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Wasserstein is all you need

Anonymous EMNLP submission

Abstract

We propose a unified framework for building
unsupervised representations of individual ob-
jects or entities (and their compositions), by
associating with each object both a distribu-
tional as well as a point estimate (vector em-
bedding). This is made possible by the use
of optimal transport, which allows us to build
these associated estimates while harnessing
the underlying geometry of the ground space.
Our method gives a novel perspective for build-
ing rich and powerful feature representations
that simultaneously capture uncertainty (via
a distributional estimate) and interpretability
(with the optimal transport map). As a guid-
ing example, we formulate unsupervised rep-
resentations for text, in particular for sentence
representation and entailment detection. Em-
pirical results show strong advantages gained
through the proposed framework. This ap-
proach can be used for any unsupervised or
supervised problem (on text or other modali-
ties) with a co-occurrence structure, such as
any sequence data. The key tools underlying
the framework are Wasserstein distances and
Wasserstein barycenters1.

1 Introduction

One of the main driving factors behind the recent
surge of interest and successes in natural language
processing and machine learning has been the de-
velopment of better representation methods for data
modalities. Examples include continuous vector
representations for language (Mikolov et al., 2013;
Pennington et al., 2014), convolutional neural net-
work (CNN) based text representations (Kim, 2014;
Kalchbrenner et al., 2014; Severyn and Moschitti,
2015; Deriu et al., 2017), or via other neural ar-
chitectures such as RNNs, LSTMs (Hochreiter
and Schmidhuber, 1997; Collobert and Weston,

1And, hence the title!

2008), all sharing one core idea – to map input
entities to dense vector embeddings lying in a low-
dimensional latent space where the semantics of
the inputs are preserved.

While existing methods represent each entity of
interest (e.g., a word) as a single point in space
(e.g., its embedding vector), we here propose a
fundamentally different approach. We represent
each entity based on the histogram of contexts (co-
occurring with it), with the contexts themselves
being points in a suitable metric space. This al-
lows us to cast the distance between histograms
associated with the entities as an instance of the
optimal transport problem (Monge, 1781; Kan-
torovich, 1942; Villani, 2008). For example, in
the case of words as entities, the resulting frame-
work then intuitively seeks to minimize the cost of
moving the set of contexts of a given word to the
contexts of another. Note that the contexts here can
be words, phrases, sentences, or general entities co-
occurring with our objects to be represented, and
these objects further could be any type of events
extracted from sequence data, including e.g., prod-
ucts such as movies or web-advertisements (Gr-
bovic et al., 2015), nodes in a graph (Grover and
Leskovec, 2016), or other entities (Wu et al., 2017).
Any co-occurrence structure will allow the con-
struction of the histogram information, which is
the crucial building block for our approach.

A strong motivation for our proposed approach
here comes from the domain of natural language,
where the entities (words, phrases or sentences)
generally have multiple semantics under which
they are present. Hence, it is important that we
consider representations that are able to effectively
capture such inherent uncertainty and polysemy,
and we will argue that histograms (or probability
distributions) over embeddings allows to capture
more of this information compared to point-wise
embeddings alone. We will call the histogram as
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the distributional estimate of our object of inter-
est, while we refer to the individual embeddings of
single contexts as point estimates.

Next, for the sake of clarity, we discuss the
framework in the concrete use-case of text repre-
sentations, when the contexts are just words, by
employing the well-known Positive Pointwise Mu-
tual Information (PPMI) matrix to compute the
histogram information for each word.

With the power of optimal transport, we show
how this framework can be of significant use for a
wide variety of important tasks in NLP, including
word and sentence representations as well as hy-
pernymy (entailment) detection, and can be readily
employed on top of existing pre-trained embed-
dings for the contexts. The connection to optimal
transport at the level of words and contexts paves
the way to make better use of its vast toolkit (like
Wasserstein distances, barycenters, etc.) for ap-
plications in NLP, which in the past has primarily
been restricted to document distances (Kusner et al.,
2015; Huang et al., 2016).

We demonstrate that building the required his-
tograms comes at almost no additional cost, as
the co-occurrence counts are obtained in a single
pass over the corpus. Thanks to the entropic reg-
ularization introduced by Cuturi (2013), Optimal
Transport distances can be computed efficiently in
a parallel and batched manner on GPUs. Lastly,
the obtained transport map (Figure 1) also provides
for interpretability of the suggested framework.

2 Related Work

Most of the previous work in building represen-
tations for natural language has been focused to-
wards vector space models, in particular, pop-
ularized through the groundbreaking work in
Word2vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014). The key idea in these models
has been to map words which are similar in mean-
ing to nearby points in a latent space. Based on
which, many works (Levy and Goldberg, 2014a;
Melamud et al., 2015; Bojanowski et al., 2016)
have suggested specializing the embeddings to cap-
ture some particular information required for the
task at hand. One of the problems that still per-
sists is the inability to capture, within just a point
embedding, the various semantics and uncertain-
ties associated with the occurrence of a particular
word (Huang et al., 2012; Guo et al., 2014).

