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ABSTRACT

For multi-valued functions—such as when the conditional distribution on targets
given the inputs is multi-modal—standard regression approaches are not always
desirable because they provide the conditional mean. Modal regression approaches
aim to instead find the conditional mode, but are restricted to nonparametric
approaches. Such approaches can be difficult to scale, and make it difficult to
benefit from parametric function approximation, like neural networks, which can
learn complex relationships between inputs and targets. In this work, we propose
a parametric modal regression algorithm, by using the implicit function theorem
to develop an objective for learning a joint parameterized function over inputs
and targets. We empirically demonstrate on several synthetic problems that our
method (i) can learn multi-valued functions and produce the conditional modes, (ii)
scales well to high-dimensional inputs and (iii) is even more effective for certain
uni-modal problems, particularly for high frequency data where the joint function
over inputs and targets can better capture the complex relationship between them.
We conclude by showing that our method provides small improvements on two
regression datasets that have asymmetric distributions over the targets.

1 INTRODUCTION

The goal in regression is to find the relationship between the input (observation) variable X ∈ X
and the output (response) Y ∈ Y variable, given samples of (X,Y ). The underlying premise is
that there exists an unknown underlying function g∗ : X 7→ Y that maps the input space X to
the output space Y . We only observe a noise-contaminated value of that function: sample (x, y)
has y = g∗(x) + η for some noise η. If the goal is to minimize expected squared error, it is well
known that E[Y |x] is the optimal predictor (Bishop, 2006). It is common to use Generalized Linear
Models (Nelder & Wedderburn, 1972), which attempt to estimate E[Y |x] for different uni-modal
distribution choices for p(y|x), such as Gaussian (l2 regression) and Poisson (Poisson regression).
For multi-modal distributions, however, predicting E[Y |x] may not be desirable, as it may correspond
to rarely observed y that simply fall between two modes. Further, this predictor does not provide any
useful information about the multiple modes.

Modal regression is designed for this problem, and though not widely used in the general machine
learning community, has been actively studied in statistics. Most of the methods are non-parametric,
and assume a single mode jae Lee (1989); Lee & Kim (1998); Kemp & Silva (2012); Yu & Aristode-
mou (2012); Yao & Li (2014); Lv et al. (2014); Feng et al. (2017). The basic idea is to adjust target
values towards their closest empirical conditional modes, based on a kernel density estimator. These
methods rely on the chosen kernel and may have issues scaling to high-dimensional data due to issues
in computing similarities in high-dimensional spaces. There is some recent work using quantile
regression to estimate conditional modes (Ota et al., 2018), and though promising for a parametric
approach, is restricted to linear quantile regression.

A parametric approach for modal regression would enable these estimators to benefit from the
advances in learning functions with neural networks. The most straightforward way to do so is to
learn a mixture distribution, such as with conditional mixture models with parameters learning by a
neural network (Powell, 1987; Bishop, 1994; Williams, 1996; Husmeier, 1997; Husmeier & Taylor,
1998; Zen & Senior, 2014; Ellefsen et al., 2019). The conditional modes can typically be extracted
from such models. Such a strategy, however, might be trying to solve a harder problem than is strictly
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needed. The actual goal is to simply identify the conditional modes, without accurately representing
the full conditional distribution. Training procedures for the conditional distribution can be more
complex. Methods like EM can be slow (Vlassis & Krose, 1999) and some approaches have opted
to avoid this altogether by discretizing the target and learning a discrete distribution (Weigend &
Srivastava, 1995; Feindt, 2004). Further, the mixture requires particular probabilistic choices to be
made, including the number of components, which may not be correctly specified: they might be
more or less than the true number of conditional modes.

In this paper, we propose a new parametric modal regression approach, by developing an objective to
learn a parameterized function f(x, y) on both input feature and target/output. We use the Implicit
Function Theorem (Munkres, 1991), which states that if we know the input-output relation in the form
of an implicit function, then a general multi-valued function, under certain gradient conditions, can
locally be converted to a single-valued function. We learn a function f(x, y) that approximates such
local functions, by enforcing the gradient conditions. We empirically demonstrate that our method
can effectively learning the conditional modes on several synthetic problems, and that for those same
problems, scales well when the input is made high-dimensional. We also show an interesting benefit
that the joint representation learned over x and y appears to improve prediction performance even for
uni-modal problem, for high frequency functions where the function values changes quickly between
nearby x. Finally, we show that our method provides small improvements on two regression datasets
that have asymmetric distributions over the targets. The proposed approach to multi-valued prediction
is flexible, allowing for a variable number of conditional modes to be discovered for each x, and we
believe it is a promising direction for further improvements in parametric modal regression.

