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ABSTRACT

We study classification problems under fairness constraints and introduce an al-
gorithmic framework designed to prevent discrimination against different groups.
These problems are often reformulated as continuous constrained optimization
problems and are typically solved using continuous relaxations (surrogates) of the
fairness constraints. However, many current algorithms do not provide theoretical
guarantees, which possibly is due to the resulting fairness constraints being both
non-convex and non-smooth. We propose a novel primal-dual algorithm, based on
a newly developed Lagrangian, that converges to a stationary solution of the re-
formulated problem. Our algorithm is not only efficient and robust, but it also en-
joys strong performance guarantees on the fairness of its solutions. Furthermore,
experimental results demonstrate that our algorithm is highly effective in terms
of computational cost and fairness guarantees, outperforming related algorithms
that use regularization (penalization) techniques and/or standard Lagrangian re-
laxation.

1 INTRODUCTION

Machine learning algorithms are increasingly used in enhancing human decision-making in sensitive
domains. They can handle large amounts of data beyond human capacity with faster computation, in-
creasing efficiency and accuracy. They also provide an alternative to human decision-making, which
can be subjective and prone to biases, thus promising to enhance consistency in decision-making.
Despite the efficiency and effectiveness of utilizing large datasets, they often lack the expected objec-
tivity. Recent studies have revealed significant biases in these algorithmic decisions. For instance,
Google’s Ad-targeting algorithm showed a preference for recommending higher-paying executive
positions to men more frequently than to women Datta et al. (2014). Similarly, an algorithm used
in the U.S. criminal justice system incorrectly predicted African Americans to be twice as likely as
white Americans to commit crimes again Chouldechova (2017).

Over the past decade, the development of fair classification algorithms has emerged as a critical topic
in machine learning, due to the growing awareness of biases towards sensitive attributes in algorith-
mic decision-making. These algorithms are used in many applications, including the prediction of
criminal recidivism (Dieterich et al., 2016; Flores et al., 2016), granting loans (Dedman et al., 1988),
and job recommendation (Datta et al., 2014), to name a few. The objective of fair classification is to
ensure that algorithms make decisions that are unbiased with respect to certain sensitive attributes in
societal contexts including, but not limited to: gender, ethnicity, age (Angwin et al., 2022; Barocas
& Selbst, 2016; Buolamwini & Gebru, 2018; Mehrabi et al., 2021). A variety of desired notions of
fairness have been proposed; we refer to (Berk et al., 2021; Chouldechova & Roth, 2020; Mehrabi
et al., 2021) for comprehensive discussions on fairness in machine learning and applications.

This work focuses on notions of fairness, which are widely used in classification applications. Pop-
ular group fairness notions include demographic parity (also known as statistical parity) (Dwork
et al., 2012; Feldman et al., 2015), equal opportunity Hardt et al. (2016), and equalized odds (known
as disparate treatment) (Hardt et al., 2016; Zafar et al., 2017). The underlying idea behind these
notions is to balance the decisions of a classifier among the different sensitive groups. They can be
incorporated into classification algorithms as constraints to mitigate biases.
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1.1 RELATED WORK

The literature on algorithmic fairness is generally divided into three categories: pre-processing, in-
processing, and post-processing (Mehrabi et al., 2021). Pre-processing methods focus on modifying
the training data by removing correlations with sensitive features while preserving other data for
training Zemel et al. (2013); Feldman et al. (2015); Samadi et al. (2018); Gordaliza et al. (2019).
Post-processing methods adjust the model’s predictions to meet fairness criteria, typically by mod-
ifying the decision boundary for specific subgroups Fish et al. (2016); Hardt et al. (2016) or using
random classification for individuals from underprivileged groups Kamiran et al. (2012).

To control bias, fairness can be incorporated as constraints into optimization problems. A fair clas-
sification is thus formulated as a constrained optimization, aiming at minimizing the loss while
ensuring that a fairness violation is kept within acceptable limits. This approach falls under the
in-processing category. Recent works on fair classification have focused on developing algorithms
to solve constrained optimization problems. Most fair classification algorithms use regularization
techniques, where fairness constraints are penalized with certain regularization parameters (Agarwal
et al., 2018; Berk et al., 2021; Celis et al., 2019; Donini et al., 2018; Menon & Williamson, 2018;
Woodworth et al., 2017; Zafar et al., 2017). However, these regularization algorithms do not always
provide provable fairness guarantees due to the non-convexity of the resulting optimization (e.g.,
statistical parity Dwork et al. (2012); Goel et al. (2018), and equalized odds Hardt et al. (2016);
Menon & Williamson (2018)). Additionally, regularization algorithms can exhibit some disadvan-
tages, such as: (i) they are often non-convex in nature or achieve convexity at the cost of probabilistic
interpretation, and (ii) the performance of the algorithms is highly sensitive to the choices of hyper-
parameters, leading to diverse results depending on different datasets Huang & Vishnoi (2019).

Another popular constrained optimization approach is to apply Lagrangian relaxation (Menon &
Williamson, 2018; Cotter et al., 2019a; Narasimhan, 2018; Cotter et al., 2019b; Bendekgey & Sud-
derth, 2021; Cruz et al., 2022). Lagrangian methods allow for the incorporation of fairness con-
straints into the learning process by introducing multipliers that adjust the objective to account for
fairness constraints. However, two main challenges arise when using Lagrangian with fairness con-
straints. The loss function is possibly non-convex, and the original fairness constraints are non-
convex and non-differentiable. The non-differentiability can be effectively handled by replacing the
original fairness constraints with smooth surrogates. The use of surrogates allows us to obtain so-
lutions with optimality and provable fairness guarantees on the original constraints (Bendekgey &
Sudderth, 2021; Yao et al., 2023). However, Lagrangian methods still have challenges posed by the
non-convexity of fairness surrogates. The non-convexity of fairness constraints makes it challenging
to ascertain whether a solution optimizes fairness and the failure of convergence.

1.2 OUR CONTRIBUTIONS

Motivated by the limitations in existing constrained optimization approaches to fair classification, we
propose a novel algorithmic framework. This framework is based on a newly developed Lagrangian
in Kim (2021; 2023), designed to tackle classification challenges with theoretical and performance
guarantees. Our paper makes contributions to the literature on fair classification algorithms:

• Inspired by the Lagrangian formulation in Kim (2021) for equilibrium computation, we leverage
artificial (perturbation) variables into the Lagrangian with dual smoothing, to derive strong con-
cavity in the dual variables. This technique leads to an efficient primal-dual first-order algorithm
for which we provide provable fairness guarantees. In particular, primal convergence naturally
ensures feasibility (fairness) guarantees.

• Our algorithmic framework is flexible; it enables us to obtain fair classifiers under various fair-
ness constraints, including non-convex non-smooth surrogates of the fairness constraints. It can
also achieve approximate solutions that result in high accuracy of loss than prior work with high
fairness.