A recent line of work has proposed the view

to represent words with Gaussian distributions or
mixtures of Gaussian distributions (Vilnis and Mc-
Callum, 2014b; Athiwaratkun and Wilson, 2017),
or hyperbolic cones (Ganea et al., 2018) for this
purpose. Also, a concurrent work from Muzellec
and Cuturi (2018) has suggested using elliptical
distributions endowed with a Wasserstein metric.
While these already provide richer information than
typical vector embeddings, their form restricts what
could be gained by allowing for arbitrary distribu-
tions. In addition, hyperbolic embeddings (Nickel
and Kiela, 2017; Ganea et al., 2018) are so far
restricted to supervised tasks (and even elliptical
embeddings (Muzellec and Cuturi, 2018) to a most
extent), not allowing unsupervised representation
learning as in the focus of the paper here. To this
end, we propose to associate with each word a
distributional and a point estimate. These two esti-
mates together play an important role and enable
us to make use of optimal transport.

Amongst the few explorations of optimal trans-
port in NLP, i.e., document distances (Kusner
et al., 2015; Huang et al., 2016), document clus-
tering (Ye et al., 2017), bilingual lexicon induc-
tion (Zhang et al., 2017), or learning an orthogonal
Procrustes mapping in Wasserstein distance (Grave
et al., 2018), the focus has been on transporting
words directly. For example, the Word Mover’s
Distance (Kusner et al., 2015) casts finding the dis-
tance between documents as an optimal transport
problem between their bag of words representation.
Our approach is different as we consider the trans-
port over contexts instead, and use it to propose
a representation for words. This enables us to es-
tablish any kind of distance (even asymmetric) be-
tween words by defining a suitable underlying cost
on the movement of contexts, as we show for the
case of entailment. Another benefit of defining this
transport over contexts is the added flexibility to ex-
tend the representation for sentences (or arbitrary
length text) by utilizing the idea of Wasserstein
barycenters, which to the best of our knowledge
has never been considered in the past.

Lastly, the proposed framework is not specific
to words or sentences but holds for building unsu-
pervised representations for any entity and compo-
sition of entities, where a co-occurrence structure
can be devised between entites and their contexts.
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3 Background on Optimal Transport

Optimal Transport (OT) provides a way to compare
two probability distributions defined over a space G,
given an underlying distance on this space (or more
generally a cost of moving one point to another).
In other terms, it lifts distance between points to
distance between distributions. Below, we give a
short yet formal background description on optimal
transport for the discrete case.

Let’s consider an empirical probability mea-
sure of the form µ =

∑n
i=1 aiδ(xi) where

X = (x1, . . . , xn) ∈ Gn, δ(x) denotes the Dirac
(unit mass) distribution at point x ∈ G, and
(a1, . . . , an) lives in the probability simplex Σn :={
p ∈ Rn+ |

∑n
i=1 pi = 1

}
.

Now consider a second empirical measure, ν =∑m
j=1 bjδ(yj), with Y = (y1, . . . , ym) ∈ Gm, and

(b1, . . . , bm) ∈ Σm. If the ground cost of moving
from point xi to yj is denoted by Mij , then the
Optimal Transport distance between µ and ν is the
solution to the following linear program.

OT(µ, ν;M) := min
T∈Rn×m+

∑
ij

TijMij

such that ∀i,
∑
j

Tij = ai, ∀j,
∑
i

Tij = bj .

Here, the optimal T ∈ Rn×m is referred to as
the transportation matrix: Tij denotes the optimal
amount of mass to move from point xi to point yi.
Intuitively, OT is concerned with the problem of
moving goods from factories to shops in such a way
that all the demands are satisfied and the overall
transportation cost is minimal.

When G = Rd and the cost is defined with
respect to a metric DG over G (i.e., Mij =
DG(xi, yj)

p for any i, j), OT defines a distance
between empirical probability distributions. This is
the p-Wasserstein distance, defined asWp(µ, ν) :=
OT(µ, ν;Dp

G)1/p. In most cases, we are only con-
cerned with the case where p = 1 or 2.

The cost of exactly solving OT problem scales
at least in O(n3 log(n)) (n being the cardinality
of the support of the empirical measure) when
using network simplex or interior point methods.
Following Cuturi (2013) we consider the entropy
regularized Wasserstein distance, W λ

p (µ, ν). The
above problem can then be solved efficiently using
Sinkhorn iterations, albeit at the cost of some ap-
proximation error. The regularization strength λ ≥
0 controls the accuracy of approximation and re-
covers the true OT for λ = 0. The cost of the

Sinkhorn algorithm is only quadratic in n at each
iteration.

Further on in our discussion, we will make use
of the notion of averaging in the Wasserstein space.
More precisely the Wasserstein barycenter, intro-
duced by Agueh and Carlier (2011), is a probability
measure that minimizes the sum of (p-th power)
Wasserstein distances to the given measures. For-
mally, given N measures {ν1, . . . , νN} with cor-
responding weights η = {η1, . . . , ηN} ∈ ΣN , the
Wasserstein barycenter can be written as follows:

Bp(ν1, . . . , νN ) = arg min
µ

N∑
i=1

ηiWp(µ, νi)
p.

