = sup
ν∈R|X|, µ∈R|X|

νTPr + µTPs,

subject to ν(i) + µ(j) ≤ Di,j .

At the optimum it is known that ν = −µ, and the dual LP is equivalent to the following optimization
problem. Note that there still exist |X | × |X | constraints.

W ∗dual(Pr,Ps) = sup
ν∈R|X|

νT (Pr − Ps) ,

subject to ν(i)− ν(j) ≤ Di,j .

Example 1. The following example provides a closer look at the dual optimization problem. Con-
sider a finite set X = {1, 2, 3}. Let Ps(x) be given by the discrete distribution Ps(1) = 0.2,
Ps(2) = 0.7 and Ps(3) = 0.1. Similarly, let Pr(x) be given by the discrete distribution Pr(1) = 0.4,
Pr(2) = 0.4, Pr(3) = 0.2. Define the elementary sample distance dX (x1,x2) = 1 if x1 6= x2 and
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dX (x1,x2) = 0 if x1 = x2. Therefore, the sample distance matrix D for this discrete example is the
following:

D =

[
0 1 1
1 0 1
1 1 0

]
.

The optimal value of the matrix T provides the optimal transport of mass from Ps to Pr,

T =

[
0.2 0.2 0.0
0.0 0.4 0.0
0.0 0.1 0.1

]
.

The objective value of the primal and dual is equal to 0.3 which is the total mass moved from Ps to
Pr. In the solution to the dual problem, ν = [ 0 −1 0 ]

T and µ = −ν. In this example, it is
seen that the optimal ν = −µ.

B SOURCE CODE IMPLEMENTATION

B.1 SYNTHETIC EXPERIMENTS

For the synthetic experiments, we use Julia v0.5.2 programming language with Knet deep learning
framework. Below is the code containing functions needed to generate tic-tac-toe board.

# check if a grid configuration is valid
function valid(D::Matrix)

k = size(D, 1) # k = grid size
np = Int(maximum(D)) # np = number of player
for i = 1:np

if k in sum(D .== i, 1) # vertical
return true

elseif k in sum(D .== i, 2) # horizontal
return true

elseif sum(diag(D .== i)) == k # diagonal
return true

elseif sum(diag(flipdim(D, 2) .== i)) == k # flipped diagonal
return true

end
end
return false

end

# convert grid to one-hot tensor
function onehot(D::Matrix, np::Integer=Int(maximum(D)))

k = size(D, 1) # grid size
nc = np + 1 # number of class (0 for empty, 1... for players)
Dh = zeros(Float32,k,k,nc)
for i = 0:np

Dh[:,:,i+1] = Int.(D .== i)
end
return Dh

end

# convert one-hot tensor to grid
function revonehot(Dh)

k = size(Dh, 1)
np = Int(maximum(Dh))
D = zeros(Float32,k,k)
for i = 1:np

D += i * Dh[:,:,i+1]
end
return D

end
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# generate valid grid samples
function generate_samples(k::Integer, n::Integer, np::Integer)

nc = np + 1
X = zeros(Float32,k,k,nc,n)
i = 0
trial = 0
tic()
while i < n

trial += 1
r = rand(0:np, (k,k))
if valid(r)

i += 1
X[:,:,:,i] = onehot(r, np)

if i % 10 == 0
println(i)
toc()
tic()

end
end

end
toc()
return X

end

# vectorize sample
function vec_ttt(X)

sz = size(X)
return reshape(X, (sz[1] * sz[2] * sz[3], sz[end]))

end

# devectorize sample
function devec_ttt(X, np)

sz = size(X)
nc = np + 1
k = Int(sqrt(sz[1] / nc))
return reshape(X, (k, k, nc, sz[end]))

end

# convert softmax output to grid
function to_ttt(X)

sz = size(X)
T = zeros(Int, sz[1], sz[2], 1, sz[end])
for i = 1:sz[1]

for j = 1:sz[2]
for k = 1:sz[end]