• Our algorithm has a practical advantage with fixed parameters, except for the step size of the
auxiliary multiplier. This feature simplifies implementation by removing extensive tuning of the
parameters. It also consistently progresses towards balancing predictive accuracy and fairness
guarantees. Experimental results show that our algorithm is efficient and performs favorably
compared to related approaches that handle non-convex non-smooth constraints.
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2 PRELIMINARIES

2.1 FAIR CLASSIFICATION

Let D = {(xi, si, yi)}Ni=1 be a set of N training samples drawn independently from an unknown
joint distribution of (X,A, Y ). xi ∈ X represents the predictive feature, yi ∈ {0, 1} is the target
label, and si ∈ {a, b} denotes the sensitive attribute. A parameterized classifier fθ(x) predicts y = 1
if fθ(x) > 0. The goal of fair classification is to obtain a classifier fθ(x) that is fair with respect to
the given sensitive attribute while maintaining prediction accuracy. There are three fairness notions
widely used for group fairness in classification: demographic parity Dwork et al. (2012); Agarwal
et al. (2018), equal opportunity Hardt et al. (2016), and equalized odds (Hardt et al., 2016). Since
demographic parity and equal opportunity are quite similar from a mathematical perspective (Lohaus
et al., 2020), we focus on the two fairness notions of demographic parity and equalized odds:

Demographic parity. A classifier fθ is fair for demographic parity if its predictions are independent
of the sensitive attribute A: Pr(fθ(x) > 0 | s = a) = Pr(fθ(x) > 0 | s = b).

Equal opportunity. fθ is fair for equal opportunity if its predictions for positively labeled samples
are independent of the sensitive attribute: Pr(fθ(x) > 0 | s = a, y = 1) = Pr(fθ(x) > 0 | s =
b, y = 1).

Equalized odds. fθ holds equalized odds if its predictions are conditionally independent of the
sensitive attribute: Pr(fθ(x) > 0 | s = a, y = j) = Pr(fθ(x) > 0 | s = b, y = j), ∀j ∈ Y.

In practice, we do not know the true distribution over (X,A, Y ) and only have access to training
samples {(xi, si, yi)}Ni=1. Furthermore, ensuring exact fairness may not be possible except in trivial
cases (Woodworth et al., 2017; Friedler et al., 2021), or might come at a significant accuracy cost
without guaranteeing fairness (Ji et al., 2020). Therefore, we consider the empirical fairness dispar-
ity ∆(θ) based on the fairness score Wu et al. (2019), which is constrained to be within a specified
ε > 0. The following definition provides the general form of this type of fairness disparity.

Definition 1 (Empirical ε-fairness). A classifier fθ satisfies a general group-based notion of empiri-
cal ε-fairness if ∆(θ) :=

∣∣∣ 1
Na

∑Na

i=1 I{fθ(xi) > 0 | si, yi} − 1
Nb

∑Nb

i=1 I{fθ(xi) > 0 | si, yi}
∣∣∣ ≤ ε,

where I is the indicator function and ε > 0 is the unfairness tolerance parameter. A larger ε permits
greater fairness on a metric of interest, while a smaller ε more tightly restricts the level of fairness.

The fairness-constrained empirical risk (loss) minimization can be formulated as (Donini et al.,
2018; Goel et al., 2018):

min
θ∈Θ

F (θ) :=
1

N

N∑
i=1

ℓ0(fθ(xi), yi) s. t. ∆(θ) ≤ ε, (1)

where ℓ0 : Rd → R is the loss, F (·) is the average predictive loss, and {(xi, yi)}Ni=1 is a set of N
training samples. However, the constrained problem (1) is often intractable due to the non-convex
and non-differentiable nature of I{fθ(x) > 0 | ·}, making gradient-based algorithms inapplicable.

2.2 TRACTABLE OPTIMIZATION AND LAGRANGIAN RELAXATION

To address the intractability, these constraints can be replaced with suitable surrogates (Zafar et al.,
2019; Cotter et al., 2019b; Lohaus et al., 2020; Bendekgey & Sudderth, 2021; Yao et al., 2023).
We employ surrogates that are differentiable (or at least sub-differentiable) to enable the use of
gradient-based algorithms. Specifically, let σ : R → R be a differentiable surrogate (continuous
approximation) for the indicator function. For example, the indicator function I{fθ(x) > 0 | s}
used for demographic parity can be replaced by σ(fθ(x)). We then set the tractable constraint:

∆̂(θ) :=

∣∣∣∣∣ 1

Na

Na∑
s=a

σ(fθ(x))−
1

Nb

Nb∑
s=b

σ(fθ(x))

∣∣∣∣∣ , (2)

Notice that the setting (2) is non-convex and non-smooth. Let G(θ) := ∆̂(θ)− ε that is non-convex
and non-smooth. In general, under the fairness constraints, finding a fair classifier for problem (1)
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is approximately equivalent to solving the tractable continuous constrained optimization problem:

min
θ∈Θ

F (θ) s. t. G(θ) ≤ 0, (3)

where F : Rd → R is the differentiable loss; G = (G1, . . . , Gm) : Rd → Rm is a non-convex
non-smooth mapping; and Θ ⊆ Rd is a closed convex set. The corresponding Lagrangian is

L(θ, λ) = F (θ) + ⟨λ,G(θ)⟩ ,
where λ ∈ Rm

+ is the Lagrange multipliers. Solving the constrained problem (3) via the Lagrangian
L(θ, λ) is equivalent with finding (θ∗, λ∗) that satisfies the KKT conditions as used in Hu & Chen
(2020); Bendekgey & Sudderth (2021); Cruz et al. (2022):

The KKT conditions. A point x∗ is called a KKT point of problem (3) if there is λ∗ such that{
0 ∈ ∂L(θ∗, λ∗) := ∇F (θ∗) + ∂G(θ∗)λ∗ +NΘ(θ

∗)

λ∗ ≥ 0, G(θ∗) ≤ 0, ⟨λ,G(θ∗)⟩ = 0,
(4)

where NΘ(θ
∗) = {v ∈ Θ | ⟨v, θ − θ∗⟩ ≤ 0, ∀θ ∈ Θ} is the normal cone to Θ at θ∗. Note that

a suitable constraint qualification (CQ) is necessary for the existence of multipliers that satisfy the
KKT conditions (e.g., MFCQ, CPLD, and others; see Bertsekas (1999); Andreani et al. (2022)).

3 PROXIMAL-PERTURBED LAGRANGIAN FRAMEWORK

In this section, we propose a new primal-dual framework that solves the problem of finding provably
fair solutions. Given suitable surrogates of the fairness constraints, our method is guaranteed to find
a classifier with a good level of fairness.To this end, we first introduce a novel Lagrangian that has a
desirable structure for developing an efficient fair classification algorithm.

