
Deep Imitative Models for Flexible Inference,
Planning, and Control

Anonymous Author(s)
Affiliation
Address
email

Abstract

Imitation learning provides an appealing framework for autonomous control: in1

many tasks, demonstrations of preferred behavior can be readily obtained from2

human experts, removing the need for costly and potentially dangerous online data3

collection in the real world. A disadvantage of imitation learning is its limited4

flexibility to reach new goals safely at test time. In contrast, classical model-based5

reinforcement learning (MBRL) offers considerably more flexibility: a model6

learned from data can be reused at test-time to achieve a wide variety of goals, yet7

its dynamics model only captures what is possible, not what is preferred, resulting8

in potentially dangerous behavior outside the distribution of expert behavior. In this9

paper, we aim to combine these benefits to learn Imitative Models: probabilistic10

predictive models able to plan expert-like trajectories to achieve arbitrary goals.11

We find this method substantially outperforms both direct imitation and classical12

MBRL in a simulated driving task, and can be learned efficiently from a fixed13

set of expert demonstrations. We also show our model can flexibly incorporate14

user-supplied costs as test-time, can plan to sequences of goals, and can even15

perform well with imprecise goals, including goals on the wrong side of the road.16

1 Introduction17

Reinforcement learning (RL) generally requires online learning: the agent must collect more data18

with its latest strategy, use this data to update itself, and repeat. While this is natural in some settings,19

deploying a partially trained policy on a real-world robot can be dangerous. In these settings the20

behavior must be learned offline, usually with expert demonstrations. How can we incorporate such21

demonstrations into a flexible robotic system, like an autonomous car? Imitation learning (IL) can22

learn policies that stay near the expert’s distribution, but does not offer sufficient flexibility, and23

is difficult to integrate with conventional components like planning algorithms. Model-based RL24

(MBRL) algorithms can learn flexible dynamics models from demonstrations, but drift from the25

distribution of expert behavior. Our proposed method offers both flexibility and behaves like an26

expert by planning through a model-based distribution of expert behavior.27

In MBRL [Kuvayev and Sutton, 1996], any data collection method can be used to train a dynamics28

model. Once trained, the model can be used to flexibly achieve a variety of user-specified goals:29

insofar as the model is an accurate model of the world, any feasible goal can be achieved by planning30

through the model. However, in practice, model-based and model-free RL algorithms are vulnerable31

to distributional drift [Thrun, 1995, Ross and Bagnell, 2010]: when acting according to the learned32

model or policy, the agent will visit states that are different from those seen during training, and in33

those it is unlikely to determine an effective course of action. This is especially problematic when34

the data comes from a curated source, such as demonstration data from human drivers: this data35

intentionally excludes adverse events such as crashes, which means that the model does not learn that36

a crash is even possible. Therefore, RL algorithms typically require additional online data collection37

[Englert et al., 2013, Liang et al., 2018].38

Submitted to 32nd Conference on Neural Information Processing Systems (NIPS 2018). Do not distribute.

Figure 1: We apply our approach to navigation in CARLA [Dosovitskiy et al., 2017]. Columns
1,2: Images depicting the current scene. The overhead image depicts a 50 m2 area. Column 3:
LIDAR input and goals are provided to our deep imitative trajectory model, and plans to the goals are
computed under the model’s likelihood objective, and colored according to their ranking under the
objective, with red indicating the best plan. The red square indicates the chosen high-level goal, and
the yellow cross indicates a point along our plan used as a setpoint for a proportional controller. The
LIDAR map is 100 m2, and each goal is ≥20 m away from the vehicle. Column 4: Our model can
incorporate arbitrary test-time costs, and use them to adjust its planning objective and plan ranking.

Figure 2: A brief taxonomy of learning-
based control methods. In our scenario,
we avoid online data collection, specifi-
cally from the policy we seek to imitate.
We structure our imitation learner with
a model to make it flexible to new tasks
at test time. We compare against other
offline approaches (front face).