2 PROBLEM SETTING

We consider a standard learning setting where we observe a dataset of n samples, S = {(xi, yi)}ni=1.
Instead of the standard regression problem, however, we tackle the modal regression problem. The
goal in modal regression is to find the set of conditional modes

M(x) =

{
y :

∂p(x, y)

∂y
= 0,

∂2p(x, y)

∂y2
< 0

}
(1)

M(x) is in general a multi-valued function. Consider the example in Figure 1. There are two
conditional modes for a given x. For example, for x = 0, the two conditional modes are y1 = −1.0
and y2 = 1.0.

The standard approaches to find these conditional modes involve learning p(y|x) or to use non-
parametric methods directly estimate these conditional modes. For example, for a conditional
Gaussian Mixture Model, a relatively effective approximation of these modes are the means of the
conditional means. More generally, to get precise estimates, non-parametric algorithms are used, like
the mean-shift algorithm (Yizong Cheng, 1995). We refer readers to Chen (2018); Chen et al. (2014)
for a detailed nice review. These algorithms attempt to cluster points based on x and y, to find these
conditional modes.

Looking at the plot in Figure 1, however, a natural idea is to instead directly learn a parameterized
function f(x, y) that captures the relationship between x and y. Unfortunately, it is not obvious how
to do so, nor how to use f(x, y) to obtain the conditional modes. In the next section, we develop an
approach to learn a parameterized f(x, y) that can be used to extract conditional modes, by using the
implicit function theorem.

3 AN IMPLICIT FUNCTION LEARNING APPROACH

In this section, we develop an objective to facilitate learning parametric functions for modal regression
(for multi-valued prediction). The idea is to directly learn a parameterized function f(x, y), where
the set of minimum y for a function of f(x, y) corresponds to the conditional modes. The approach
allows for a variable number of conditional modes for each x. Further, it allows us to take advantage
of general parametric function approximators, like neural networks, to identify these modal manifolds
that capture a smooth relationship between the conditional modes and x.

Consider learning an f(x, y) such that f(x, y) = 0 for all conditional modes and non-zero otherwise.
For example, for the Circle problem, f(x, y) = x2 + y2 − 1 for all conditional modes y. Such a
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Figure 1: (a) shows a dataset generated by uniformly sampling x ∈ (−1, 1), conditioned which y is
sampled from 0.5N(

√
1− x2, 0.12)+0.5N(−

√
1− x2, 0.12). (b) shows the conditional distribution

when x = 0.

strategy—finding f(x, y) = 0 for all conditional modes—is flexible in that it allows for a different
number of conditional modes for each x. The difficulty with learning such an f , particularly under
noisy data, is constraining it to be zero for conditional modes yj and non-zero otherwise.

To obtain meaningful conditional modes y1, . . . , ymx for x, the y around each yj should be described
by the same mapping gj(x). The existence of such gj is guaranteed by the Implicit Function
Theorem (Munkres, 1991), under one condition on f .

Implicit Function Theorem: Let f : Rd × Rk 7→ Rk be a continuously differentiable function. Fix
a point (x, y) ∈ Rd × Rk such that f(x, y) = 0, for 0 ∈ Rk. If the Jacobian matrix J , where the
element in the ith row and jth column is J[ij] =

∂f(x,y)[i]
∂y[j] , is invertible, then there exists open sets

U ,V containing (x, y) such that there exists a unique continuously differentiable function g : U 7→ V
satisfying g(x) = y and F (x, g(x)) = 0.

The theorem states that if we know the relationship between independent variable x and dependent
variable y in the form of implicit function f(x, y) = 0, then under certain conditions, we can
guarantee the existence of some function defined locally to express y given x. For example, a
circle on two dimensional plane can be expressed as {(x, y)|x2 + y2 = 1}, but there is no definite
expression (single-valued function) for y in terms of x. However, given a specific point on the circle
(x0, y0) (other than y0), there exists an explicit function defined locally around (x0, y0) to express y
in terms of x. Notice that at y0 = 0, the condition required by the implicit function theorem is not
satisfied: ∂(x

2+y2−1)
∂y = 2y = 0 at y0 = 0, and so is not invertible.