3.1 A VARIANT OF PROXIMAL-PERTURBED LAGRANGIAN

Motivated by the reformulation techniques in (Bertsekas, 1999; 2014), by employing perturbation
variables z ∈ Rm with slack variables u ∈ Rm

+ , and letting G(θ) + u = z and z = 0, we first
transform problem (3) into an extended equality-constrained formulation:

min
θ∈Θ,u∈Rm

+ ,z∈Rm
F (θ) s. t. G(θ) + u = z, z = 0. (5)

Clearly, for z∗ = 0 and u∗ ≥ 0, the extended formulation (5) is equal to problem (3). For the
equality constrained problem (5), we now define a variant of the Proximal-Perturbed Lagrangian
(P-Lagrangian) introduced in Kim (2021) as follows:

Lαβ(θ, u, z, λ, µ) := F (θ) + ⟨λ,G(θ) + u− z⟩+ ⟨µ, z⟩+ α

2
∥z∥2 − β

2
∥λ− µ∥2, (6)

where λ ∈ Rm is the multiplier (dual) associated with the constraint G(θ)+u− z = 0 and µ ∈ Rm

is the auxiliary multiplier associated with the constraint z = 0, α > 0 is a penalty parameter, and
β > 0 is a proximal parameter.

In addition, observing that given (λ, µ), minimizing Lαβ with respect to z gives:

z(λ, µ) = (λ− µ)/α,

substituting z(λ, µ) into Lαβ(θ, u, z, λ, µ), yields the reduced P-Lagrangian:

Lαβ(θ, u, z(λ, µ), λ, µ) = F (θ) + ⟨λ,G(θ) + u⟩ − 1

2ρ
∥λ− µ∥2, (7)

where ρ := α
1+αβ . Note that Lαβ(θ, u, z(λ, µ), λ, µ) is 1

ρ -strongly concave in λ (for fixed µ) and
hence there exists a unique maximizer, denoted by λ(θ, µ). If we maximize Lαβ(θ, u, z(λ, µ), λ, µ)
with respect to λ, we obtain:

λ(θ, µ) = argmax
λ∈Rm

Lαβ(θ, u, z(λ, µ), λ, µ) = µ+ ρ(G(θ) + u), (8)

which is well-defined and will be used for the update of λk+1 in (12).

4
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3.2 DESCRIPTION OF ALGORITHM

In this subsection, we present a gradient-based alternating algorithm that computes a stationary
solution to problem (3). The steps of our proposed algorithm are described in Algorithm 1.

Algorithm 1: P-Lagrangian based Alternating Direction Algorithm (PLADA)

1: Input: fixed parameters α > 1, β ∈ (0, 1), ρ = α
1+αβ , 0 < η < 1

LF+3ρM2
G

and 0 < τ < 1
3ρ .

initial (θ0, u0, z0, λ0, µ0), γ0 ∈ (0, 1].
2: for k = 0, 1, . . . , T do
3: θk+1 = argminθ∈Θ

{
⟨∇F (θk), θ⟩+ ⟨λk, G(θ)⟩+ (1/2η)∥θ − θk∥2

}
4: uk+1 = ΠU [uk − τλk]

5: µk+1 = µk + γk

(
λk−µk

ρ

)
with γk = min

{
γ0,

ρδk
∥λk−µk∥2+1

}
6: λk+1 = µk+1 + ρ(G(θk+1) + uk+1)
7: zk+1 = 1

α (λk+1 − µk+1)
8: end for

At each iteration, the algorithm updates θ by:

θk+1 = argmin
θ∈Θ

{
⟨∇F (θk), θ⟩+ ⟨λk, G(θ)⟩+ 1/2η∥θ − θk∥2

}
. (9)

The update of u is the projected gradient descent on Lαβ onto U := [0, umax]:

uk+1 = argmin
u∈U

{
⟨∇uLαβ(θk, uk, zk, λk, µk), u− uk⟩+ 1/2τ∥u− uk∥2

}
= ΠU [uk − τλk],

(10)

where, without loss of generality, we can construct an upper umax := BG on uk+1 as ∥G(θ)∥ ≤ BG.
The auxiliary multiplier µ is then updated by a gradient ascent scheme on Lαβ :

µk+1 = µk + γk(zk + β(λk − µk)) = µk +
γk
ρ
(λk − µk), (11)

where we used the fact that ∇µLαβ(θk+1, zk, λk, µk) = zk + β(λk − µk) and zk = 1
α (λk − µk);

γk > 0 is the step-size defined by γk = min
{
γ0, ρδk/(∥λk − µk∥2 + 1)

}
; and δk > 0 in γk is

chosen to satisfy the following conditions: limt→∞ δk = 0 and
∑∞

k=0 δk = +∞. In the algorithm,
we choose a decaying δk = κ · (t+ 1)−1 with κ > 0, so that these conditions hold.

Next, the algorithm performs an exact maximization on the reduced P-Lagrangian (7) to update λ:

λk+1 = µk+1 + ρ (G(θk+1) + uk+1) . (12)

The last step is to update z via an exact minimization on Lαβ for given the updated (λk+1, µk+1):

zk+1 = (λk+1 − µk+1)/α. (13)

Note that a critical aspect of our algorithm is that the parameters α, β, and the dual step size ρ are
constants and thus independent of the number of iterations k. In Appendix D.1, we demonstrate how
robust the algorithm is with respect to the choices of α and β.

4 CONVERGENCE GUARANTEES

In this section, we present the convergence results of Algorithm 1. The structure of Algorithm 1
allows us to establish its convergence properties in a simple way. For the convergence analysis, we
make the following standard assumptions:
Assumption 1. There exists a point (θ, λ) ∈ Θ× Rm satisfying the KKT conditions (4).
Assumption 2. Given Θ ⊆ Rd, the gradient ∇F is LF -Lipschitz continuous on Θ. That is, there
exist constants LF > 0 such that ∥∇F (θ)−∇F (θ′)∥ ≤ LF ∥θ − θ′∥, ∀θ, θ′ ∈ Θ.

Assumption 3. G is continuous with ∂G(θ) ̸= ∅ on Θ, and there exists a constant MG > 0 such
that maxθ∈Θ∥∂G(θ)∥ ≤ MG.

5
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Assumption 4. The domain Θ is compact, i.e., Dθ := maxθ,θ′∈Θ∥θ − θ′∥ < ∞.

Assumption 5. The iterates {λk} are contained in a convex compact subset Λ ⊂ Rm.

The assumptions above are standard in the optimization literature; see e.g., Boob et al. (2022);
Huang & Lin (2023). Assumption 3 implies the Lipschitz continuity of G: ∥G(θ) − G(θ′)∥ ≤
MG∥θ−θ′∥, ∀θ, θ′ ∈ Θ. Problems with an unbounded Θ can be reformulated to satisfy Assumption
4. For example, if F is bounded below and a coercive regularization R is added, the problem with
F +R has a compact domain (see, e.g., Lu & Zhou (2023)). Moreover, Assumption 5 is commonly
used in the convergence analysis of constrained optimization algorithms (Nocedal & Wright, 2006;
Bertsekas, 2014; Birgin & Martı́nez, 2014; Hong et al., 2016; 2023; Na et al., 2023a;b).