(2)
We similarly consider the regularized barycen-

ter Bλ
p , using entropy regularized Wasserstein dis-

tances W λ
p in the above minimization problem, fol-

lowing Cuturi and Doucet (2014). Employing the
method of iterative Bregman projections (Benamou
et al., 2015), we obtain an approximation of the so-
lution at a reasonable computational cost.

4 Methodology

In this section, we elaborate on both the distribu-
tional and the point estimate that we attach to each
word, as mentioned in the introduction. A common
method in NLP to empirically estimate the proba-
bility p(w|c) of occurrence of a word w in some
context c, is to compute the number of times the
word w co-occurs with context c relative to the to-
tal number of times context c appears in the corpus.
The context c could be a particular word, phrase,
sentence or other definitions of co-occurrence of
interest.

Distributional Estimate. For a word w, its dis-
tributional estimate is built from a histogram over
the set of contexts C, and an embedding of these
contexts into a space G.

A natural way to build this histogram is to main-
tain a co-occurrence matrix between words in our
vocabulary and all possible contexts, such that its
each entry indicates how often a word and context
occur in an interval (or window) of a fixed size L.
Then, the bin values ((Hw)c)c∈C of the histogram
(Hw) for a word w, can be viewed as the row cor-
responding to w in this co-occurrence matrix. In
Section 5, we discuss how to reduce the number of
bins in the histogram, and possible modifications of
the co-occurrence matrix to improve associations.
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The simplest embedding of contexts is into the
space of one-hot vectors of all the possible con-
texts. However, this induces a lot of redundancy
in the representation and the distance between con-
texts does not reflect their semantics. A classi-
cal solution would be to instead find a dense low-
dimensional embedding of contexts that captures
the semantics, possibly using techniques such as
SVD or deep neural networks. We denote by
V = (vc)c∈C an embedding of the contexts into
this low-dimensional space G ⊂ Rd, which we
refer to as the ground space. (We will consider pro-
totypical cases of how this metric can be obtained
in Sections 6 and 7.)

Combining the histogram Hw and the embed-
ding V , we represent the word w by the following
empirical distribution:

PwV :=
∑
c ∈C

(Hw)c δ(vc). (3)

Recall that δ(vc) denotes the Dirac measure at
the position vc of the context c. We refer to this rep-
resentation (Eq. (3)) as the distributional estimate
of the word.

Together with its distributional estimate, the
word w also has an associated point estimate vw
when it occurs in the sense of a context, in the form
of its position (or embedding) in the ground space.
This is what we mean by attaching the distribu-
tional and point estimate to each word.

Distance. If we equip the ground space G with a
meaningful metric DG , then we can subsequently
define a distance between the representations of
two words wi and wj , as the solution to the follow-
ing optimal transport problem:

OT(PwiV ,P
wj
V ;Dp

G) 'W λ
p (PwiV ,P

wj
V )p. (4)

Intuitively, two words are similar in meaning if
the contexts of one word can be easily or cheaply
transported to the contexts of the other word, with
this ease of transportation being measured by DG .
This idea still remains in line with the distributional
hypothesis (Harris, 1954; Rubenstein and Goode-
nough, 1965) that words in similar contexts have
similar meanings, but provides a unique way to
quantify it.

Interpretation. In fact, both of these estimates
are closely tied together and required to serve as an
effective representation. For instance, if we only
have the distributional estimates, then we may have

man

poaching

giraffe

ivory

en
d
an

ge
re

d

sk
in
s
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ec

ie
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ss
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El
ep

h
an

t

Mammal

Figure 1: Illustration of the optimal transport between
the histograms of elephant and mammal. Here, we pick
four contexts at random from a list of top 20 contexts
(in terms of PPMI) for the two histograms. Then using
the regularized Wasserstein distance (as in Eq. (4)), we
plot the obtained transportation matrix (or commonly
called transport map) T as above. Note how ‘ivory’
adjusts its movement towards ‘skin’ (as in skin color)
to allow ‘poaching’ to be easily moved to ‘endangered‘
as going to other contexts of ‘mammal’ is costly for
‘poaching‘, thus capturing a global perspective.

two words such as ‘tennis’ and ‘football’ which oc-
cur in the contexts of {court, penalty, judge} and
{stadium, foul, referee} respectively. While these
contexts are mutually disjoint, they are quite close
in meaning. Now there could be a third word such
as ‘law’ which occurs in the exact same contexts as
tennis. So considering the distributional estimate
alone, without making use of the point estimates of
context, would lead us to have a smaller distance
between tennis and law as compared to tennis and
football. Whereas, if we only considered the point
estimates, then we would lose much of the uncer-
tainty associated about the contexts in which they
occur, except for maybe the restricted information
of neighboring points in the ground space. This is
made clear in a related illustration shown in Fig-
ure 2.

The family of problems where such a representa-
tion can be used is not restricted to entities pertain-
ing to NLP: the framework can be similarly used in
any domain where a co-occurrence structure exists
between entities and their contexts. For instance,
in the case of movie recommendation where users
correspond to the entities and movies to the con-
texts. Lastly, this connection with optimal transport
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Figure 2: Illustration of three words, each with their distributional estimates (left), as well as the point estimates
of the relevant contexts (middle), as well as joint representation (right).

allows us to utilize its rich theoretical and algorith-
mic toolkit towards important problems in NLP. In
the next section, we discuss a concrete framework
of how this can be applied and in Section 6 and 7,
we detail how the tasks of sentence representation
and hypernymy detection can be effectively carried
out with this framework.