Imitation learning algorithms use expert-provided demon-39

stration data and, despite similar distributional drift short-40

comings [Ross et al., 2011], can sometimes learn effective41

control strategies without any additional online data col-42

lection [Zhang et al., 2018]. This makes them simple43

and practical to deploy in the real world, especially for44

safety-critical tasks such as autonomous driving. However,45

standard imitation learning offers comparatively little task46

flexibility since it only predicts low-level expert behavior.47

While several works have proposed to augment imitation48

learning with goal conditioning [Dosovitskiy and Koltun,49

2016, Codevilla et al., 2018], these goals must be specified50

in advance during training, and are typically comparatively51

simple (e.g., turning left or right).52

In this work, we develop a control algorithm that bridges53

offline imitation learning and model-based reinforcement54

learning, whose critical difference to other work is illus-55

trated by the taxonomy cube in Fig. 2. The combination56

of these methods offers several highly desirable properties.57

By learning from expert-provided data, we capture the58

distribution of expert-like behaviors without the need for59

manually specified cost or reward functions that describe60

general task constraints. For example, in a driving task, our model automatically ensures the car stays61

on the road and obeys lane markings (Fig. 1). Conversely, by incorporating model-based goal-driven62

planning, our model can easily follow user-specified goals at test-time, and can be flexibly repurposed63

to perform a wide range of tasks at test-time, without any additional training.64

Our main contribution is a hybrid offline MBRL and imitation learning method to learn a probabilistic65

predictive model to plan expert trajectories. We demonstrate our method on a simulated navigated66

driving task (see Fig. 1), in which it plans to goals produced by a conventional route planner, while67

obeying the rules of the road and avoiding collisions. In contrast to standard IL, our method produces68

an interpretable distribution over trajectories and can follow navigational goals without additional69

training. In contrast to classical MBRL, our method specifically seeks to generate expert-like70

behaviors without any additional data collection or learning. In a comparative evaluation, we find71

that our method substantially outperforms both MBRL and model-free imitation learning: it can72

efficiently learn near-perfect navigation through the static-world CARLA simulator from just 8073

episodes of expert driving, equal to 19 hours of driving. We also show that our model can flexibly74

incorporate and respect costs not seen during training time. Videos of our results are available.175

1 https://sites.google.com/view/imitativeforecastingcontrol

2

https://sites.google.com/view/imitativeforecastingcontrol

Figure 3: Imitative planning to goals subject to a cost at test time. The cost bumps corresponds to
simulated “potholes," which the imitative planner is tasked with avoiding. The imitative planner
generates and prefers routes that curve around the potholes, stay on the road, and respect intersections.
Demonstrations of this behavior were never observed by our model.

2 Deep Imitative Models76

To understand robot dynamics that are not only possible, but preferred, we first construct a model of77

expert behaviour. Our method fits a probabilistic model of state trajectories, q, to samples of expert78

trajectories drawn from unknown distribution p. A probabilistic model is necessary because expert79

behavior is multimodal: e.g. choosing to turn either left or right at an intersection are both common80

decisions given identical pasts. Because an expert trajectory drawn from p depends on the expert’s81

observation, we condition q on observations φ available at prediction time t = 0. In our application, φ82

includes LIDAR features M ∈ RH×W×C and a small window of previous agent positions s−τ :−1 =83

(s−τ , . . . , s−1): φ = [M, s−τ :−1]. We define state trajectories as state sequences s1:T whose prior84

expert probability is a product of conditional distributions: qθ(s1:T |s0, φ) =
∏T−1
t=0 qθ(st+1|s0:t, φ).85

By learning q that assigns high likelihood to expert trajectories, and low likelihood otherwise, we86

obtain an estimate of the joint expert-environment dynamics model that can be used to score the87

quality of arbitrary trajectories according to how likely they are to be generated by the expert. At88

test time, q(s1:T |s0, φ) serves as a learned prior over the space of undirected expert trajectories.89

Executing samples from this distribution will imitate an expert driver in an undirected fashion.90

Besides simply imitating the demonstrations, we wish to direct our agent to desired goals, and have91

the agent reason automatically about the mid-level details necessary to achieve these goals. High-level92

goals take the form of waypoints in our application. To direct our agent to each goal, we build a plan93

from the MAP trajectory: the trajectory maximizing the likelihood of reaching the goal, weighted by94

the prior probability q(s1:T |s0, φ) that an expert would have chosen trajectory s1:T . We illustrate our95

method’s application to a navigated driving setting in Fig. 4.

Figure 4: Illustration of our method applied to a navigated driving setting. Our method begins by
training an Imitative Model from a dataset of expert examples. After training, the model is repurposed
as an Imitative Planner. At test time, a route planner provides waypoints to the Imitative Planner,
which computes an expert-like path to each goal from the goal and current sensor information φ. The
best plan chosen according to the planning objective, and provided to a low-level PID-controller in
order to produce steering and throttle actions.