4.1 MAIN RESULTS

In this subsection, we establish main convergence results for Algorithm 1. Building on several key
properties of the proposed algorithm given in Appendix B (Lemmas 3 and 4), we show that the
generated primal-dual iterates converge to a KKT point of problem (3).
Theorem 1 (Primal convergence). Suppose that Assumptions 1-4 hold. Let {(θk, uk, zk, λk, µk)}
generated by Algorithm 1, with the decaying sequence δk = κ · (t+ 1)−1. Let {pk := (θk, uk, zk)}
be the generated primal sequences. Then,

lim
T→∞

1

T

T−1∑
k=0

∥Gk+1
p ∥2 = 0, (14)

where Gk+1
p := (Gk+1

θ ,Gk+1
u ,Gk+1

z ) ∈ ∂pLαβ(θk, uk, zk, λk, µk).

Theorem 1, whose complete proof is provided in Appendix C.1, states that the Õ (1/T )1 rate of the
primal convergence holds: the running-average stationarity (first-order optimality) residual is

1

T

T−1∑
k=0

∥Gk+1
p ∥2 = O

(
log(T )

T

)
= Õ

(
1

T

)
.

Remark 1. Invoking Lemma 4 and Theorem 1, we immediately obtain the following result:

lim
T→∞

1

T

T−1∑
k=0

(
∥θk+1 − θk∥2 + ∥uk+1 − uk∥2

)
= 0,

which implies the Õ(1/T ) rate of the squared running-average successive difference of primal iter-
ates:

1

T

T∑
k=0

(
∥θk+1 − θk∥2 + ∥uk+1 − uk∥2

)
= Õ

(
1

T

)
.

Note that Theorem 1 states the convergence in an ergodic sense, which involves averaging over the
sequence of iterates or employing a randomized output selection from T iterates. Thus, the primal
iterates converge with Õ(1/T ) in an ergodic sense.

We now show the feasibility guarantees for Algorithm 1. It suffices to prove that limk→∞ ∥λk −
µk∥ = 0. This result can be easily achieved by the auxiliary multiplier µ update.
Theorem 2 (Fairness guarantees). Under Assumptions 1−5, let {(θk, uk, zk, λk, µk)} be the se-
quence generated by Algorithm 1. Let the decaying sequence {δk} be chosen as in Theorem 1.
Then, it holds that:

lim
t→∞

∥λk − µk∥ = 0,

and hence, we have that G(θ̄) ≤ 0, where θ̄ is a limit point of {θk}.

It is noteworthy that the above results suggest Algorithm 1 can reduce the fairness violation if con-
trolling primal iterates {θk} and {uk} properly. By building on the convergent primal sequence and
utilizing the definitions of λk+1 and µk+1, we readily have the fairness guarantees. Equipped with
Theorems 1 and 2, we immediately have the outer iteration complexity for Algorithm 1.

1The notation Õ(·) suppresses all logarithmic factors from the big-O notation.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Adult Bank COMPAS

L
os

s

0 100 200 300 400 500
CPU Time (sec)

0.40

0.45

0.50

0.55

0.60

0.65

0.70
PLADA
SSG
IPP_ConEx
IPP_SSG

0 100 200 300 400 500
CPU Time (sec)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70 PLADA
SSG
IPP_ConEx
IPP_SSG

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
CPU Time (sec)

0.2

0.3

0.4

0.5

0.6

0.7 PLADA
SSG
IPP_ConEx
IPP_SSG

D
P

V
io

la
tio

n

0 100 200 300 400 500
CPU Time (sec)

0.005

0.004

0.003

0.002

0.001

0.000

0.001

0.002

PLADA
SSG
IPP_ConEx
IPP_SSG

0 100 200 300 400 500
CPU Time (sec)

0.020

0.015

0.010

0.005

0.000

0.005

PLADA
SSG
IPP_ConEx
IPP_SSG

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
CPU Time (sec)

0.010

0.008

0.006

0.004

0.002

0.000

PLADA
SSG
IPP_ConEx
IPP_SSG

N
ea

rS
ta

tio
na

ri
ty

0 100 200 300 400 500
CPU Time (sec)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040
PLADA
SSG
IPP_ConEx
IPP_SSG

0 100 200 300 400 500
CPU Time (sec)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07 PLADA
SSG
IPP_ConEx
IPP_SSG

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
CPU Time (sec)

0.02

0.04

0.06

0.08

0.10
PLADA
SSG
IPP_ConEx
IPP_SSG

Figure 1: Comparison of the performance of PLADA, IPP-ConEx, IPP-SSG and SSG on the logistic
loss (16) with demographic parity (DP) constraint (15). The results are presented in terms of their
loss values, constraint violation and near stationarity (from top to bottom) on Adult, Bank and
COMPAS datasets (from left to right) with respect to CPU time in seconds.

5 NUMERICAL EXPERIMENTS

We evaluate the empirical performance of our proposed algorithm on real-world datasets and com-
pare with state-of-the-art algorithms that can handle non-convex non-smooth fairness constraints.
Specifically, we evaluate the performance of PLADA against four benchmark algorithms: the single-
loop switching subgradient (SSG) algorithm Huang & Lin (2023), two double-loop inexact proximal
point (IPP) algorithms (IPP-ConEx Boob et al. (2022) and IPP-SSG Huang & Lin (2023)) and the
multiplier model approach Narasimhan et al. (2020). For the benchmark algorithms, we followed
the hyperparameter settings of Huang & Lin (2023) and Narasimhan et al. (2020), and we provide
detailed descriptions of hyperparameters as well as additional experiments in the Appendix.

Datasets. We evaluate the performance of algorithms on real-world datasets in the field of algo-
rithmic fairness: Adult (Kohavi et al., 1996), Bank (Moro et al., 2014), COMPAS (Angwin et al.,
2022) and Communities and Crime (Redmond, 2009).

5.1 DEMOGRAPHIC PARITY CONSTRAINT

We start by considering the setting of non-convex non-smooth demographic parity constraint:

∆̂D(θ) =

∣∣∣∣∣∣ 1

Np

∑
i∈Ip

σ(θ⊤xi)−
1

Nu

∑
i∈Iu

σ(θ⊤xi)

∣∣∣∣∣∣ , (15)
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Figure 2: Comparison of the performance of PLADA, IPP-ConEx, IPP-SSG and SSG on the logistic
loss objective (16) and the equalized odds (EO) constraint (17) with respect to CPU time.

where Ip and Iu denote the sets of protected and unprotected data indices, respectively, with corre-
sponding sizes of Np = |Ip| and Nu = |Iu|. Equation (15) uses sigmoid σ(·) as a surrogate, making
it weakly convex. And the objective is to optimize the logistic empirical loss:

F (θ) =
1

N

N∑
i=1

log(1 + e−yiθ
⊤xi), (16)

Given that the logistic loss is smooth and convex, Figure 1 depicts the favorable behavior of each
algorithm. Notably, our algorithm exhibits superior performance in the smooth and convex setting.