5 Concrete Framework

For the sake of brevity, we present the framework
for the case where contexts consist of single words.

Making associations better. Let’s say that a
word is considered to be a context word if it ap-
pears in a symmetric window of size L around
the target word (the word whose distributional es-
timate we seek). Now, the co-occurrence matrix
is between the words of our vocabulary, with rows
and columns indicating target words and context
words respectively. While each entry of this matrix
reflects the co-occurrence count, it may not sug-
gest a strong association between the target and its
context. For instance, in the sentence “She prefers
her coffee to be brewed fast than being perfect”,
there is a stronger association between ‘coffee’ and
‘brewed’ rather than between ‘coffee’ and ‘her’,
although the co-occurrence counts alone might im-
ply the opposite. Hence, to handle this we consider
the well-known Positive Pointwise Mutual Infor-
mation (PPMI) matrix (Church and Hanks, 1990;
Levy et al., 2015), whose entries are as follows:

PPMI(w, c) := max

(
log

(
p(w, c)

p(w)× p(c)

)
, 0

)
.

The PPMI entries are non-zero when the joint
probability of the target and context words co-
occurring together is higher than the probability
when they are independent. Typically, these proba-
bilities are estimated from the co-occurrence counts

#(w, c) in the corpus and lead to

PPMI(w, c) = max

(
log

(
#(w, c)× |Z|
#(w)×#(c)

)
, 0

)
,

where, #(w) =
∑

c #(w, c), #(c) =∑
w #(w, c) and |Z| =

∑
w

∑
c #(w, c). Also,

it is known that PPMI is biased towards infrequent
words and assigns them a higher value. A common
solution is to smoothen2 the context probabilities
by raising them to an exponent of α lying between
0 and 1. Levy and Goldberg (2014b) have also
suggested the use of the shifted PPMI (SPPMI)
matrix where the shift3 by log(s) acts like a prior
on the probability of co-occurrence of target and
context pairs. These variants of PPMI enable us
to extract better semantic associations from the co-
occurrence matrix. Finally, we define

SPPMIαs (w, c)

:=max

(
log

(
#(w, c)×

∑
c′ #(c′)α

#(w)×#(c)α

)
−log(s), 0

)
.

Hence, the bin values for our histogram in Eq. (3)
are formed as:

(Hw)c :=
SPPMIαs (w, c)∑
c ∈C SPPMIαs (w, c)

. (5)

Computational considerations. The view of op-
timal transport between histograms of contexts in-
troduced in Eq. (4) offers a pleasing interpreta-
tion (see Figure 1). However, it might still be a
computationally intractable in its current formula-
tion. Indeed the number of possible contexts can
be as large as the size of vocabulary (if the con-
texts are just single words) or even exponential (if

2pα(c) := #(c)α∑
c′ #(c′)α .

3Here, we denote the shift parameter by s instead of the
k defined in (Levy et al., 2015) to avoid confusion with the
other usage of k.
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contexts are considered to be phrases, sentences
and otherwise). For instance, even with the use
of SPPMI matrix, which also helps to sparsify the
co-occurrences, the cardinality of the support the
word histograms still varies from 103 to 5 × 104

context words, when considering a vocabulary of
size around 2× 105.

This is a problem because the Sinkhorn algo-
rithm for regularized optimal transport (Cuturi,
2013) (Section 3), scales roughly quadratically in
the histogram size and the ground cost matrix can
also become prohibitive to store in memory, for the
range of histogram sizes mentioned. One possible
fix is to instead consider a few representative con-
texts in this ground space. The hope is that with the
dense low-dimensional embeddings and a mean-
ingful metric between them, we may not require
as many contexts as needed before. For instance,
this can be achieved by clustering the contexts with
respect to metric DG . Besides the computational
gain, the clustering will lead us to consider this
transport between more abstract contexts. This will
although come at the loss of some interpretability.
Another alternative for dealing with this computa-
tional issue could be to consider stochastic optimal
transport techniques (Genevay et al., 2016), where
the intuition would be to randomly sample a subset
of contexts while considering this transport. But
we leave that direction for a future work.

Now, consider that we have obtained K con-
texts, each representing some part Ck of the set
of contexts C. The histogram for word w with
respect to these contexts can then be written as
P̃w
Ṽ

=
∑K

k=1(H̃
w)k δ(ṽk). Here ṽk ∈ Ṽ denotes

the point estimate of the kth representative context,
and (H̃w)k are the new bin values for the histogram
similar to that in Eq. (5), but with respect to these
parts,

(H̃w)k :=
SPPMIαs (w, Ck)∑K
k=1 SPPMIαs (w, Ck)

,with

SPPMIαs (w, Ck) :=
∑
c∈Ck

SPPMIαs (w, c).