3

2.1 Imitative Planning to Goals96

Using the distributions that comprise q(s1:T |s0, φ), we construct the joint distribution over trajectories97

of lengthN ≤ T −1. With this, we optimize the state trajectory s1:N conditioned on a sequence ofK98

future goals gN+1:N+K , starting after time-step N , under an optional trajectory cost c(s1:N |s0, φ).99

max
s1:N
LN = max

s1:N
q(s1:N |gN+1:N+K , s0, φ)c(s1:N |s0, φ),

= max
s1:N

q(s1:N |s0, φ)q(gN+1:N+K |s0:N , φ)c(s1:N |s0, φ)

= max
s1:N

log
(
q(s1:N |s0, φ)q(gN+1|s0:N)c(s1:N |s0, φ)

N+K−1∏
t=N+1

q(gt+1|gN+1:t, s0:N)
)

(1)

The advantage of conditional imitation learning is that a user or route planning program can commu-100

nicate where they desire the agent to go at a high level without knowing the best and safest actions:101

the planning-as-inference procedure will plan a path that is similar to how an expert would have acted102

to reach the given goal. If the user desires more control over the plan, our model has the additional103

flexibility to accept arbitrary user-specified costs c at test time. For example, a user (or program) may104

have updated knowledge of new hazardous regions such as potholes (Fig. 3) or additional cost map.105

2.2 Model implementation106

One method for approximating an expert distribution with a deep generative model is the reparame-107

terized pushforward policy (R2P2) approach [Rhinehart et al., 2018]. R2P2’s use of pushforward108

distributions, employed in normalizing flow models [Rezende and Mohamed, 2015] and RealNVP109

[Dinh et al., 2016] allows it to efficiently minimize both type I and II-style errors [Neyman and110

Pearson, 1933]. It can compute q(x) for arbitrary x ∈ X , to optimize KL(p, q), which heavily111

penalizes mode loss, or type II errors. Here, p is the sampleable, but unknown, distribution of112

expert behavior. Reducing type I errors can be achieved by minimizing KL(q, p), which penalizes113

q heavily for generating bad samples, as judged by p. Because the PDF p is not known, R2P2 first114

approximates p with a model p̃ trained to predict a spatial cost map. Then, this cost map is used115

in KL(q, p̃) to penalize samples from q that land in high cost regions of p̃. The full objective is116

KL(p, q) + βKL(q, p̃). Because of these useful attributes and its relevance to our domain, we adopt117

this learning procedure to learn q, and we also can use p̃ in the final planning objective.118

In R2P2, q(s1:T |φ) is induced through an invertible, differentiable warping function: f(z;φ) :119

R2T 7→ R2T . f warps samples from a base distribution z ∼ q0 to the output space over s1:T ,120

where q0 is N (0, I2T×2T). The structure of f(z;φ) makes this framework suitable for our purposes:121

f embeds the evolution of learned discrete-time stochastic dynamics. Each state in the output122

trajectory is given by st = µt(s1:t−1, φ)+σt(s1:t−1, φ)zt = st−1 +(st−1−st−2)+mt(s1:t−1, φ)+123

σt(s1:t−1, φ)zt. The µt ∈ R2 and σt ∈ R2×2 are computed by expressive, nonlinear neural networks.124

As zt ∼ N (0, I2×2), the conditional distribution of st is q(st|s1:t−1, φ) = N (st;µ(s1:t−1, φ),Σ =125

σ(s1:t−1, φ)σ(s1:t−1, φ)T). As each one-step distribution is parameterized by the prediction of neural126

networks that observe previous states (and high-bandwidth LIDAR input), the resulting trajectory127

distribution is often complex and multimodal. We modified the “RNN" method described in R2P2,128

used M = R200×200×2, with Mij representing a 2-bin histogram of points below and above the129

ground in 0.5 m2 cells. We used length T = 40 trajectories at 5Hz, corresponding to 8 seconds of130

prediction or planning, and used τ = 19 (2 seconds of past positions s−19:0).131

3 Related Work132

Previous work has explored conditional IL for autonomous driving. Two model-free approaches133

were proposed by Codevilla et al. [2018], to map images to actions. The first uses three network134

“heads", each head only trained on an expert’s left/straight/right turn maneuvers. The robot is directed135

by a route planner that chooses the desired head. Their second method input the goal location136

into the network, however, this did not perform as well. While model-free conditional IL can be137

effective given a discrete set of user directives, our model-based conditional IL has several advantages.138