T[i,j,1,k] = indmax(X[i,j,:,k]) - 1
end

end
end
return T

end

# convert vectorized softmax output to vectorized grid
function round_sample(X, np)

D = devec_ttt(X, np)
T = to_ttt(D)
sz = size(T)
nc = np + 1
TX = zeros(Float32,sz[1],sz[2],nc,sz[end])
for i = 1:sz[end]

TX[:,:,:,i] = onehot(T[:,:,1,i], np)
end
return vec_ttt(TX)

end

12



Under review as a conference paper at ICLR 2018

# convert vectorized softmax output to vectorized grid for KnetArray
function round_sample_knet(X, np)

D = devec_ttt(X, np)
mD = maximum(D, 3)
T = D .== mD
return vec_ttt(T)

end

# print samples
function print_ttt(T, cols=20)

sz = size(T)
n = sz[end]
it = 1
while it <= n

rg = it:min(it+cols-1,n)
for i = 1:sz[1]

for k in rg
for j = 1:sz[2]

print(T[i,j,1,k], " ")
end
print("| ")

end
println()

end
println((("--"ˆsz[1])*"--")ˆ(cols))
it += cols

end
end

# count # of valid samples
function count_valid(T)

v = 0
for i = 1:size(T)[end]

if valid(T[:,:,1,i])
v += 1

end
end
return v

end

# count # of unique samples
function count_unique(T)

n = size(T)[end]
A = Vector{Matrix{Int64}}(n)
for i = 1:n

A[i] = T[:,:,1,i]
end
Aun = unique(A)
return length(Aun)

end

# count # of new samples (does not appear in training set)
# TrArr is the training set
function count_new(T, TrArr)

n = size(T)[end]
A = Vector{Matrix{Int64}}(n)
for i = 1:n

A[i] = T[:,:,1,i]
end
Aun = unique(A)
v = 0
for i = 1:length(Aun)

if Aun[i] in TrArr
else
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v += 1
end

end
return v

end

# return statistics of samples
function stats_num(T)

v = 0
vm = Vector{Int64}(size(T)[end])
np = Int(maximum(T))
for i = 1:size(T)[end]

D = T[:,:,1,i]
vi = 0
for j = 1:np

m = max(maximum(sum(D .== j, 1)), maximum(sum(D .== j, 2)),
sum(diag(D .== j)), sum(diag(flipdim(D, 2) .== j)))

if m > v
v = m

end
if m > vi

vi = m
end

end
vm[i] = vi

end
return Dict(:max => float(v), :mean => mean(vm))

end

The following code construct Discrete Wasserstein GAN networks (generator and critic) and run the
experiment on them.

### DISCRETE WASSERSTEIN GAN ###

using Knet
using PyCall
@pyimport tensorboard_logger as tl

### Network ###

# Generator
function netG(w, z, np, softmax_scaling)

x = relu(w[1]*z .+ w[2])
x = w[3]*x .+ w[4]
M = devec_ttt(x, np)
eM = exp(softmax_scaling * M) # softmax (with scaling)
Ms = eM ./ sum(eM, 3)
x = vec_ttt(Ms)
return x

end

# critic
function netC(w, real, fake, np, lambda)

nc = np + 1
k = Int(sqrt(size(real, 1) / nc))
n = size(real)[end]
# filter
fake_rounded = round_sample_knet(fake, np)
M = devec_ttt(real .* fake_rounded, np)
Ms = 1f0 - sum(M, 3)
Ms = max(Ms, 0f0) # if there's problem in rounded fake
filter = reshape(Ms, (kˆ2, n))
# random flip real / fake
idr = rand(0:1, n)' # 1:keep, 0:flip
idx = KnetArray(map(a -> convert(Float32, a), idr))
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top = real .* idx + fake .* (1-idx)
bottom = real .* (1-idx) + fake .* idx
# top
top = relu(w[1]*top .+ w[2])
# bottom
bottom = relu(w[3]*bottom .+ w[4])
# combine
x = cat(1, top, bottom)
x = w[5]*x .+ w[6]
x = tanh(x)
x = filter .* x
x = sum(x, 1)
# apply sign, because of flipping
sgn = idx * 2f0 - 1 # sign, if flipped : -1
x = sgn .* x
penalty = sqrt(sum(x .* x)) # norm penalty (for diversity)
return sum(x) / n + lambda * penalty