Obtaining such smooth local functions g enables us to find these smooth modal manifolds. The
conditional modes g1, . . . , gmx satisfy f(x, gj(x)) = 0 and ∂f(x,gj(x))

∂y 6= 0. When training f , we
can attempt to satisfy both conditions to ensure existence of the gj . The gradient condition ensures
that for y locally around f(x, gj(x)), we have f(x, y) 6= 0. This encourages the other requirement
that f(x, y) be non-zero for the y that are not conditional modes. Notice, though, that this condition
is only local and may not encourage a minimal set of conditional modes. We can also add a negative
sampling component that encourages all y to by default have f(x, y)2 > 0. We find empirically,
however, that this addition is not necessary.We therefore pursue this simpler objective, which avoids
the complications of negative sampling.

Now we derive the full objective, under stochastic targets. To do so, we make some assumptions
on the noise around the conditional modes. In particular, we assume that the noise around each
conditional mode is Gaussian. More precisely, define

ε(X,Y )
def
= gj(X)− Y (2)
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for gj the conditional mode for Y . Our goal is to approximate ε(x, y) with parameterized function
fθ(x, y) for parameters θ. We assume

ε(X,Y ) ∼ N (µ = 0, σ2I) = (2πσ)−k/2 exp

(
−ε(X,Y )2

2σ2

)
(3)

We also assume that ∂ε(x,y)[i]∂y[j] = 0 for i 6= j: the conditional mode for dimension i is not influenced by

changes to the y in dimension j. Consequently, the implicit function condition becomes ∂ε(x,y[j])∂y[j] 6= 0,
to ensure invertibility. In fact, for this function, we have

∂ε(x, y)

∂y
=
∂gj(x)− y

∂y
= −1. (4)

Therefore, when learning f , we simply need to constrain ∂fθ(x,y)
∂y = −1 for all y. Putting this

together, our goal is to minimize the negative log likelihood of fθ, which approximates a zero-mean
Gaussian random variable, under this constraint which we encourage with a quadratic penalty term.
This gives the following objective, where the goal is to find argminθ L(θ):

L(θ)
def
=

n∑
i=1

fθ(xi, yi)
2 +

∥∥∥∥∂fθ(xi, yi)∂y
+ 1

∥∥∥∥2
2

(5)

The same objective is used when doing prediction, but now optimizing over y. Given x∗, we compute
a y∗ in the set argminy fθ(x

∗, y)2+(∂fθ(x
∗,y)

∂y +1)2. These y∗ should correspond to the conditional
modes, because the objective should be minimal for conditional modes. One option is to use gradient
descent to find these y∗. In all our experiments, we opted for the simple strategy of searching over
200 evenly spaced values in the range of y.

4 THE PROPERTIES OF IMPLICIT FUNCTION LEARNING

In this section, we conduct experiments to investigate the properties of our learning objective. First,
by using the Circle datasets, we show its utility for dealing with multimodal distribution, particularly
compared to modeling the entire distribution with mixture distributions. Second, inspired by the
first experiment, we show that our algorithm achieves superior performance when the underlying
true function is a high frequency function. We empirically show that this is because our algorithm
can better leverage the NN’s representation power than the l2 regression. Hence, even with regular
single-modal datasets, our algorithm could still be beneficial in some cases.

4.1 THE CIRCLE DATASETS

The purpose of this experiment is to study the properties of our algorithm for modal prediction
problems. Mixture Density Networks (MDN) (Bishop, 1994) are used as a baseline, to compare to
an approach that learns the distribution. For both algorithms, we use two hidden layer neural network
(16× 16 tanh units) and train by 128-mini-batch-size stochastic gradient descent. We optimize both
algorithms by sweeping learning rate from {0.1, 0.01, 0.001, 0.0001}. For the purpose of evaluating
prediction performance by testing error, we compute the root mean squared error (RMSE) for the
predicted value and the true value, and the true value is defined as the one closer to the predicted
value. For MDN to predict mode, given a point x, we search over 200 evenly spaced y values to
maximize the learned log likelihood. We refer readers to the Appendix B for a study of the sensitivity
of parameter in MDN.