Furthermore, in certain cases4, it can be impor-
tant to measure the relative portion of Ck’s SPPMI
(Eq. (7)) that has been used towards a word w. Oth-
erwise the process of making the histogram unit
sum in Eq. (6) will misrepresent the actual under-
lying contribution (check Eq. (10) in Appendix A

4when the SPPMI contributions towards the partitions (or
clusters) have a large variance.

for more details):

(H̃w)k :=
(H̄w)k∑K
k=1 (H̄w)k

with (6)

(H̄w)k :=
SPPMIαs (w, Ck)∑
w SPPMIαs (w, Ck)

. (7)

Summary. While we detailed the case of con-
text as single words, this framework can be ex-
tended in a similar manner to take into account
other contexts such as bi-grams, tri-grams, n-grams
or other abstract semantic concepts. Building this
suggested representation comes at almost free cost
during the typical learning of point-estimates for
an NLP task, as the co-occurrence counts can sim-
ply be maintained while going through the corpus.
GloVe (Pennington et al., 2014) even constructs the
co-occurrence matrix explicitly as a precursor to
learning the point-estimates.

6 Sentence Representation

Traditionally, the goal of this task is to develop
a representation for sentences, that captures the
semantics conveyed by it. Most unsupervised
representations proposed in the past rely on the
composition of vector embeddings for the words,
through either additive, multiplicative, or other
ways (Mitchell and Lapata, 2008; Arora et al.,
2017; Pagliardini et al., 2017). We propose to repre-
sent sentences as probability distributions to better
capture the inherent uncertainty and polysemy.

Our belief is that the meaning of a sentence can
be understood as a concept that best explains the
simultaneous occurrence of the words in it. We hy-
pothesize that a sentence, S = (w1, w2, . . . , wN ),
can be efficiently represented via the Wasserstein
barycenter (see Eq. (2)) of distributional estimates
of the words in the sentence, i.e.,

P̃S := Bλ
p

(
P̃w1
V , P̃w2

V , . . . , P̃wNV
)
, (8)

which is itself again a distribution over G.
Yet another interesting property is the non-

associativity5 of the barycenter operation. This
can be utilized to take into account the order of
the words in a sentence. For now, we restrict our
focus on exploring how well barycenters of words
taken all at once can represent sentences and this
direction is left for future work.

Interestingly, the classical weighted averaging of
point-estimates (Arora et al., 2017) can be seen as

5Bp(µ,Bp(ν, ξ)) 6= Bp(Bp(µ, ν), ξ).
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Dataset

Model STS12 STS13 STS14 STS15 STS16

BOW 22.1 18.8 27.2 29.1 21.4
SIF (with no PC removed) 32.9 21.4 33.4 37.8 22.7
SIF (with 1st PC removed) 34.4 43.0 45.2 48.1 41.2

WB (K=250) 43.3 35.3 45.2 45.0 42.0
WB (K=300) 44.3 35.6 45.7 46.4 43.2

Table 1: Performance on the STS tasks using K=250 and K=300 clusters (Avg. Pearson correlation x 100).

a special case of Wasserstein barycenter, when the
distribution associated to a word is just a Dirac at
its point estimate. It becomes apparent that having
a rich distributional estimate for a word can be
advantageous.

Evaluation. To validate Wasserstein Barycenters
(WB) as effective sentence representations, we con-
sider the task of Semantic Textual Similarity (STS)
(Agirre et al., 2012, 2013, 2014, 2015, 2016). The
objective here is to predict how similar or dissimi-
lar are two sentences in their meanings. Since with
barycenter representation as in Eq. (8), each sen-
tence is also a histogram of contexts, we can again
make use of optimal transport to define the distance
between two sentences S1 and S2,

OT(P̃S1
V , P̃

S2
V ;Dp

G) 'W λ
p (P̃S1

V , P̃
S2
V )p.

As a ground metric, we consider the Euclidean
distance between the point estimates of words.
This point estimate for a word is its embedding
in the context space and can be obtained with
the help of Word2vec (Mikolov et al., 2013) or
GloVe (Pennington et al., 2014). For, this task we
train the word embeddings on the Toronto Book
Corpus (Kiros et al., 2015) via GloVe and in the
process also gain the distributional estimates of
words for free. Since the word embeddings in these
methods are constructed so that similar meaning
words are close in cosine similarity, we find the
representative points by performing K-means clus-
tering with respect to this similarity.

We benchmark our performance against SIF
(Smooth Inverse Frequency) method from Arora
et al. (2017) who regard it as a “simple but tough-
to-beat baseline”, as well as against the common
Bag of Words (BoW) averaging. For this experi-
ment, we use SIF’s publicly available implemen-
tation6 and perform the evaluation using SentEval

6https://github.com/PrincetonML/SIF

(Conneau and Kiela, 2018). Table 1 shows that we
always beat BoW and SIF with weighted averaging
on all tasks. Further, we perform better than the
best variant of SIF (which in addition removes the
1st principal component) on 3 out of 5 tasks. Also,
on the other two tasks we still perform competi-
tively and achieve an overall gain over their best
variant with K = 300 clusters (refer to Table 5 in
Appendix A for detailed results). Note that, the hy-
perparameters for SIF are taken to be the best ones
separately for each task. Whereas we used the same
set of hyperparameters for all the above tasks and
the PPMI specific hyperparameters haven’t been
tuned much, but this should not give us an edge
over them.