end

function netGC(wG, wC, z, real, np, softmax_scaling, lambda)
fake = netG(wG, z, np, softmax_scaling)
return netC(wC, real, fake, np, lambda)

end

function weightsG(k=3, nz=5, np=2; atype=KnetArray{Float32})
nc = np + 1
w = Array{Any}(4)
nv_out = kˆ2*nc
w[1] = xavier(4nv_out,nz)
w[2] = zeros(4nv_out,1)
w[3] = xavier(nv_out,4nv_out)
w[4] = zeros(nv_out,1)
return map(a->convert(atype,a), w)

end

function weightsC(k=3, np=2; atype=KnetArray{Float32})
nc = np + 1
w = Array{Any}(6)
nv_in = kˆ2*nc
nv_out = kˆ2
# top
w[1] = xavier(4nv_in,nv_in)
w[2] = zeros(4nv_in,1)
# bottom
w[3] = xavier(4nv_in,nv_in)
w[4] = zeros(4nv_in,1)
# combined
w[5] = xavier(nv_out,8nv_in)
w[6] = zeros(nv_out,1)
return map(a->convert(atype,a), w)

end

##### run experiment ######
# configs
k = 4 # grid size : k-by-k
np = 20 # # of players (# of class = np + 1)
n = 10 * k * np # # of training samples
nz = 10 # # of random noise for generator
n_gen = 2000 # max # of generation
softmax_scaling = 7 # softmax scaling ==> exp(scale * x) / sum(exp(scale * x))
c_iter = 5 # # of iteration : critic
g_iter = 1 # # of iteration : generator
lrG = 5e-2 # learning rate : generator
lrC = 5e-2 # learning rate : critic
lambda = 0. # norm penalty (for diversity)
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decayC = 0.95
decayG = 0.95
decayitC = 50
decayitG = 50
srand(0) # random seed
gpu(0) # set gpu id

tl.configure("runs/dwgan-k3-np2", flush_secs=5)

# define gradient function
netC_grad = grad(netC)
netGC_grad = grad(netGC)

# real data
rv = KnetArray(vec_ttt(generate_samples(k, n, np)))
fixed_z = KnetArray(randn(Float32, nz, 100))
# convert to TrArr
TrT = to_ttt(devec_ttt(Array(rv), np))
TrArr = Vector{Matrix{Int64}}(n)
for i = 1:n

TrArr[i] = TrT[:,:,1,i]
end

# init weights
wC = weightsC(k, np)
wG = weightsG(k, nz, np)

# fake
fv = netG(wG, fixed_z, np, softmax_scaling)
T = to_ttt(devec_ttt(Array(fv), np))
println("Iter: 0")
println("Fake pixel prob: max: $(maximum(fv)), min: $(minimum(fv))")
println("# valid : $(count_valid(T))/$(size(T)[end]) | ",

"# unique : $(count_unique(T))/$(size(T)[end])",
" | # new : $(count_new(T, TrArr))/$(size(T)[end]) | ",
"stats num : $(stats_num(T))")

it = 0
itC = 0
itG = 0
for iter = 1:n_gen

# train critic
outputC = 0.
for j = 1:c_iter

# fake samples
z = KnetArray(randn(Float32, nz, n))
fv = netG(wG, z, np, softmax_scaling)
# real + fake
outputC = netC(wC, rv, fv, np, lambda)
tl.log_value("output_C", outputC, itC)
tl.log_value("output", outputC, it)
gC = netC_grad(wC, rv, fv, np, lambda)
tl.log_value("grad_C_mean", mean(map(x -> mean(Array(x)), gC)), itC)
tl.log_value("grad_C_std", mean(map(x -> std(Array(x)), gC)), itC)
for i in 1:length(wC)

wC[i] += lrC * gC[i]
end
it += 1
itC += 1

end

if itC % decayitC == 0
lrC = decayC * lrC

end
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# train generator
for j = 1:g_iter