Our model has flexibility to handle more complex directives post training, e.g. avoiding hazardous139

potholes (Fig. 3) or other costs, the ability to rank plans and goals by its objective, and interpretability:140

it can generate entire planned and unplanned (undirected) trajectories. Work by Liang et al. [2018]141

also uses multi-headed model-free conditional imitation learning to “warm start" a DDPG driving142

algorithm [Lillicrap et al., 2015]. While warm starting hastens DDPG training, any subsequent DDPG143

4

post fine-tuning is inherently trial-and-error based, without guarantees of safety, and may crash during144

this learning phase. By contrast, our method never executes unlikely transitions w.r.t. expert behavior145

at training time nor at test time. While our target setting is offline data collection, online imitation146

learning is an active area of research in the case of hybrid IL-RL [Ross and Bagnell, 2014, Sun et al.,147

2018] and “safe" IL [Sun et al., 2017, Menda et al., 2017, Zhang and Cho, 2017]. Other methods148

include inverse reinforcement learning to fit a probabilistic reward model to human demonstrations149

using the principle of maximum entropy [Ziebart et al., 2008, Sadigh et al., 2016].150

4 Experiments151

We evaluate our method using the CARLA urban driving simulator [Dosovitskiy et al., 2017]. Each152

test episode begins with the vehicle randomly positioned on a road in the Town01 or Town02 maps.153

The task is to drive to a goal location, chosen to be the furthest road location from the vehicle’s initial154

position. As shown in Fig. 4, we use three layers of spatial abstractions to plan to the goal location,155

common to model-based (not end-to-end) autonomous vehicle setups: coarse route planning over a156

road map, path planning within the observable space, and feedback control to follow the planned path157

[Paden et al., 2016, Schwarting et al., 2018]. First, we compute a route to the goal location using A∗158

given knowledge to the road graph. Second, we set waypoints along the route no closer than 20 m of159

the vehicle at any time to direct the vehicle. Finally, we use a PD-controller (proportional controller)160

to compute the vehicle steering value. The PD-controller was tuned to steer the vehicle towards a161

setpoint (target) 5 meters away along the planned path.162

We consider four metrics for this task: 1) Success rate in driving to the goal location without any163

collisions. 2) Proportion of time spent driving in the correct lane. 3) Frequency of crashes into164

obstacles. 4) Passenger comfort, by comparing the distribution of accelerations (and higher-order165

terms) between each method. To contrast the benefits of our method against existing approaches, we166

compare against several baselines. Since our approach bridges model-free IL and MBRL, we include167

an IL baseline algorithm, and a MBRL baseline algorithm.168

Proportional control (PC): The PC baseline uses the PD-controller to follow the high-level way-169

points along the route. This corresponds to removing the middle layer of autonomous vehicle decision170

abstraction, which serves as a baseline for the other methods. The proportional controller is quite171

effective when the setpoint is nearby, but fails badly when the setpoint is far away (i.e. at 20 m).172

Imitation learning (IL): We designed an IL baseline to control the vehicle. Our setting is that of173

goal-conditioned IL: in order to achieve different behaviors, the imitator is tasked with generating174

controls after observing a target high-level waypoint, as well as the same φ observed by our algorithm.175

Instead of directly predicting agent controls from the provided scene features and goal, we train a176

model to predict the setpoint for the PD-controller. The model is trained with with the same expert177

dataset, and predicts setpoints one second in the future. This model must implicitly plan a safe path.178

We used a network architecture nearly identical to our approach’s.179

Model based RL (MB): To compare against a purely model-based reinforcement learning algorithm,180

we propose a model-predictive control baseline. This baseline first learns a forwards dynamics model181

f : st−3:t, at) → st+1 given observed expert data. We use an MLP with two hidden layers, each182

100 units. Together with a LIDAR map to locate obstacles, this baseline uses its dynamics model183

to plan through the free-space to the waypoint while avoiding obstacles. We plan forwards over 20184

time steps using a breadth-first search search over CARLA steering angle {−0.3,−0.1, 0., 0.1, 0.3},185

noting valid steering angles are normalized to [−1, 1], with constant throttle at 0.5, noting the valid186

throttle range is [0, 1].187

Performance results that compare our methods against baselines according to multiple metrics are188

includes in Table 1. With the exception of the success rate metric, lower numbers are better. We189

define success rate as the proportion of episodes where the vehicles navigated across the road map to190

a goal location on the other side without any collisions. In our experiments we do not include any191

other drivers or pedestrians, so a collision is w.r.t. a stationary obstacle. Collision impulse (in N · s) is192

the average cumulative collision intensities over episodes. “Wrong lane" and “Off road" percentage193

of the vehicle invading other lanes or offroad (averaged over time and episodes). Passenger comfort194

is also relevant, but can be ambiguous to define, so we simply record the second to sixth derivatives195

of the position vector with respect to time, respectively termed acceleration, jerk, snap, crackle, and196

pop. In Table 1 we note the 99th percentile of each statistic given all data collected per path planning197

method. Generally speaking, lower numbers correspond to a smoother driving experience.198