5.2 EQUALIZED ODDS CONSTRAINTS

While demographic parity (15) is a more widely accepted notion of fairness, equalized odds (17)
is stricter and thus more challenging to optimize. Equalized odds aims to equalize the true positive
rate and the false positive rate between protected and unprotected demographic groups.

∆̂E(θ) = max

(∣∣∣∣∣∣ 1

Npq

∑
i∈Ipq

σ(θ⊤xi)−
1

Nuq

∑
i∈Iuq

σ(θ⊤xi)

∣∣∣∣∣∣ ,∣∣∣∣∣∣ 1

Npu

∑
i∈Ipu

σ(θ⊤xi)−
1

Nuu

∑
i∈Iuu

σ(θ⊤xi)

∣∣∣∣∣∣
)
. (17)
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(c) Maximum fairness violation
over intersectional groups

Figure 3: Comparison of the validation performance of PLADA and Narasimhan et al., Narasimhan
et al. (2020) on the intersectional group fairness (18) versus Epochs.

While the compared algorithms support a single constraint, as described in (17), PLADA can handle
multiple fairness constraints by alternatingly optimizing parameters such as (u, z, λ, µ) for each fair-
ness constraint. The advantage of our algorithm over the other algorithms is most clearly illustrated
in Figure 2.

5.3 EXTENSION TO INTERSECTIONAL GROUP FAIRNESS CONSTRAINTS ON NEURAL
NETWORKS

Finally, we extend the experiment to an even more complex fairness problem by incorporating neural
networks and intersectional group fairness. Specifically, we used a neural network with 5 hidden
layers with ReLU activation for the classifier fθ(·). This makes both the objective and the constraints
highly non-convex and non-smooth. Also, fairness over intersectional groups (18) is even stricter
and more challenging than demographic parity (15) and equalized odds (17) in that the constraint
spans over a large number of groups. In particular, we use the fairness constraint as the expectation
over 535 intersectional fairness constraints:

∆̂I(θ) = EG

[
1

NG

∑
i∈IG

[1− yifθ(xi))]
+ − 1

N

N∑
i=1

[1− yifθ(xi)]
+

]
, (18)

where G is a group uniformly sampled among all relevant groups and [·]+ represents a hinge func-
tion. For this problem, we used the Communities and Crime dataset Redmond (2009), which consists
of 1,994 data points and 140 features, which aim to predict the per capita violent crimes of different
communities in the US.

Notably, Figure 3 shows that PLADA outperforms the Lagrangian-based algorithm in Narasimhan
et al. (2020), which uses a deep neural network with three hidden layers for updating the multipliers
to ensure a bounded sequence. On the other hand, PLADA employs a simple updating scheme
that guarantees the boundedness of the Lagrange multiplier sequence, leading to consistent fairness
satisfaction.

6 CONCLUSIONS

We studied classification problems under fairness constraints, introducing an algorithmic framework
to prevent discrimination across different groups. These problems are often reformulated as contin-
uous constrained optimization tasks, using continuous relaxations of fairness constraints. Our novel
primal-dual algorithm converges to a stationary solution at a rate of Õ(1/

√
T ), where T represents

the outer iterations. Experimental results demonstrated its effectiveness in terms of computational
cost and fairness guarantees, outperforming related algorithms. Although our current analysis is
limited to the use of deterministic/full (sub)gradient, extension to the stochastic setting is of interest.
In Appendix D.3, we provide a preliminary application of our algorithm to stochastic gradients on a
large dataset.
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A NOTATION AND BASIC DEFINITIONS

Before proceeding with proofs of the lemmas and theorems, let us first provide the notation and
basic definitions used in the proofs.

Let Rd denote d-dimensional Euclidean space with inner product ⟨·, ·⟩ and the corresponding norm
∥ · ∥. The Euclidean norm of a matrix is also denoted by ∥ · ∥. We use Rm

+ to denote the nonnegative
orthant in Rm and denote the Jacobian matrix of G at θ by ∂G(θ). The distance function between
a vector θ and a set Θ ⊆ Rd is defined by dist(θ,Θ) := infw∈Θ ∥w − θ∥. For any set Θ ⊆ Rd,
its indicator function IΘ is defined by IΘ = 0 if θ ∈ Θ and + ∞ otherwise. For any set Θ ⊆
Rd, its indicator function IΘ is defined by IΘ = 0 if θ ∈ Θ and + ∞, otherwise. Note that
argminθ∈Θ F (θ) = argminθ∈Rd{φ(θ) := F (θ) + IΘ(θ)}.
We recall some definitions about subdiffererential calculus (Rockafellar & Wets, 2009, Definition
8.3). Let Gi : Rd → R ∪ {+∞} be a proper and lower semicontinuous function. For each θ ∈ Θ,
the Frechet subdifferential of G of θ is given by

∂̂Gi(θ) :=

{
dk ∈ Rd : lim inf

w→x

Gi(w)−Gi(θ)− ⟨d,w − θ⟩
∥w − θ∥

≥ 0

}
.

The limiting subdifferencial (or simply the subdifferential) of Gi at θ ∈ Rd is defined as

∂Gi(θ) :=
{
d ∈ Rd : ∃ θk→θ and dk ∈ ∂̂Gi(θk) with dk → d as k → ∞

}
.

The inclusion ∂̂Gi(θ) ⊆ ∂Gi(θ) holds for each θ ∈ Θ and we set ∂̂Gi(θ) = ∂Gi(θ) = ∅ for θ /∈ Θ.
Each d ∈ ∂Gi(θ) is called a subgradient of Gi at θ.

B PROOFS OF KEY PROPERTIES FORM MAIN RESULTS IN SECTION 4

Based on the structure of Algorithm 1, we first derive fundamental yet crucial relationships among
the sequences {λk}, {µk}, {θk}, and {uk}.
Lemma 3. Let {(θk, uk, zk, λk, µk)} be the sequence generated by Algorithm 1. Then,

∥µk+1 − µk∥2 = (γ2
k/ρ

2)∥λk − µk∥2 ≤ δ2k/2; (19a)

∥µk+1 − λk∥2 = (1− (γk/ρ))
2 ∥µk − λk∥2; (19b)

∥λk+1 − λk∥2 ≤ 3ρ2M2
G∥θk+1 − θk∥2 + 3ρ2∥uk+1 − uk∥2 + 3(γ2

k/ρ
2)∥λk − µk∥2. (19c)

Proof. From the µ-update (11), we immediately obtain the relations in (19a):

∥µk+1 − µk∥2 =
γ2
k

ρ2
∥λk − µk∥2 ≤ δ2k

∥λk − µk∥2 + 2 + (1/∥λk − µk∥2)
≤ δ2k

2
.

Subtracting µk+1 from λk yields

∥λk − µk+1∥ =

∥∥∥∥λk − µk − γk
ρ
(λk − µk)

∥∥∥∥ =

(
1− γk

ρ

)
∥λk − µk∥.

Squaring both sides of the above inequality yields the relation (19b).