We conduct two experiments on a single-circle (two modals) and a double-circle (four modals at most)
datasets respectively. On the latter, we further conduct a challenging experiment by projecting the
one dimensional feature value to 128 dimensional binary feature through tile coding1. We empirically
show that: 1) our algorithm (Implicit) achieves higher sample efficiency than MDN; 2) on both
datasets, our algorithm uses the same parameter settings, while MDN is quite sensitive to the number
of mixture components and has a larger variance across different random seeds; 3) our algorithm can
scale to high dimensional feature space and still maintain good performance.

1We refer readers to http://www.incompleteideas.net/tiles.html for more details about tile coding. It is a
frequently used feature generation method in reinforcement learning.
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Figure 2: (a)(b) shows learning curves on single-circle and double-circle datasets respectively. In the
single-circle problem, MDN uses 3 mixture components for learning; on the double-circle dataset
and the high dimensional variant, it uses 4 components to learn. All results are averaged over 30
random seeds and the shaded area indicates standard error.

Single-circle. The training set is acquired by uniformly sampling 40, 000 data points from a circle:
{(x, y)|x2 + y2 = 1}. Note that, since we add zero mean Gaussian noise with standard deviation
σ = 0.1 to targets, we can interpret the conditional probability distribution p(y|x) as a two-component
mixture Gaussian p(y|x) = 0.5N(y;

√
1− x2, σ2) + 0.5N(y;−

√
1− x2, σ2) as shown in Figure 1.

On this dataset, though there are only two modals, MDN does badly (i.e. the testing error is almost
outside of figure) with only two mixture components, hence we use three components for it. The
learning curves are shown in Figure 2. One can see that our algorithm learns much faster and is
more stable in term of the standard deviation across different random seeds. Figure 3(a)(b) show the
predictions outputted by our approach and MDN at the end of training (i.e. after 20000 updates).

Double-circle. On the double-circle dataset, the same number of training points are randomly
sampled from two circles (i.e. {(x, y)|x2 + y2 = 1}, {(x, y)|x2 + y2 = 4}) and with the same
Gaussian noise added to targets. This should be a challenging dataset where p(y|x) can be considered
as a piece-wise mixture of Gaussian: there are four components on x ∈ (−1, 1) and two components
on x ∈ (−2,−1) ∪ (1, 2). As a result, we set number of components as 4 for our competitor
MDN and keep all the parameter setting the same for our algorithm. It should be noted that, the
algorithm MDN learns much slower when moving from the two-components single-circle dataset to
the four-components double-circle datasets. Additionally, we find MDN requires more number of
components than the true distribution actually has to achieve superior performance. Similar to the
single-circle case, Figure 3(c)(d) show the predictions at the end of training, from which we can see
that the our algorithm does significantly better than the competitor.

High dimensional double circle. After using tile coding, we project the original one dimensional
x ∈ [−2, 2] to binary features φ(x) ∈ {0, 1}128. Then the projected features are used as input to the
neural networks. One can see that although both algorithms converge faster, MDN converges to a
worse solution than our algorithm does. To our best knowledge, this is the first time modal regression
is tested on such high dimensional dataset; most modal regression algorithms have been tested on
low-dimensional problems.

Verify the learned error distribution. On both datasets, we investigate the validity of the as-
sumption on the error distribution ε(X,Y ), by examining the empirical density of our learned error
function fθ(x, y) using all examples from training set. Figure 4 shows the error distribution on the
training set without noise (a) and with noise (b) added to the target variable. It is obvious that the
error function indeed looks Gaussian distributed and the one trained without noise (4(a)) shows an
extremely small variance.

4.2 ROBUSTNESS TO HIGH FREQUENCY DATA

The above circle example can be thought of as an extreme case where the underlying true function
has extremely high, or even unbounded frequency (i.e. when the input changes a little, there is a
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Figure 3: (a)(b) shows the predictions of both our algorithm and MDN on the single circle dataset.
(c)(d) show the predictions of the two algorithms on the double circle dataset.
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Figure 4: (a)(b) shows the empirical density of fθ(x, y) for (x, y)s in the training set S when the
algorithm is trained by not adding noise to target and adding noise (standard deviation σ = 0.1)
respectively.

sharp change for the true target). As a result, in this section, we provide a less extreme dataset and
show that our algorithm has advantage dealing with such problems.

We generate a synthetic dataset by uniformly sampling x ∈ [−2.5, 2.5] and using the below underlying
procedure to compute the targets:

y =

{
sin(8πx) + ξ x ∈ [−2.5, 0)
sin(0.5πx) + ξ x ∈ [0, 2.5]

(6)

where ξ is zero-mean Gaussian noise with variance σ2. This function has relatively high frequency
when x ∈ [−2.5, 0) and has a relatively low frequency when x ∈ [0, 2.5].