5

Table 1: We evaluate different path planning methods based on two CARLA environments: Town01,
which each method was trained on; and Town02: a test environment.
Town01 Successes Collision Impulse Wrong lane Off road Accel Jerk Snap Crackle Pop

Proportional Control (PC) 0 / 10 8.92 18.6 % 12.1 % 0.153 0.925 9.19 85.8 785
Imitation Learning (IL) 5 / 10 1.28 0.2 % 0.32 % 0.060 0.313 2.52 17.4 169
Model-Based RL (MB) 10 / 10 0.00 9.3 % 0.82 % 0.062 0.353 2.69 26.1 261
Our method 10 / 10 0.00 0.0 % 0.00 % 0.054 0.256 1.50 13.8 136
Town02 Successes Collision Impulse Wrong lane Off road Accel Jerk Snap Crackle Pop

Proportional Control (PC) 2 / 10 12.5 5.0 % 4.99 % 0.204 1.040 6.77 59.1 611
Imitation Learning (IL) 2 / 10 8.87 2.2 % 1.03 % 0.319 0.798 3.66 33.3 319
Model-Based RL (MB) 7 / 10 2.56 12.0 % 3.53 % 0.134 0.967 6.06 63.1 575
Our method 8 / 10 0.41 0.4 % 0.27 % 0.054 0.613 2.64 21.4 289

Table 2: Incorporating a pothole cost enables our method to avoid potholes
Approach Successes Pothole hits Wrong lane Off road

Our method without pothole cost, Town01 9 / 10 177/230 0.06% 0.00%
Our method with pothole cost, Town01 9 / 10 10/230 1.53% 0.06%

Our method without pothole cost, Town02 8 / 10 82/154 1.03% 0.30%
Our method with pothole cost, Town02 7 / 10 35/154 1.53% 0.11%

The poor performance of the proportional control (PC) baseline indicates that the high-level waypoints199

do not communicate sufficient information about the correct driving direction, meaning that a local200

learned policy is indeed required to navigate these environments effectively. Imitation learning (IL)201

achieves better levels of comfort than model-based RL, but exhibits substantially worse generalization202

based on the training data, since it does not reason about the sequential structure in the task. Model-203

based RL (MB) succeeds on most of the trials in the training environment, but exhibits worse204

generalization. Notably, MB also scores much worse than IL in terms of staying in the right lane205

and maintaining comfort, which is consistent with our hypothesis: it is able to achieve the desired206

goals, but does not capture the behaviors in the data. Our method performs the best according to all207

metrics, far exceeding the success and comfort metrics of IL, and far exceeding the lane-obeyance208

and comfort metrics of MB.209

Avoiding novel obstacles at test-time: To further illustrate the capability of our method to incorpo-210

rate test-time costs, we designed a pothole collision experiment. We simulated 2m-wide potholes211

in the environment offset from each waypoint with noise distributed N (µ= [−15m, 2m],Σ =212

diag([1, 0.01])). We ran our method that incorporates a test-time cost map of the simulated potholes,213

and compared to our method that did not incorporate the cost map (and thus had no incentive to avoid214

potholes). In addition to the other metrics, we recorded the number of collisions with potholes. In215

Table 2, we see that our method with cost incorporated achieved nearly perfect pothole avoidance,216

while still avoiding collisions with the environment. To do so, it drove closer to the centerline, and217

occasionally dipped into the opposite lane. Our model internalized obstacle avoidance by staying on218

the road, and demonstrated its flexibility to obstacles not observed during training.219