z = KnetArray(randn(Float32, nz, n))
outputG = netGC(wG, wC, z, rv, np, softmax_scaling, lambda)
tl.log_value("output_G", outputG, itG)
tl.log_value("output", outputG, it)
gG = netGC_grad(wG, wC, z, rv, np, softmax_scaling, lambda)
tl.log_value("grad_G_mean", mean(map(x -> mean(Array(x)), gG)), itG)
tl.log_value("grad_G_std", mean(map(x -> std(Array(x)), gG)), itG)
for i in 1:length(wG)

wG[i] -= lrG * gG[i]
end

if j == g_iter
fv = netG(wG, fixed_z, np, softmax_scaling)
T = to_ttt(devec_ttt(Array(fv), np))

tl.log_value("stats_valid", count_valid(T), iter)
tl.log_value("stats_unique", count_unique(T), iter)
tl.log_value("stats_new", count_new(T, TrArr), iter)
tl.log_value("stats_mean", stats_num(T)[:mean], iter)
tl.log_value("stats_max", stats_num(T)[:max], iter)

if iter % 1 == 0
println("Iter: $iter")
println("Fake pixel prob: max: $(maximum(fv)), min: $(minimum(fv))")
println("# valid : $(count_valid(T))/$(size(T)[end]) | ",
"# unique : $(count_unique(T))/$(size(T)[end])",
" | # new : $(count_new(T, TrArr))/$(size(T)[end]) | ",
"stats num : $(stats_num(T))")
println("output C : $outputC, output G : $outputG")

end
end

it += 1
itG += 1

end

if itG % decayitG == 0
lrG = decayG * lrG

end
end

B.2 REAL DATA EXPERIMENTS

For the experiments with MNIST dataset, we use Python programming language with PyTorch
deep learning framework.

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import torchvision.utils as vutils
from torch.autograd import Variable
import torch.nn.init as init
from os.path import isfile, isdir, join
import os
from tensorboard_logger import configure, log_value

# arguments
class Args:

pass
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args = Args()
args.lrD = 5e-4
args.lrG = 5e-4
args.batch_size = 100
args.cuda = True
args.epochs = 1000
args.device = 5
args.seed = 1
args.nz = 10
args.d_iter = 5
args.g_iter = 1
args.lamba = 1e-2 # constant for L2 penalty (diversity)
args.name = "mnist-experiment"

configure("runs/run-" + args.name, flush_secs=5)
torch.manual_seed(args.seed)
if args.cuda:

torch.cuda.set_device(args.device)
torch.cuda.manual_seed(args.seed)

data_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,

transform=transforms.Compose([
transforms.ToTensor(),

])), batch_size=args.batch_size, shuffle=True)

class NetD(torch.nn.Module):
def __init__(self, use_cuda=True):

super(NetD, self).__init__()
self.use_cuda = use_cuda
# top
self.t1 = torch.nn.Linear(28 * 28, 1024)
# bottom
self.b1 = torch.nn.Linear(28 * 28, 1024)
# combined
self.fc = torch.nn.Linear(2 * 1024, 28 * 28)

def forward(self, xr, xf):
# get filt
filt = 1 - (xr * (xf >= 0.5).float()) - ((1-xr) * (xf < 0.5).float())
# random swap
idr = torch.multinomial(torch.Tensor([0.5,0.5]), xr.size(0), replacement=True)
idrx = idr.float().unsqueeze(1).expand_as(xr)
if self.use_cuda: idrx = idrx.cuda()
idrx = Variable(idrx)
xt = xr * idrx + xf * (1 - idrx)
xb = xr * (1 - idrx) + xf * idrx
# top : real
xt = F.relu(self.t1(xt))
# bottom : fake
xb = F.relu(self.b1(xb))
# combined
x = torch.cat((xt, xb), 1)
x = F.tanh(self.fc(x))
# apply filter, aggregate
x = filt * x
x = x.mean(dim = 1).squeeze()
# use sign, because of swapping
sgn = idr * 2 - 1
if self.use_cuda: sgn = sgn.cuda()
sgn = Variable(sgn.float())
x = sgn * x
return x
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netG = torch.nn.Sequential(
torch.nn.Linear(args.nz, 1024),
torch.nn.ReLU(),
torch.nn.Linear(1024, 28 * 28),
torch.nn.Sigmoid()