Significance of this artificial dataset. The dataset is designed to be difficult to learn, because
several existing works (Smale et al., 2004; Smale & Zhou, 2005; Jiang, 2019) indicate that the
bandwidth limit of the underlying true function strongly affects the sample efficiency of a learning
algorithm. Intuition about why high frequency functions (large bandwidth limit) are difficult to
learn can be gained from the Shannon sampling theorem, which characterizes the relation between
minimum sampling rate2 to perfectly recover a signal and the bandwidth limit of the signal (Zayed,
1993): the sampling rate should exceed twice of the maximum frequency of the signal to guarantee
perfect signal reconstruction.

Examining the learning behaviour. We use 16 × 16 hidden tanh units NN for our algorithm.
For the l2 regression, we use the same size NN and perform extensive parameter sweep to opti-
mize its performance: activation function type swept over tanh and relu, learning rate swept over
{0.1, 0.01, 0.001, 0.0001, 0.00001}. For both algorithms, we used a mini-batch size of 128. Note the
only difference between the two NNs is that Implicit has one more input unit, i.e. the target y.

2In signal processing, sampling refers to the reduction of a continuous-time signal to discrete time signal.
Sampling rate refers to number of samples per second.
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Figure 5: Figure (a)(b)(c) show performances of Implicit (red) and l2 regression L2 (black)
objective as we increase the Gaussian noise variance. We show the testing error measured by RMSE
on entire testing set (solid line), on high frequency region (i.e. x ∈ [−2.5, 0.0), dashed line) and on
low frequency region (x ∈ [0.0, 2.5], dotted line). The results are averaged over 30 random seeds.

Figure 5(a-c) shows the evaluation curve on testing set for the above two algorithms as the noise
variance increases. The learning curve is plotted by evaluating the testing error every 10k number of
iterations (i.e. mini-batch updates) averaged over 30 random seeds. We show the testing error on the
entire testing set, on high frequency area (x ≤ 0) and low frequency area (x ≥ 0) respectively. We
run into 1 million iterations to make sure each algorithm is sufficiently trained and both early and late
learning behaviour can be examined.

Notice that, trained without observation noise (i.e. ξ ≡ 0), our implicit function learning approach
achieves a much lower error (at the order of 10−2) than the l2 regression does (at the order of 10−1).
As noise increases, the targets likely become less informative and hence our algorithm’s performance
decreases to be closer to the l2 regression. Unsurprisingly, for both algorithms, the high frequency
area is much more difficult to learn and is a dominant source of the testing error. After sufficient
training, our algorithm can finally reduce the error of both the high and low frequency regions to a
similar level.

Examining the neural network representation. We further investigate the performance gain of
our algorithm by examining the learned NN representation. We plot the predictions in figure 6(a)
and the corresponding learned NN representation through heatmap in figure 6(b). In a trained NN,
we consider the output of the second hidden layer as the learned representation, and investigate its
property by computing pairwise distances measured by l2 norm between 161 different evenly spaced
points on the domain x ∈ [−2.5, 2.5]. That is, a point (x, x′) on the heatmap in figure 6(b) denotes
the corresponding distance measured by l2 norm between the NN representations of the two points
(hence the heatmap shows symmetric pattern w.r.t. the diagonal).

The representations provide some insight into why Implicit outperformed l2 regression. In figure 6(a),
the l2 regression fails to learn one part of the space around the interval [−2.25,−1.1]. This corre-
sponds to the black area in the left heatmap, implying that the l2 distance between NN representations
among those points are almost zero. Additionally, one can see that the heatmap of our approach
shows a clearly high resolution on the high frequency area and a low resolution on the low frequency
area, which coincides with our intuition for a good representation: in the high frequency region,
the target value would change a lot when x changes a little, so we expect those points to have finer
representations than those in low frequency region. This experiment shows that given the same NN
size, our algorithm is better able to leverage the representation power of the NN.