5 Discussion220

We proposed a method for learning behavior that combines elements of imitation learning and221

model-based reinforcement learning. Our method estimates a distribution over human behavior222

from data, and then plans paths to achieve user-specified goals at test time while maintaining high223

probability under this distribution. We demonstrated several advantages and applications of our224

algorithm in autonomous driving scenarios. In the context of model-based RL, our method mitigates225

the distributional drift issue by explicitly optimizing for plans that stay close to the data. This226

implicitly allows our method to enforce basic safety properties: in contrast to model-based RL, which227

requires negative examples to understand the potential for adverse outcomes (e.g., crashes), our228

method automatically avoids such outcomes simply because they do not occur in the data. In the229

context of imitation learning, our method provides substantially more expressivity than the simple230

directional commands explored in prior conditional imitation learning work, enabling it to achieve231

arbitrary user-specified goals at test-time.232

6

References233

F. Codevilla, M. Miiller, A. López, V. Koltun, and A. Dosovitskiy. End-to-end driving via conditional234

imitation learning. In 2018 IEEE International Conference on Robotics and Automation (ICRA),235

pages 1–9. IEEE, 2018.236

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using Real NVP. arXiv preprint237

arXiv:1605.08803, 2016.238

A. Dosovitskiy and V. Koltun. Learning to act by predicting the future. arXiv preprint239

arXiv:1611.01779, 2016.240

A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An open urban driving241

simulator. In Proceedings of the 1st Annual Conference on Robot Learning, pages 1–16, 2017.242

P. Englert, A. Paraschos, M. P. Deisenroth, and J. Peters. Probabilistic model-based imitation learning.243

Adaptive Behavior, 21(5):388–403, 2013.244

L. Kuvayev and R. S. Sutton. Model-based reinforcement learning with an approximate, learned245

model. In in Proceedings of the Ninth Yale Workshop on Adaptive and Learning Systems, pages246

101–105, 1996.247

X. Liang, T. Wang, L. Yang, and E. Xing. CIRL: Controllable imitative reinforcement learning for248

vision-based self-driving. arXiv preprint arXiv:1807.03776, 2018.249

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous250

control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.251

K. Menda, K. Driggs-Campbell, and M. J. Kochenderfer. Dropoutdagger: A bayesian approach to252

safe imitation learning. arXiv preprint arXiv:1709.06166, 2017.253

J. Neyman and E. Pearson. On the problem of the most efficient tests of statistical hypotheses.254

Philosophical Transactions of the Royal Society of London, A 231:289–337, 1933.255

B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli. A survey of motion planning and control256

techniques for self-driving urban vehicles. IEEE Transactions on intelligent vehicles, 1(1):33–55,257

2016.258

D. J. Rezende and S. Mohamed. Variational inference with normalizing flows. arXiv preprint259

arXiv:1505.05770, 2015.260

N. Rhinehart, K. M. Kitani, and P. Vernaza. R2P2: A reparameterized pushforward policy for diverse,261

precise generative path forecasting. In The European Conference on Computer Vision (ECCV),262

September 2018.263

S. Ross and D. Bagnell. Efficient reductions for imitation learning. In Proceedings of the thirteenth264

international conference on artificial intelligence and statistics, pages 661–668, 2010.265

S. Ross and J. A. Bagnell. Reinforcement and imitation learning via interactive no-regret learning.266

arXiv preprint arXiv:1406.5979, 2014.267

S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction to268

no-regret online learning. In Proceedings of the fourteenth international conference on artificial269

intelligence and statistics, pages 627–635, 2011.270

D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan. Planning for autonomous cars that leverage271

effects on human actions. In Robotics: Science and Systems, 2016.272

W. Schwarting, J. Alonso-Mora, and D. Rus. Planning and decision-making for autonomous vehicles.273

Annual Review of Control, Robotics, and Autonomous Systems, 1:187–210, 2018.274

L. Sun, C. Peng, W. Zhan, and M. Tomizuka. A fast integrated planning and control framework for275

autonomous driving via imitation learning. arXiv preprint arXiv:1707.02515, 2017.276

7

W. Sun, J. A. Bagnell, and B. Boots. Truncated horizon policy search: Combining reinforcement277

learning and imitation learning. In Proceedings of the Sixth International Conference on Learning278

Representations (ICLR), 2018.279

S. Thrun. Learning to play the game of chess. In Advances in neural information processing systems,280

pages 1069–1076, 1995.281

J. Zhang and K. Cho. Query-efficient imitation learning for end-to-end simulated driving. In AAAI,282

pages 2891–2897, 2017.283

T. Zhang, Z. McCarthy, O. Jowl, D. Lee, X. Chen, K. Goldberg, and P. Abbeel. Deep imitation learning284

for complex manipulation tasks from virtual reality teleoperation. In 2018 IEEE International285

Conference on Robotics and Automation (ICRA), pages 1–8. IEEE, 2018.286

B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforcement287

learning. In AAAI, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.288

8

	Introduction
	Deep Imitative Models
	Imitative Planning to Goals
	Model implementation

	Related Work
	Experiments
	Discussion