By the λ-update (12), we have

∥λk+1 − λk∥ ≤ ∥µk+1 − µk∥+ ρ∥G(θk+1) + uk+1 −G(θk)− uk∥
≤ ∥µk+1 − µk∥+ ρMG∥θk+1 − θk∥+ ρ∥uk+1 − uk∥,

which, along with (a+ b+ c)2 ≤ 3(a2 + b2 + c2) and (19a), provides the relation (19c).

Lemma 4 (Approximate decrease of Lαβ). Suppose that Assumptions 2−4 are satisfied. Let
{wk := (θk, uk, zk, λk, µk)} be the sequence generated by Algorithm 1. Choose the step sizes η
and τ so that 0 < η < 1

LF+3ρM2
G

and 0 < τ < 1
3ρ . Then, it holds that

Lαβ(wk+1)− Lαβ(wk) ≤ −C1∥θk+1 − θk∥2 − C2∥uk+1 − uk∥2 + δ̂k. (20)

where C1 := 1
2

(
1
η − LF − 3ρM2

G

)
> 0, C2 := 1

2

(
1
τ − 3ρ

)
> 0, and δ̂k :=

δ2k
2ρ + δk

ρ

14
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Proof. Notice first that

Lαβ(θk, uk, zk, λk, µk) = F (θk) + ⟨λk, G(θk) + uk⟩ − ⟨λk − µk, zk⟩+
α

2
∥zk∥2 −

β

2
∥λk − µk∥2

= F (θk) + ⟨λk, G(θk) + uk⟩ −
1

2ρ
∥λk − µk∥2

= Lαβ(θk, uk, ẑ(λk, µk), λk, µk),

where ρ = α/(1 + αβ), and thus
Lαβ(θk+1, uk+1, zk, λk, µk) = Lαβ(θk+1, uk+1, ẑ(λk, µk), λk, µk).

Then the difference of two successive sequences of Lαβ can be divided into two parts:
Lαβ(θk+1, uk+1, zk+1, λk+1, µk+1)− Lαβ(θk, uk, zk, λk, µk)

= [Lαβ(θk+1, uk+1, zk, λk, µk)− Lαβ(θk, uk, zk, λk, µk)]

+ [Lαβ(θk+1, uk+1, ẑ(λk+1, µk+1), λk+1, µk+1)− Lαβ(θk+1, uk+1, ẑ(λk, µk), λk, µk)] .
(21)

Consider the first part (21). Since θk+1 and uk+1 are the solutions of subproblems (9) and (10),
respectively, we have that for any θ ∈ Θ and for any u ∈ U ,

⟨∇F (θk), θk+1 − θ⟩+ ⟨λk, G(θk+1)−G(θ)⟩+ 1

2η

(
∥θk+1 − θk∥2 − ∥θ − θk∥2

)
≤ 0, (22)

and
⟨∇uLαβ(wk), uk+1 − u⟩+ 1

2τ
(∥uk+1 − uk∥2 − ∥u− uk∥2) ≤ 0. (23)

By taking θ = θk in (22), u = uk in (23), and using ∇uLαβ(wk) = λk, we have

⟨∇F (θk), θk+1 − θk⟩+ ⟨λk, G(θk+1)−G(θk)⟩ ≤ − 1

2η
∥θk+1 − θk∥2,

and
⟨λk, uk+1 − uk⟩ ≤ − 1

2τ
∥uk+1 − uk∥2.

By adding and subtracting the term ⟨∇F (θk), θk+1 − θk⟩, we obtain
Lαβ(θk+1, uk+1, zk, λk, µk)− Lαβ(θk, uk, zk, λk, µk)

= [F (θk+1) + ⟨λk, G(θk+1) + uk+1⟩]− [F (θk) + ⟨λk, G(θk) + uk⟩]
= ⟨λk, G(θk+1)−G(θk)⟩+ ⟨λk, uk+1 − uk⟩+ [F (θk+1)− F (θk)]

= [⟨∇F (θk), θk+1 − θk⟩+ ⟨λk, G(θk+1)−G(θk)⟩]
+ [F (θk+1)− F (θk)− ⟨∇F (θk), θk+1 − θk⟩] + ⟨λk, uk+1 − uk⟩

≤ −1

2

(
1

η
− LF

)
∥θk+1 − θk∥2 −

1

2τ
∥uk+1 − uk∥2. (24)

Next, we derive an upper bound for the second part. We start by noting that
Lαβ(θk+1, uk+1, ẑ(λk+1, µk+1), λk+1, µk+1)− Lαβ(θk+1, uk+1, ẑ(λk, µk), λk, µk)

=
1

ρ
⟨λk+1 − λk, G(θk+1) + uk+1⟩ −

1

2ρ

(
∥λk+1 − µk+1∥2 − ∥λk − µk∥2

)
.

Using the facts that G(θk+1)+ uk+1 = 1
ρ (λk+1 −µk+1) and ⟨a, b⟩ = 1

2∥a∥
2 + 1

2∥b∥
2 − 1

2∥a− b∥2
for any a, b ∈ Rm, we have

1

ρ
⟨λk+1 − λk, λk+1 − µk+1⟩ =

1

2ρ

(
∥λk+1 − λk∥2 + ∥λk+1 − µk+1∥2 − ∥µk+1 − λk∥2

)
.

Hence,
Lαβ(θk+1, uk+1, ẑ(λk+1, µk+1), λk+1, µk+1)− Lαβ(θk+1, uk+1, ẑ(λk, µk), λk, µk)

(a)

≤ 1

2ρ

(
3ρ2M2

G∥θk+1 − θk∥2 + 3ρ2∥uk+1 − uk∥2 + 3γ2
k∥λk − µk∥2

)
+

1

2ρ

(
1− (1− γk)

2
)
∥λk − µk∥2

=
1

2

(
3ρM2

G∥θk+1 − θk∥2 + 3ρ∥uk+1 − uk∥2
)
+

3γ2
k

2ρ
∥λk − µk∥2 +

1

2ρ

(
2γk − γ2

k

)
∥λk − µk∥2

(b)

≤ 1

2

(
3ρM2

G∥θk+1 − θk∥2 + 3ρ∥uk+1 − uk∥2
)
+

2δ2k + δk
ρ

, (25)
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where (a) is from (19b) and (19c), and (b) holds by γk∥λk − µk∥2 ≤ δk
1+(1/∥λk−µk∥2) ≤ δk.

Combining (24) and (25) yields the desired result:

Lαβ(wk+1)− Lαβ(wk)

≤ −1

2

(
1

η
− LF − 3ρM2

G

)
∥θk+1 − θk∥2 −

1

2

(
1

τ
− 3ρ

)
∥uk+1 − uk∥2 +

2δ2k + δk
ρ

,

which completes the proof.

C PROOFS OF MAIN RESULTS IN SECTION 4

Before presenting our main convergence results, we first derive an upper bound for the subgradient
of Lαβ(wk+1) in the primal variables. This subgradient, denoted by ∂pLαβ(wk+1), is expressed in
terms of the iterates generated by Algorithm 1.