)

# networks
netD = NetD()

print(netG)
print(netD)

optimizerG = optim.RMSprop(netG.parameters(), lr=args.lrG)
optimizerD = optim.RMSprop(netD.parameters(), lr=args.lrD)

one = torch.FloatTensor([1])
mone = one * -1

if args.cuda:
netD.cuda()
netG.cuda()
one, mone = one.cuda(), mone.cuda()

gen_iterations = 0
for epoch in range(args.epochs):

data_iter = iter(data_loader)
i = 0
while i < len(data_loader):

############################
# (1) Update D network
###########################
for p in netD.parameters(): # reset requires_grad

p.requires_grad = True # they are set to False below in netG update

d_iter = args.d_iter
j = 0
while j < d_iter and i < len(data_loader):

j += 1

# load real data
i += 1
X, _ = data_iter.next()
X = X.view(X.size(0), -1)
X = (X >= 0.5).float()
if args.cuda: X = X.cuda()
real = Variable(X)

# generate fake data
noise = torch.randn(args.batch_size, args.nz)
if args.cuda: noise = noise.cuda()
noisev = Variable(noise, volatile = True) # totally freeze netG
fake = Variable(netG(noisev).data)

# compute gradient, take step
netD.zero_grad()
out = netD(real, fake)
outputD = torch.mean(out) + args.lamba * out.norm()
stdD = torch.std(out)
outputD.backward(mone)
optimizerD.step()

############################
# (2) Update G network
###########################
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g_iter = args.g_iter
j = 0
while j < g_iter and i < len(data_loader):

j += 1

for p in netD.parameters():
p.requires_grad = False # to avoid computation

netG.zero_grad()

# load real data
i += 1
X, _ = data_iter.next()
X = X.view(X.size(0), -1)
X = (X >= 0.5).float()
if args.cuda: X = X.cuda()
real = Variable(X)

# update generator
noise = torch.randn(args.batch_size, args.nz)
if args.cuda: noise = noise.cuda()
noisev = Variable(noise)
fake = netG(noisev)
out = netD(real, fake)
outputG = torch.mean(out) + args.lamba * out.norm()
stdG = torch.std(out)
outputG.backward(one)
optimizerG.step()

gen_iterations += 1

print('[%d/%d][%d/%d][%d] Loss_D: %f Loss_G: %f '
% (epoch, args.epochs, i, len(data_loader), gen_iterations,
outputD.data[0], outputG.data[0]))

log_value('output_D', outputD.data[0], gen_iterations)
log_value('output_G', outputG.data[0], gen_iterations)
log_value('std_D', stdD.data[0], gen_iterations)
log_value('std_G', stdG.data[0], gen_iterations)

if gen_iterations % 100 == 0:
if not isdir('images/{0}'.format(args.name)):

os.mkdir('images/{0}'.format(args.name))
real = real.data[0:100,:]
real = real.view(real.size(0), 1, 28, 28)
vutils.save_image(real, 'images/{0}/real_samples.png'.format(

args.name, gen_iterations))

noise = torch.randn(min(100, args.batch_size), args.nz)
if args.cuda: noise = noise.cuda()
fake = netG(Variable(noise, volatile=True))
# fake = (fake.data >= 0.5).float()
R = torch.rand(fake.size())
fake = (fake.data.cpu() >= R).float()
fake = fake.view(fake.size(0), 1, 28, 28)
vutils.save_image(fake, 'images/{0}/fake_samples_{1}.png'.format(

args.name, gen_iterations))

# do checkpointing
if not isdir('checkpoint/{0}'.format(args.name)):

os.mkdir('checkpoint/{0}'.format(args.name))
torch.save(netG.state_dict(), 'checkpoint/{0}/netG_epoch_{1}.pth'.format(

args.name, epoch))
torch.save(netD.state_dict(), 'checkpoint/{0}/netD_epoch_{1}.pth'.format(

args.name, epoch))
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