5 RESULTS ON STANDARD REGRESSION DATASETS

In this section, we show that our approach can still be effective even for two standard real world
datasets, with comparable performance to standard regression approaches. Our appendix B.1 includes
learning curves and all details for reproducing the experiments. We compare to l2 and Poisson
regression. For our algorithm, we use 64× 64 tanh units NN. For the l2 regression, we use the same
size NN but we consider hidden unit types as meta-parameter and we optimize them over tanh and
relu. We report both root mean squared error (RMSE) and mean absolute error (MAE) on training

7



Under review as a conference paper at ICLR 2020

2 1 0 1 2
1.0

0.5

0.0

0.5

1.0

L2
Implicit
True

(a) Approximate and true functions

2 1 0 1 2

2

1

0

1

2

2 1 0 1 2

2

1

0

1

2

0

1

2

3

4

5

6

7

(b) Distance heatmap: L2(left) and Implicit(right)

Figure 6: (a) Approximated functions and true function. (b) The distance matrix showed in heat map
computed by hidden layer representation learned by L2 (left) and Implicit (right) method.

Table 1: Prediction errors on bike sharing dataset. All numbers are multiplied by 102.

Algorithms Train RMSE Train MAE Test RMSE Test MAE

LinearReg 10094.40(±13.60) 7517.64(±19.95) 10129.40(±59.26) 7504.22(± 44.20)
LinearPoisson 8798.26(±14.58) 5920.99(±13.66) 8864.90(±66.07) 5935.00(± 38.32)
NNPoisson 1620.46(±47.71) 1071.39(±29.55) 4150.03(±77.76) 2616.49(± 20.45)
L2 708.12(±28.79) 550.14(±23.64) 3854.10(±39.33) 2560.83(± 18.30)
Implicit 880.90(±30.53) 691.10(±23.99) 3683.76(±57.12) 2426.52(± 23.81)

and testing set respectively. All of our results are averaged over 5 runs and at each run, the data is
randomly split into training and testing sets. Algorithms and datasets are as follows.

LinearReg. Linear regression, i.e., ordinary least square objective. The prediction is linear in term
of input features. We use this algorithm as a reference.
LinearPoisson. The mean of Poisson is parameterized by a linear function in term of input feature.
NNPoisson. The mean of Poisson is parameterized by a neural network (NN) (Fallah et al., 2009).

Bike sharing dataset. We use the bike sharing dataset Fanaee-T & Gama (2013) where the target
is Poisson distributed to show our algorithm’s generality. Our prediction task is to predict count of
rental bikes in a specific hour, given the information about weather, temperature, date, etc. We show
the training result in table 1 with standard errors. One can see that in the case of using linear function
approximator, LinearPoisson has clear advantage over LinearReg; however, in deep learning setting,
we found NNPoisson achieves a worse performance than the regular l2 regression. Our algorithm,
which does not make any assumptions on the conditional distribution p(y|x), achieves slightly better
performance.

Song year dataset. The song year dataset (Bertin-Mahieux et al., 2011) contains about half-million
instances. The task is to predict a song’s release year by using audio features of the song. The
dataset has a target distribution for which it is not obvious which generalized linear model we should
use. Hence we treat it as a regular regression dataset. One can see from Table 2 that our algorithm
can slightly outperform l2 regression, again potentially because we are not making distributional
assumptions on p(y|x).

Table 2: Prediction errors on song year dataset. All numbers are multiplied by 102.

Algorithms Train RMSE Train MAE Test RMSE Test MAE

LinearReg 956.40(±0.37) 681.56(±0.68) 957.56(±1.49) 681.66(±1.52)
L2 798.61(±1.44) 563.51(±0.65) 879.48(±1.74) 606.57(±1.95)
Implicit 822.53(±1.59) 582.11(±4.18) 869.62(±1.33) 600.73(±2.15)
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6 CONCLUSION AND DISCUSSION

The paper introduces a simple and powerful implicit function learning approach for modal regression.
We show that it can handle datasets where the conditional distribution p(y|x) is multimodal, and is
particularly useful when the underlying true mapping has a large bandwidth limit. We also illustrate
that our algorithm achieves competitive performance on large real world datasets with different
underlying target distributions. We would like to conclude with the following future directions.

