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1 Introduction

In this paper, we aim to reproduce Batched Multi-armed Bandits Problem by Gao, Han, Ren and
Zhou, accepted as an oral presentation at NeurIPS 2019. [3]

The multi-armed bandit problem is a multi-round single agent game framing the expected outcomes
of the exploration vs exploitation dilemma. In practical settings where outcomes are only observed
after a number of arm pulls, or a "batch", the optimal policy choice is made only after observing a
small number of batches. In his exploration phase, the agent incurs some loss, which is formalized in
the literature by a regret function. Gao et. al (2019) recognize that the regret function in such cases
has already been fully characterized, but propose a framework for choosing the regret-minimizing
number of arms in the batched version of the paper. They then propose the BaSE (Batched Successive
Elimination) algorithm, and explore its bounds under different batching frameworks, or gris. The
literature for the multi-armed bandit problem is rich, and many of the analytic results are inherited
from earlier work, most heavily from Perchet et. al (2016). [2]

The goal for this paper is to reproduce the original empirical results, and perform an ab-
lation of the described BaSE algorithm using and modifying the source code found at:
https://github.com/Mathegineer/batched-bandit. we do not re-derive the analytical re-
sults in this paper, but instead focus on the problem parameters and experimental results. we faithfully
reproduce most of the original results and display some extensions. Given that there are very limited
features to ablate, we proceed to provide some additional experimental results for discussion.

2 Setting the Game

Recall the game as defined by the original authors. Let there be a stochastic bandit with arms K ≥ 2
to define the space of arm pulls i such that

i ∈ we = {1, 2, . . . ,K}

Let the rewards for each pull i be distributed i.i.d. and drawn from a distribution ν(i) with mean µ(i).
For the entirely of the paper, without loss of generality, the authors assume

ν(i) = N (µ(i), 1)

.

Let µ∗ = maxi∈[K]µ
(i) denote the maximum reward possible for any given pull, i.e., the reward

from pulling from the best arm, and define the gap between rewards from other arms and maximum
reward as

∆i = µ∗ − µ(i) ≥ 0
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Define the time horizon T and let it split into M batches represented by a grid T = {t1, . . . , tM}
where the grid is either static —fixed ahead of time —or adaptive, where the grid value tj may
be determined after observing rewards up to time tj−1 and with some external randomness. In this
setting, batch learning corresponds to M = 1 and online learning corresponds to M = T .

Denote a sampling policy π = (πt)
T
t=1, s.t. πt ∈ [K] indicates which arm to pull at time t ∈ [T ],

informed by reward observations up to time tj−1. If we define regret as the sum of ∆t ∀t ∈ πt, the
optimization problem is the agent minimizing expected regret, E [RT (π)] s.t.

RT (π) ,
T∑
t=1

(µ∗ − µ(i)) = Tµ∗ −
T∑
t=1

µ(πt)

3 The BaSE policy

The paper adapts the Successive Elimination algorithm from previous literature to created the Batched
Successive Elimination. Given a static grid T = {t1, . . . , tM}, the agent explores during the first
M − 1 batches, and exploits the best arm during the last M batch at time tM . Meanwhile, after each
exploration batch, the agent permanently removes arms that performs worse than the (theretofore)
best arm. As such, it is a subclass of the previously defined Explore-then-Commit algorithms.

4 Experimental Results

In this section, we explore the experimental results found with the provided code on the BaSE
policy, taking care to graphically display the algorithm’s performance under the three different grids:
minimax, geometric and arithmetic.

4.1 The Base BaSE Case

For the initial replication, we use the same parameters published by Gao et. al (2019) in their
Experimental Results section. Unless otherwise stated, these parameters are the default for our
subsequent graphs.

Table 1: Parameters
Symbol Description Default Value

T Time Horizon 5× 104

K Bandit Arms 3
M Batches 3
γ Tuning Parameter 1
µ∗ Mean Reward for optimal arm 0.6
µ Mean Reward for other arms 0.5
tj Arithmetic Grid value at time j j ∗ T/M = j

In Figure 1, we see that the results from the paper are replicated exactly, except the ETC Geometric
Grid results. In fact, this particular graph negates the assertion in the submitted paper that BaSE
always achieves lower regret than ETC. Here we observe that using a geometric grid, ETC sometimes
achieves lower regret than BaSE.
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(a) Average regret vs. M (b) Average regret vs. K

(c) Average regret vs. T (d) Comparison of BaSE and ETC

Figure 1: Original Results
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4.2 Large Delta

In defining the minimax and problem-dependent regret functions, Gao et. al (2019) explicitly set the
condition that ∆i ≤

√
(K), which is more relaxed than the classical condition that ∆i ∈ [0, 1]. In

this scenario, we examine outcomes with parameters satisfying the former, but not the latter.

In Figure 2, we can see that all adaptive grids perform very well in this case, as successively
elimination occurs faster. The arithmetic grid is much slower and does not converge in this case.

Table 2: ∆ = 1.1

Symbol Description Value

µ∗ Mean Reward for optimal arm 1.6
µ Mean Reward for other arms 0.5

(a) Average regret vs. M (b) Average regret vs. K (c) Average regret vs. T

Figure 2: ∆ = 1.1

4.3 Small Delta

Exploration requires more batches ∆ decreases, so we chose to explore two scenarios in which
∆ == 0.02.

In the first, we hold fixed µ∗ and increase rewards from non-optimal arms.

Table 3: Small Delta, High Reward
Symbol Description Value

µ∗ Mean Reward for optimal arm 0.6
µ Mean Reward for other arms 0.58

(a) Average regret vs. M (b) Average regret vs. K (c) Average regret vs. T

Figure 3: Small Delta, High Reward

In the second case, we decrease both µ and µ∗.

As Gao et. al (2019) demonstrate analytically, translations of the reward distribution (Gaussian or
not), does not change the bounds of the regret functions. When ∆ is low, regardless of the level of
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Table 4: Small Delta, Low Reward
Symbol Description Value

µ∗ Mean Reward for optimal arm 0.12
µ Mean Reward for other arms 0.1

(a) Average regret vs. M (b) Average regret vs. K (c) Average regret vs. T

Figure 4: Small Delta, Low Reward

the reward, the arithmetic grid approximates UCB, and the geometric grid performs the worst, with
the minimax grid in the middle.

5 Conclusion

Gao et. al (2019) show that their BaSE algorithm, paired with adaptive grids — especially the minimax
grid — is successful and performs well in minimizing regret in batched learning. Its innovation of
successive removal of "low"-performing arms works by progressively narrowing the exploration space.
In this brief review, we reproduced most of their results, and extended the experimental analysis to
include some interesting outcomes of their analytic approach. Esfandiari, Karbasi, Mehrabian and
Mirrokni (2019) were able to improve the successive elimination algorithm for batched learning to
get optimal results.[1] Time allowing, we would add their algorithm to visualize the differences.
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