In our comparison, we do not include methods
such as Sent2vec (Pagliardini et al., 2017), as they
are specifically trained to work well on the given
task of sentence representation, and such an ap-
proach for training remains outside the scope of cur-
rent work. Our approach for representing barycen-
ters does not require any additional training and is
still able to match and outperform strong baselines
for the task of semantic similarity. This highlights
the efficacy of proposed representation.

7 Hypernymy Detection

In linguistics, hypernymy is a relation between
words (or sentences) where the semantics of one
word (the hyponym) are contained within that of an-
other word (the hypernym). A simple form of this
relation is the is-a relation, e.g., cat is an animal.
Hypernymy is a special case of the more general
concept of lexical entailment which may be broadly
defined as any semantic relations between two lexi-
cal items where the meaning of one is implied by
the meaning of the other. Detecting lexical entail-
ment relations is relevant for numerous tasks in
NLP. Given a database of lexical entailment rela-
tions, e.g., containing Roger Federer is a tennis
player might help a question answering system an-

https://github.com/PrincetonML/SIF
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Dataset

Method BLESS EVALution LenciBenotto Weeds Henderson Baroni

Henderson. et. al 6.4 31.6 44.8 60.8 70.5 78.3
WE (α=0.15, s=15) 7.0 39.8 48.5 64.7 75.0 65.6

WE (α=0.5, s=15) 5.5 40.5 49.5 66.2 72.8 67.4

Table 2: Comparison between entailment vectors and optimal transport / Wasserstein based entailment measure
(WE). The scores are AP@all (%). The hyperparameter α refers to the smoothing exponent and s to the shift in
the PPMI computation. More datasets are presented in Table 4 in the Appendix A.

Dataset

Method EVALution LenciBenotto Weeds Turney Baroni

GE + C 26.7 43.3 52.0 53.9 69.7
GE + KL 29.6 45.1 51.3 52.0 64.6

DIVE + C·∆S 33.0 50.4 65.5 57.2 83.5
Henderson. et. al 31.6 44.8 60.8 56.6 78.3

WE (α=0.15, s=15) 39.8 48.5 64.7 57.3 65.5
WE (α=0.5, s=15) 40.5 49.5 66.2 56.1 67.4

Table 3: Comparison between entailment vectors, optimal transport / Wasserstein based entailment measure (WE)
and other state-of-the-art methods. GE+C and GE+KL are Gaussian embeddings with cosine similarity and nega-
tive KL-divergence. The scores for GE+C, GE+KL, and DIVE + C·∆S are taken from (Chang et al., 2017) as we
use the same evaluation setup. The scores are again AP@all (%).

swering the question “Who is Switzerland’s most
successful tennis player?”.

First distributional approaches to detect hy-
ponymy were unsupervised and exploited differ-
ent linguistic properties of hypernymy (Weeds and
Weir, 2003; Kotlerman et al., 2010; Santus et al.,
2014; Rimell, 2014). While most of these methods
are count-based, word embedding based methods
(Chang et al., 2017; Nickel and Kiela, 2017; Hen-
derson and Popa, 2016) have become more popular
in recent years. Other approaches represent words
by Gaussian distributions and use KL-divergence
as a measure of entailment (Vilnis and McCallum,
2014a; Athiwaratkun and Wilson, 2017). Espe-
cially for tasks like hypernymy detection, these
methods have proven to be powerful as they not
only capture the semantics but also the uncertainty
about various concepts in which the word appears.

Using the framework presented in Section 4, we
define a measure of entailment as the optimal trans-
port cost (see Eq. (4)) between associated distribu-
tions under a suitable ground cost.

For this purpose, we rely on a model that was
recently proposed by (Henderson and Popa, 2016;
Henderson, 2017) which explicitly models what
information is known about a word by interpret-

ing each entry of the embedding as the degree
to which a certain feature is present. Based on
the logical definition of entailment they derive an
approximate inference procedure and an operator
measuring the degree of entailment between two
so-called entailment vectors defined as follows:
~vy=~vx = σ(−~vy) · log σ(−~vx), where the sigmoid
function σ and log are applied component-wise on
the embeddings ~vy, ~vx. Thus, our choice for the
ground cost D on the basis of this entailment oper-
ator is

DHend.
ij := −~vi = ~vj . (9)

This asymmetric and not necessarily positive
ground cost illustrates that our framework can be
flexibly used with an arbitrary cost function defined
on the ground space.

Evaluation. In total, we evaluated our method
on 9 standard datasets: BLESS (Baroni and
Lenci, 2011), EVALution (Santus et al., 2015),
Lenci/Benotto (Benotto, 2015), Weeds (Weeds
et al., 2014), Henderson7 (Henderson, 2017), Ba-
roni (Baroni et al., 2012), Kotlerman (Kotlerman
et al., 2010), Levy (Levy et al., 2014) and Turney

7This dataset is a subset of the Weeds dataset (https:
//github.com/julieweeds/BLESS).

https://github.com/julieweeds/BLESS
https://github.com/julieweeds/BLESS
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(Turney and Mohammad, 2015). As an evaluation
metric, we use average precision AP@all (Zhu,
2004).