First, it would be interesting to establish connections to KDE-based modal regression methods,
which have a nice theoretical interpretation (Feng et al., 2017). The connection may yield finite
sample analysis for our implicit function learning algorithm. Second, like many supervised learning
algorithms, our algorithm may also overfit to noise. Popular regularization technique such as random
dropout (Srivastava et al., 2014) may be tested for very noisy data. Third, in online learning setting,
the efficiency of doing prediction by argminy fθ(x, y)

2 + (∂fθ(x,y)∂y + 1)2 becomes a concern. One
possible solution is to borrow ideas from cross-entropy method as used in reinforcement learning (Lim
et al., 2018; Simmons-Edler et al., 2019). For example, we can use a separate NN to suggest a set
of initial values of y for searching optimums by gradient methods. Last, it is worth investigating
alternative constraints on the Jacobian instead of restricting the diagonal values to −1.
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A APPENDIX

The appendix includes additional experimental results, and all experimental details for reproducible
research.

B ADDITIONAL EXPERIMENTAL RESULTS

A classic inverse problem. One important type of applications of multi-value function prediction
is inverse problem. We now show additional results on a classical inverse function domain as used
in (Bishop, 1994). The learning dataset is composed as following.

x = y + 0.3 sin(2πy) + ξ, y ∈ [0, 1] (7)

where ξ is a random variable representing noise with uniform distribution U(−0.1, 0.1). We generate
80k training examples. In Figure 7, we plot the training dataset, and predictions by our implicit
function learning algorithm with (argminy fθ(x, y)

2 + (∂fθ(x,y)∂y + 1)2). We search over 200 evenly
spaced ys in [0, 1] for 200 evenly spaced x ∈ [0, 1] to get points in the form of (x, y)s.
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(a) Training data
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(b) Implicit

Figure 7: Figure (a) shows what the training data looks like. (b) shows the predictions of our implicit
learning approach.

Additional result of mixture density network. We now provide additional result of mixture
density network MND on the three multivalue prediction dataset:circle, double circle, and high
dimensional double circle. The learning curves are shown in Figure 8. For each component on each
training dataset, we choose stepsize from {0.1, 0.01, 0.001, 0.0001}.
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(a) single circle
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(b) double circle
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Figure 8: We show the learning curves of mixture density network with different number of
components. In (a) and (b), the learning curves of component 2 are out of figure. For each number of
component, we choose the learning curve by optimizing other parameter (i.e. stepsize). The results
are averaged over 30 random seeds.
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B.1 REPRODUCE EXPERIMENTS IN THE PAPER

In this section, we provide additional information about datasets we used and experimental details
for reproducing all results in this paper. Our implementation is based on Python 3.3.6. Our deep
learning implementation is based on Tensorflow 1.11.0 Abadi et al. (2015). All of our algorithms are
trained by Adam optimizer (Kingma & Ba, 2015) with mini-batch size 128 and all neural networks
are initialized by Xavier (Glorot & Bengio, 2010). For our implicit function learning algorithm, we
use tanh units for all nodes in neural network3 We search over 200 evenly spaced values for prediction
except on song year dataset where we use 100. Best parameter settings used to reproduce experiment
on each dataset are showed in figure 9. The best parameters are chosen according to the testing error
at the end of learning.

Algorithms & 
datasets

Bike sharing Song year frequency test, 
eq(6)

circle/double 
circle

inverse problem

L2 regression learning rate = 
0.0001, 64-by-64 
tanh units

learning rate = 
0.0001, 64-by-64 
tanh units

learning rate=0.01, 
16-by-16 tanh units 
NN

- learning rate = 
0.001, 128-by-128 
tanh units NN

Implicit learning rate = 
0.0001, 64-by-64 
tanh units

learning rate = 
0.0001, 64-by-64 
tanh units

learning rate = 
0.001,  16-by-16 
tanh units NN

learning rate = 
0.001, 128-by-128 
tanh units NN

learning rate = 
0.001, 128-by-128 
tanh units NN

LinearReg learning rate = 
0.0001

learning rate = 
0.0001

- - -

PoissonReg learning rate = 0.01 - - - -

NNPoisson learning rate = 
0.0001, 64-by-64 
tanh units, linear 
output unit

- - - -

-

0.01, 16-by-16 0.01, 16-by-16

-

Figure 9: Best parameter setting for reproducing experiments.

B.1.1 CIRCLE AND DOUBLE CIRCLE EXPERIMENT

Circle dataset is generated by uniformly sampling x ∈ [−1, 1] first and then y =
√
1− x2 or

y = −
√
1− x2 with equal probability. Double circle dataset is generated by uniformly sampling

an angle α ∈ [0, 2π] then use polar expression to compute x = r cosα, y = r sinα where r = 1.0
or r = 2.0 with equal probability. High dimensional double dataset is generated by mapping the
original x to {0, 1}128 dimensional space. We refer to http://www.incompleteideas.net/tiles.html for
tile coding software. The setting of tile coding we used to generate feature is: memory size = 128, 8
tiles and 4 tilings. We keep the neural network size the same as we used in low dimensional case, i.e.
16× 16 tanh units.