Lemma 5 (Iterative error bound for subgradient of Lρ in primal variables). Suppose that Assump-
tions 4 and 2 hold. Let the sequence {wk := (θk, uk, zk, λk, µk)} be generated by Algorithm 1, and
let {pk := (θk, uk, zk)} be the generated primal sequences. Then, there exists constant d1 > 0 with
Gk+1
p := (Gk+1

θ ,Gk+1
u , 0) ∈ ∂pLαβ(wk+1) such that

∥Gk+1
p ∥ ≤ Dp (∥θk+1 − θk∥+ ∥uk+1 − uk∥) + (MG + 1)δk,

where
Dp = max{LF + 1/η + ρ(M2

G +MG) + 1/η, ρ(MG + 1) + 1/τ}.

Proof. Writing down the optimality condition for the update of θk+1 in (9), we have

0 ∈ ∇F (θk) + ∂G(θk+1)
⊤λk +

1

η
(θk+1 − θk) + v, v ∈ NΘ(θk+1) (26)

Using the subdifferential calculus rules, we have

∇F (θk+1) + ∂G(θk+1)
⊤λk+1 + v ∈ ∂θLαβ(wk+1) (27)

By defining the quantity

Gk+1
θ = ∇F (θk+1)−∇F (θk) + ∂G(θk+1)

⊤(λk+1 − λk)−
1

η
(θk+1 − θk) (28)

and using (26) and (27), we obtain that Gk+1
θ ∈ ∂θLαβ(wk+1).

Next, define the quantity
Gk+1
u := uk+1 −ΠU [uk+1 − λk+1],

which is equivalent to the projected gradient of Lαβ in u. It is a measure of optimality for the update
of uk+1 Nesterov (2012):

∇̃uLαβ(wk+1) := uk+1 − argmin
v∈U

{
⟨∇uLαβ(wk+1), v − uk+1⟩+

1

2
∥v − uk+1∥2

}
= uk+1 − ũk+1.

where we define ũk+1 := argminv∈U

{
⟨∇uLαβ(wk+1), v − uk+1⟩+ 1

2∥v − uk+1∥2
}

.

From the update of zk+1 in (13), we have

∇zLαβ(wk+1) = −(λk+1 − µk+1) + αzk+1 = 0.

Hence, we obtain

Gk+1
p :=

Gk+1
θ

Gk+1
u
0

 where

Gk+1
θ ∈ ∂θLαβ(θk+1, uk+1, zk+1, λk+1, µk+1)

Gk+1
u = ∇̃uLαβ(θk+1, uk+1, zk+1, λk+1, µk+1)
0 = ∇zLαβ(θk+1, uk+1, zk+1, λk+1, µk+1)

 .
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We derive an upper estimate for Gk+1
p . A direct calculation gives

∥Gk+1
θ ∥ ≤ ∥∇F (θk+1)−∇F (θk)∥+ (1/η)∥θk − θk+1∥+ ∥∂G(θk+1)∥∥λk+1 − λk∥

≤ (LF + 1/η)∥θk+1 − θk∥+MG∥λk+1 − λk∥
≤ (LF + 1/η)∥θk+1 − θk∥+ ρM2

G∥θk+1 − θk∥+ ρMG∥uk+1 − uk∥+MGδk

≤ (LF + 1/η + ρM2
G)∥θk+1 − θk∥+ ρMG∥uk+1 − uk∥+MGδk (29)

Next, we estimate an upper bound for the component Gk+1
u . The first-order optimality condition

implies that
⟨∇uLαβ(uk+1) + (ũk+1 − uk+1), u− ũk+1⟩ ≥ 0. (30)

Here, ∇uLαβ(wk+1) is denoted by ∇uLαβ(uk+1). By the definition uk+1 in (10), we have〈
∇uLαβ(uk) +

1

τ
(uk+1 − uk), u− uk+1

〉
≥ 0, (31)

where ∇uLαβ(uk) = ∇uLαβ(θk, uk, zk, λk, µk) for simplicity. Combining (30) and (31), with
settings u = uk+1 in (30) and u = ũk+1 in (31), yields〈

∇uLαβ(uk)−∇uLαβ(uk+1) +
1

τ
(uk+1 − uk)− (ũk+1 − uk+1), ũk+1 − uk+1

〉
≥ 0,

equivalently,〈
∇uLαβ(uk)−∇uLαβ(uk+1) +

1

τ
(uk+1 − uk), ũk+1 − uk+1

〉
≥ ∥ũk+1 − uk+1∥2.

By applying the Cauchy-Schwarz inequality and triangle inequality yields(
∥∇uLαβ(uk)−∇uLαβ(uk+1)∥+

1

τ
∥uk+1 − uk∥

)
∥ũk+1 − uk+1∥ ≥ ∥ũk+1 − uk+1∥2

and

∥∇uLαβ(uk)−∇uLαβ(uk+1)∥ ≤ ∥λk − λk+1∥
≤ ρMG∥θk+1 − θk∥+ ρ∥uk+1 − uk∥+ δk.

Therefore,

∥Gk+1
u ∥ = ∥ũk+1 − uk+1∥ ≤ ρMG∥θk+1 − θk∥+ (ρ+ 1/τ) ∥uk+1 − uk∥+ δk. (32)

Combining (29) and (32), we obtain

∥Gk+1
p ∥ ≤ Dp(∥θk+1 − θk∥+ ∥uk+1 − uk∥) + (MG + 1)δk,

where Dp = max{LF + 1/η + ρ(M2
G +MG) + 1/η, ρ(MG + 1) + 1/τ}. This inequality, along

with Gk+1
p ∈ ∂Lαβ(wk+1), yields the desired result.

C.1 PROOF OF THEOREM 1

Proof. From Lemma 4, we have

Cp

(
∥θk+1 − θk∥2 + ∥uk+1 − uk∥2

)
≤ Lαβ(wk)− Lαβ(wk+1) + δ̂k, (33)

where Cp = max{C1, C2}. Using Lemma 5 and the fact (a+ b+ c)2 ≤ 3(a2 + b2 + c2), we have

∥Gk+1
p ∥2 ≤ 3D2

p(∥θk+1 − θk∥2 + ∥uk+1 − uk∥2) + 3(MG + 1)2δ2k,

which, combined with (33), yields

∥Gk+1
p ∥2 ≤

3D2
p

Cp

(
Lαβ(wk)− Lαβ(wk+1) + δ̂k

)
+ 3(MG + 1)2δ2k.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Summing up the above inequalities over k = 0, . . . , T − 1, we obtain
T−1∑
k=0

∥Gk+1
p ∥2 ≤

3D2
p

Cp

(
Lαβ(w0)− Lαβ(wT ) +

T−1∑
k=0

δ̂k

)
+ 3(MG + 1)2

T−1∑
k=0

δ2k

Since
∑∞

k=0 δ
2
k < +∞, we denote Bδ =

∑∞
k=0 δ

2
k. Therefore,

1

T

T−1∑
k=0

∥Gk+1
p ∥2

≤
3D2

p

Cp
(Lαβ(w0)− Lαβ(wT ))

T
+

3D2
p

Cp

∑T−1
k=0 δ̂k

T
+

3(MG + 1)2
∑T−1

k=0 δ2k
T

≤
3D2

p

Cp

(
Lαβ(w0)− Lαβ

)
T

+

(
3D2

p

2ρCp
+ 3(MG + 1)2

)∑T−1
k=0 δ2k

T
+

1
ρ

∑T−1
k=0 δk

T
, (34)

where the second inequality holds by the the lower boundedness of Lαβ(wk), denoted by Lαβ , that

is from the boundedness of generated sequences, and δ̂k =
δ2k
2ρ + δk

ρ .