For comparison we also report the performance
of the entailment embeddings that were trained
as described in (Henderson, 2017)8. Following
(Chang et al., 2017) we pushed any OOV (out-of-
vocabulary) words in the test data to the bottom of
the list, effectively assuming that the word pairs do
not have a hypernym relation.

Table 2 compares the performance9 of entail-
ment embeddings and the optimal transport mea-
sure based on the ground cost defined in Eq. (9).
Our method yields significant improvements over
the entailment embeddings by (Henderson, 2017)
on almost all of the datasets. Only on the Ba-
roni dataset, our method performs worse but never-
theless still achieves similar performance as other
state-of-the-art methods. It confirms the findings
of (Shwartz et al., 2016) and (Chang et al., 2017):
there is no single hypernymy scoring function that
performs best on all datasets. Furthermore, on
some datasets (EVALution, LenciBenotto, Weeds,
Turney) we even outperform or match state-of-the-
art performance (cf. Table 3), by simply using our
framework together with ground cost as defined in
Eq. (9).

Notably, our method is not specific to the entail-
ment vectors by (Henderson, 2017). It can be used
with any embedding vectors and ground cost mea-
suring the degree of entailment, without requiring
any additional training. A more accurate ground
cost or embedding vectors might even further im-
prove the performance. Furthermore, our training
dataset (Wikipedia with 1.7B tokens) and our vo-
cabulary with only 80’000 words are rather small
compared to the datasets used, e.g., by (Vilnis and
McCallum, 2014a). We expect to get even better
results by using a larger vocabulary on a larger
corpus.

8 Conclusion

To sum up, we advocate for associating both a dis-
tributional and point estimate as a representation
for each entity. We show how this allows us to
use optimal transport over the set of contexts as-
sociated with these entities, in problems with a
co-occurrence structure. Further, the framework

8More details about the training setup can be found in
section A.1 of the Appendix.

9We also illustrate the effect of several hyperparameters
used in the PPMI computation in Table 4 of the Appendix A.

enables efficient combination with existing point-
estimates and embeddings, and we demonstrate
its performance on several NLP tasks. In the end,
our method offers a unique perspective for build-
ing rich feature representations that simultaneously
capture uncertainty and interpretability.
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A Supplementary Material

A.1 Experimental Details:
Sentence Representations: While using the
Toronto Book Corpus, we remove the errors caused
by crawling and pre-process the corpus by filter-
ing out sentences longer than 300 words, thereby
removing a very small portion (500 sentences out
of the 70 million sentences). We utilize the code10

from GloVe for building the vocabulary of size
205513 (obtained by setting min count=10) and
the co-occurrence matrix (considering a symmetric
window of size 10). Note that as in GloVe, the con-
tribution from a context word is inversely weighted
by the distance to the target word, while computing
the co-occurrence. The vectors obtained via GloVe
have 300 dimensions and were trained for 75 itera-
tions at a learning rate of 0.005, other parameters
being the default ones. The performance of these
vectors from GloVe was verified on standard word
similarity tasks.

Hypernymy Detection: The training of the en-
tailment vector is performed on a Wikipedia dump
from 2015 with 1.7B tokens that have been tok-
enized using the Stanford NLP library (Manning
et al., 2014). In our experiments, we use a vocab-
ulary with a size of 80’000 and word embeddings
with 200 dimensions and 100 cluster centers. We
followed the same training procedure as described
in (Henderson, 2017) and were able to reproduce
their scores on the hypernymy detection task.

A.2 Miscellaneous
PPMI Computation: We utilize the sparse ma-
trix support of Scipy11 for efficiently carrying out
all the PPMI computations.

PPMI Normalizations: Another possibility
while considering the normalization to have
an associated parameter β that can interpolate
between two extremes.

(H̃w)βk :=
(H̄w)βk∑K
k=1 (H̄w)βk

, where

(H̄w)βk : g =
SPPMIαs (w, Ck)∑
w SPPMIα,βs (w, Ck)

=

∑
c∈Ck SPPMIαs (w, c)∑

w

∑
c∈Ck(SPPMIαs (w, c))β

.

(10)

10https://github.com/stanfordnlp/GloVe
11https://docs.scipy.org/doc/scipy/

reference/sparse.html

In particular, when β = 1, we recover the equa-
tion for histograms as in Section 5, and β = 0
would imply normalization with respect to cluster
sizes.

Optimal Transport Computation: We make
use of the Python Optimal Transport (POT)12 for
performing the computation of Wasserstein dis-
tances and barycenters on CPU. For more efficient
GPU implementation, we built custom implementa-
tion using PyTorch. We also implement a batched
version for barycenter computation, which to the
best of our knowledge has not been done in the
past. The batched barycenter computation relies
on a viewing computations in the form of block-
diagonal matrices. As an example, this batched
mode can compute around 200 barycenters in 0.09
seconds, where each barycenter is of 50 histograms
(of size 100) and usually gives a speedup of about
10x. For all our computations involving optimal
transport, we typically use λ around 0.1 and make
use of log or median normalization as common in
POT to stabilize the Sinkhorn iterations.

Clustering: For clustering, we make use of km-
cuda’s13 efficient implementation of K-Means al-
gorithm on GPUs.

A.3 Software Release
We plan to make all our code (for all these parts)
and our pre-computed histograms (for the men-
tioned datasets) publicly available on GitHub soon.