For mixture density network (MDN), we use tanh hidden layers and three mixture components on
single circle examples, four mixture components on double-circle example. We sweep over learning
rate from {0.1, 0.01, 0.001, 0.0001} and the best it chooses is 0.001 on the single circle dataset and
0.01 on the double circle dataset. The maximization is done by using MLE, the method described in
the original paper Bishop (1994).

B.1.2 HIGH FREQUENCY DATA EXPERIMENT

The dataset is generated by uniformly sampling x ∈ [−2.5, 2.5] and then compute targets according
to the equation 6:

y =

{
sin(8πx) x ∈ [−2.5, 0)
sin(0.5πx) x ∈ [0, 2.5]

3Rigorously, to satisfy the assumption that fθ(X,Y ) is Gaussian distributed, linear output unit should be
used. However, we observe large error rarely happens. In fact, in our case, it is easy to see that assuming the
distribution to be truncated Gaussian (then using tanh is justified) would yield the same optimization objective.
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Table 3: Prediction errors on song year dataset with author suggested train-test split. All numbers
are multiplied by 102. The randomness comes from neural network initialization and stochastic
mini-batch update.

Algorithms Train RMSE Train MAE Test RMSE Test MAE

LinearReg 956.43(±0.05) 680.66(±0.31) 952.22(±0.09) 681.22(±0.39)
L2 836.77(±0.47) 584.00(±1.22) 888.58(±0.65) 612.79(±0.67)
Implicit 857.48(±0.51) 593.04(±1.11) 886.03(±0.63) 610.52(±1.10)

We sweep over {0.1, 0.01, 0.001, 0.0001, 0.00001} to optimize stepsize for both the l2 regression
and our algorithm, while we additionally sweep over hidden unit and output unit type for the l2
regression from {tanh, relu}. The best parameter is chosen according to the testing error at the end of
training, and the testing error is averaged over 30 runs and at each run, the data is randomly split into
training and testing sets. Since the best learning rate chosen chosen by the l2 regression is 0.01 while
our algorithm chooses 0.001, in figure 10, we also plot the learning curve with learning rate 0.001 to
make sure that the performance difference is not due to a slower learning rate of our algorithm.
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(a) l2 with learning rate 0.01
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Figure 10: In (a) we repeat the figure shown in previous

B.1.3 EXPERIMENTS ON REAL WORLD DATASETS

The bike sharing dataset (Fanaee-T & Gama, 2013) (https://archive.ics.uci.edu/ml/datasets/bike+
sharing+dataset) and song year dataset Bertin-Mahieux et al. (2011) (https://archive.ics.uci.edu/ml/
datasets/yearpredictionmsd) information are presented in figure 11. Note that the two datasets have
very different target distributions as shown in figure 12. On the two dataset, we use 64 × 64 tanh
hidden units and sweep over learning rate from {0.01, 0.001, 0.0001}. For the l2 regression, we
found that using tanh unit works better than relu.

Notice that the contributor of song year dataset suggests using the last 51630 as testing set (Bertin-
Mahieux et al., 2011), hence we also report this additional result in table 3. The performance is
actually quite similar to that by random split.
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Dataset and preprocessing information

Number of 
instances

Train size Test size Input feature 
dimension after 
preprocessing

Input feature 
preprocess

Target 
preprocess

Bike sharing 17379 13903 3476 114 remove attributes: 
date, index, year, 
weather situation 
4 and weekday 7; 
registered, casual; 
use one-hot 
encoding for all 
categorical 
variables

Scale to [0, 1] 
except for poisson 
regression 
algorithms; scaled 
back when 
compute test error

Song Year 515345 412276 or 463715 103069 or 51630 90 standardize to 
zero-mean unit 
variance; statistics 
acquired by using 
training set

Scale to [0, 1]; 
scaled back when 
compute test error

Figure 11: Data preprocessing information.
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(a) Bike sharing dataset target distribution
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Figure 12: Bike sharing targets show a clear Poisson distribution while song year dataset’s target
distribution is not intuitive.
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