Note that given δk = κ · (k + 1)−1 and κ > 0, for sufficiently large T , we know that
T−1∑
k=0

δk ≈ κ−1 log(κT ).

Since the last term on the right-hand side (RHS) of (34) dominates the other terms and T grows
faster than log(T ), the RHS of (34) decreases to 0 as T increase. Therefore, by taking the limit
T → ∞, we obtain

lim
T→∞

1

T

T−1∑
k=0

∥Gk+1
p ∥2 = 0 with the rate of O

(
log(T )

T

)
= Õ

(
1

T

)
,

which proves that the ergodic primal convergence hold for Algorithm 1 in terms of the running-
average stationarity residual.

C.2 PROOF OF THEOREM 2

Proof. From the µ-update (11), notice that µk+1 = µ0 +
1
ρ

∑k
t=0 γt(λt − µt). Using the fact that

∥a∥ − ∥b∥ ≤ ∥a+ b∥ for any a, b ∈ Rm, we have∥∥∥∥∥
∞∑
t=0

γt(λt − µt)

∥∥∥∥∥ ≤ ∥µk+1∥+ ∥µ0∥ < +∞, (35)

where the last inequality hold by the boundedness of {µk} from Assumption 5 together with the
boundedness of sequence {(λk − µk) := ρ(G(θk) + uk)}. The convergence of the sequences {θk}
and {uk} to finite values (θ, u), along with the definition of λk = µk + ρ(G(θk) + uk), implies that
{λk − µk} is convergent to a finite value (λ− µ).

We prove that {λk − µk} → 0 by contradiction. Assume that {λk − µk} does not converge 0,
meaning there exists some e ̸= 0 such that {λk − µk} → e as k → ∞. Since

∑∞
k=0 γk = ∞, we

see that ∥∥∥∥∥
∞∑
k=0

γk(λk − µk)

∥∥∥∥∥ = ∞,

which contradicts (35). This contradiction leads to the desired result that λ − µ = 0. It directly
follows the definitions of λk+1 and uk+1 that

0 =
1

ρ

(
λ− µ

)
= G(θ) + u and u ≥ 0.

Hence, we have the feasibility of θ, namely, G(θ) ≤ 0. The above result, together with Theorem 1,
implies that 1

T

∑T−1
k=0 ∥Gk+1

d ∥2 = Õ (1/T ) .
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Loss DP Violation Near Stationarity
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Figure 4: Comparison of the performance of PLADA with different α on the logistic loss objective
with demographic parity (DP) constraint on Adult dataset. The results show the performance of
PLADA is not sensitive to the value of α (β = 0.1 is fixed).
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Figure 5: Comparison of the performance of PLADA with different β on the logistic loss objective
with demographic parity (DP) constraint on Adult dataset. The results show that the performance of
PLADA is very slightly sensitive to the choice of β, as it affect dual parameter defined by ρ = α

1+αβ

(α = 10 is fixed).

D ADDITIONAL EXPERIMENTS

D.1 HYPERPARAMETER SENSITIVITY

Although Algorithm 1 requires the selection of multiple hyperparameters (α, β, ρ, η, τ ), it is straight-
forward to select appropriate values for each hyperparameter. While η is inevitably associated with
any algorithm, ρ and τ can be directly found by the values of α and β.

In this section, we provide empirical results on the sensitivity of our algorithm to the choices of
the parameters α > 0 and β > 0. First, Figure 4 demonstrates that the value of α does not have
significant impact on the performance of the algorithm.

Additionally, Figure 5 shows that our algorithm demonstrates only a slight sensitivity to β, which
is more evident in the near stationarity plot. Despite this slight sensitivity in β, our algorithm
demonstrates sufficient robustness and can still provide solutions that minimize the objective and
that remain feasible.

D.2 CONVERGENCE OF DUAL VARIABLES

This section highlights empirical results that demonstrate the convergence of the dual variables,
λ and µ, which further validate the results established by Theorem 2. The first row of Figure 6,
demonstrates the converging behavior of |λ− µ| throughout multiple datasets. It can be easily seen
from the figure, that the difference of λ and µ converges to zero. The second and third rows depicts
the individual convergence of λ and µ respectively.
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Adult Bank COMPAS
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Figure 6: The values of |λ − µ|, λ, µ of PLADA on the logistic loss objective with demographic
parity (DP) constraint. The results show the converging behavior of the dual variables and their
difference.
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Figure 7: The average performance of PLADA and Narasimhan et al. (2020) on the ranking fairness
versus Epochs after three repetitions. MSLR-WEB10K dataset has over 1.2M data points, from
which over 470k pairs are created. PLADA achieves better constraint satisfaction with comparable
error rate against approximate methods for the stochastic setting.

D.3 HIGHLY STOCHASTIC SETTING

Another important setting to gauge the performance of our proposed algorithm is within the highly
stochastic setting. In addition to dealing with stochastic mini-batches, we extended the experiment
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to address ranking fairness. To do so, we leveraged the MSLR-WEB10K Dataset, which has over
470k pairwise constraints to satisfy.

We benchmarked our algorithm against Narasimhan et al. (2020). The results, as shown on Figure
7, demonstrate the effectiveness in finding more accurate classifier and the ability to better satisfy
constraints, even under a highly stochastic setting.

E EXPERIMENT DETAILS

The description of the datasets used in the experiments are presented in Table 1.

Dataset n d Label Sensitive Group
Adult (a9a) 48,842 123 Income Gender

Bank 41,188 54 Subscription Age
COMPAS 6,172 16 Recidivism Race

Communities and Crime 1,994 140 Crime Race
MSLR-WEB10K 1.2 M 136 Relevance Quality Score

Table 1: Real-world fairness datasets used in experiments

Hyper-parameters of PLADA used in experiments are presented in Table 2. Note that we only used
two hyper-parameter sets for 10 different problems, while our benchmark algorithms used different
hyper-parameters for every datasets, objectives and constraints.

Problem ηw ηu α β γ0
Models 5.1 and 5.2 0.001 0.1 10.0 0.1 0.1
Neural network 5.3 0.1 0.01 10.0 0.5 0.1

Table 2: Hyper-parameters of PLADA used in experiments

Finally, the intersectional groups of Section 5.3 are created with ten thresholds on three criteria: the
percentages of the Black, Hispanic and Asian populations. Among 1000 groups, 535 groups with
memberships of more than 1% of data points form 535 constraints.
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