A.4 Detailed Results
Detailed results of the sentence representation and
hypernymy detection experiments are listed on the
following pages.

12http://pot.readthedocs.io/en/stable/
13https://github.com/src-d/kmcuda

https://github.com/stanfordnlp/GloVe
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
http://pot.readthedocs.io/en/stable/
https://github.com/src-d/kmcuda
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Table 4: Comparison between entailment vectors and optimal transport / Wasserstein based entailment measure
(WE). Avg. gain refers to the average difference relative to the entailment vectors. Avg. gain w/o Baroni refers
to the average difference while neglecting the Baroni dataset. The hyperparameter α refers to the smoothing
exponent and s to the shift in the PPMI computation. All scores are AP@all (%).

Dataset

Method BLESS EVALution LenciBenotto Weeds Henderson Baroni

Henderson et al. 6.4 31.6 44.8 60.8 70.5 78.3
WE (α=0.15, s=1) 7.3 37.7 49.0 63.6 74.8 64.4
WE (α=0.15, s=5) 6.9 39.1 49.4 64.3 74.0 65.2

WE (α=0.15, s=15) 7.0 39.8 48.5 64.7 75.0 65.6
WE (α=0.5, s=1) 6.6 39.2 48.6 62.9 76.1 64.6
WE (α=0.5, s=5) 5.9 40.4 49.9 65.7 73.9 67.2

WE (α=0.5, s=15) 5.5 40.5 49.5 66.2 72.8 67.4
WE (α=0.95, s=1) 7.5 31.1 40.9 52.2 76.9 56.7

Dataset

Method Kotlerman Levy Turney Avg.Gain Avg. Gain (w/o Baroni)
Henderson et al. 34.0 11.7 56.6 - -

WE (α=0.15, s=1) 33.9 10.8 57.2 +0.5 +2.2
WE (α=0.15, s=5) 34.2 11.6 57.0 +0.8 +2.5

WE (α=0.15, s=15) 34.9 12.3 57.3 +1.2 +2.9
WE (α=0.5, s=1) 34.7 10.2 56.8 +0.6 +2.4
WE (α=0.5, s=5) 34.6 11.3 56.5 +1.2 +2.7

WE (α=0.5, s=15) 35.6 12.6 56.1 +1.3 +2.8
WE (α=0.95, s=1) 31.2 8.1 56.7 -3.7 -1.5
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Table 5: Evaluation of Unsupervised Sentence Representation: Comparison of the performance of our model
(WB) with SIF and Bag of Words (BoW) averaging on Semantic Textual Similarity (STS) tasks. Reported
scores are average Pearson correlation x 100 on all instances of the STS dataset. We compare the results of our
model (WB) for K = 250 and K = 300 clusters. The PPMI hyperparameters haven’t been tuned much and the
results below are for α=0.95 and no log shift (i.e. s=1). The results for SIF are shown for the variants with no
principal component (PC) removed and the 1st PC removed. Both of these SIF results are for the best selected
hyperparameter value of a = 0.001 obtained by running their evaluation script.

STS12

Model MSRpar MSRvid SMTeuroparl WordNet SMTnews

Bag of Words 17.3 -4.2 27.0 35.1 35.0
SIF (with no PC removed) 19.5 41.7 24.3 54.0 25.0
SIF (with 1st PC removed) 21.0 36.5 31.0 55.4 27.9

WB (K=250) 30.5 57.4 45.3 44.5 38.8
WB (K=300) 32.7 57.5 48.0 45.0 38.1

STS13

Model FNWN Headlines WordNet

Bag of Words 19.2 24.2 12.9
SIF (with no PC removed) 11.5 46.1 6.8
SIF (with 1st PC removed) 14.3 54.3 60.4

WB (K=250) -1.1 44.1 62.8
WB (K=300) 1.1 44.7 61.1

STS14

Model Forum News Headlines Images WordNet Twitter

Bag of Words 15.5 37.0 23.9 19.0 29.9 37.6
SIF (with no PC removed) 15.8 31.7 44.6 38.0 26.7 43.6
SIF (with 1st PC removed) 15.2 35.7 52.1 47.4 62.6 58.0

WB (K=250) 32.6 54.9 39.5 37.0 58.6 48.3
WB (K=300) 33.1 56.3 39.2 36.6 58.6 50.2

STS15

Model Forum Students Belief Headlines Images

Bag of Words 19.0 42.5 22.3 34.6 27.0
SIF (with no PC removed) 26.4 38.3 31.6 52.3 40.4
SIF (with 1st PC removed) 30.0 62.0 39.0 59.1 50.6

WB (K=250) 30.4 50.6 40.1 53.0 50.8
WB (K=300) 37.6 52.5 39.1 53.1 50.0

STS16

Model Answer Headlines Plagiarism Postediting Question

Bag of Words 15.7 32.0 26.1 34.8 -1.6
SIF (with no PC removed) 21.3 49.1 14.2 35.5 -6.4
SIF (with 1st PC removed) 26.0 57.0 43.4 61.5 18.2

WB (K=250) 20.8 39.8 48.5 63.8 37.5
WB (K=300) 20.9 40.6 50.1 65.2 39.4


