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Abstract
The performance of policy gradient methods is
sensitive to hyperparameter settings that must be
tuned for any new application. Widely used grid
search methods for tuning hyperparameters are
sample inefficient and computationally expensive.
More advanced methods like Population Based
Training (Jaderberg et al., 2017) that learn optimal
schedules for hyperparameters instead of fixed set-
tings can yield better results, but are also sample
inefficient and computationally expensive. This
makes them unsuitable for real life applications
where sample efficiency is paramount. In this
paper, we propose Hyperparameter Optimisation
on the Fly (HOOF), a gradient-free meta-learning
algorithm that requires no more than one training
run to automatically learn an optimal schedule
for hyperparameters that affect the policy update
directly through the gradient. The main idea is to
use existing trajectories sampled by the policy gra-
dient method to optimise a one-step improvement
objective, yielding a sample and computationally
efficient algorithm that is easy to implement. Our
experimental results across multiple domains and
algorithms show that using HOOF to learn these
hyperparameter schedules leads to faster learning
with improved performance.

1. Introduction
Policy gradient methods (Williams, 1992; Sutton et al.,
1999) optimise reinforcement learning policies by perform-
ing gradient ascent on the policy parameters and have shown
considerable success in environments characterised by large
or continuous action spaces (Mordatch et al., 2015; Schul-
man et al., 2016; Rajeswaran et al., 2017). However, like
other gradient-based optimisation methods, their perfor-
mance can be sensitive to a number of key hyperparameters.
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For example, the performance of first order policy gradi-
ent methods can depend critically on the learning rate, the
choice of which in turn often depends on the task, the partic-
ular policy gradient method in use, and even the optimiser,
e.g., RMSProp (Tieleman & Hinton, 2012) and ADAM
(Kingma & Ba, 2014) have narrow ranges for good learning
rates (Henderson et al., 2018b). Even for second order meth-
ods like Natural Policy Gradients (NPG) (Kakade, 2001) or
Trust Region Policy Optimisation (TRPO) (Schulman et al.,
2015), which tend to be more robust to the KL divergence
constraint (which can be interpreted as a learning rate), sig-
nificant performance gains can often be obtained by tuning
these parameters (Duan et al., 2016).

Similarly, variance reduction techniques such as Generalised
Advantage Estimators (GAE) (Schulman et al., 2016), which
trade variance for bias in policy gradient estimates, intro-
duce key hyperparameters (γ, λ) that can also greatly affect
performance (Schulman et al., 2016; Mahmood et al., 2018).

Given such sensitivities, there is a great need for effective
methods for tuning policy gradient hyperparameters. Per-
haps the most popular hyperparameter optimiser is simply
grid search (Schulman et al., 2015; Mnih et al., 2016; Duan
et al., 2016; Igl et al., 2018; Farquhar et al., 2018). More so-
phisticated techniques such as Bayesian optimisation (BO)
(Srinivas et al., 2010; Hutter et al., 2011; Snoek et al., 2012;
Chen et al., 2018) have also proven effective and new inno-
vations such as Population Based Training (PBT) (Jaderberg
et al., 2017) have shown considerable promise. Furthermore,
a host of methods have been proposed for hyperparameter
optimisation in supervised learning (see Section 4).

However, all these methods suffer from a major problem:
they require performing many learning runs to identify good
hyperparameters. This is particularly problematic in rein-
forcement learning, where it incurs not just computational
costs but sample costs, as new learning runs typically re-
quire fresh interactions with the environment. This sample
inefficiency is obvious in the case of grid search, BO based
methods and PBT. However, even meta-gradients, which
reuses samples collected by the underlying policy gradient
method to train the meta-learner, requires multiple train-
ing runs. This is because the meta-learner introduces its
own set of hyperparameters, e.g., meta learning rate and
reference (γ, λ), all of which need tuning to achieve good
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performance.

Furthermore, grid search and BO based methods typically
estimate only the best fixed values of the hyperparameters,
which often actually need to change dynamically during
learning (Jaderberg et al., 2017; François-Lavet et al., 2015).
This is particularly important in reinforcement learning,
where the distribution of visited states, the need for explo-
ration, and the cost of taking suboptimal actions can all vary
greatly during a single learning run.

To make hyperparameter optimisation practical for rein-
forcement learning methods such as policy gradients, we
need radically more efficient methods that can dynamically
set key hyperparameters on the fly, not just find the best
fixed values, and do so within a single run, using only the
data that the baseline method would have gathered anyway,
without introducing new hyperparameters that need tuning.
This goal may seem ambitious, but in this paper we show
that it is actually entirely feasible, using a surprisingly sim-
ple method we call Hyperparameter Optimisation on the Fly
(HOOF).

The main idea is as follows: At each iteration, sample tra-
jectories using the current policy. Next, generate some can-
didate policies and estimate their value sample efficiently
by using an off-policy method. Finally, update the policy
greedily with respect to the estimated value of the candi-
dates. In practice, HOOF uses the policy gradient method
with different hyperparameter (e.g., the learning rate, γ, and
λ) settings to generate candidate policies and then uses im-
portance sampling (IS) to construct off-policy estimates of
the value of each candidate policy.

The viability of such a simple approach is counter-intuitive
since off-policy evaluation using IS tends to have high vari-
ance that grows rapidly as the behaviour and evaluation
policies diverge. However, HOOF is motivated by the in-
sight that in second order methods such as NPG and TRPO,
constraints on the magnitude of the update in policy space
ensure that the IS estimates remain informative. While this
is not the case for first order methods, we show that adding
a simple KL constraint, without any of the complications
of second order methods, suffices to keep IS estimates in-
formative and enable effective hyperparameter optimisation.
We further show that the performance of HOOF is robust to
the setting of this KL constraint.

HOOF is 1) sample efficient, requiring no more than one
training run; 2) computationally efficient compared to se-
quential and parallel search methods; 3) able to learn a
dynamic schedule for the hyperparameters that outperforms
methods that learn fixed hyperparameter settings; and 4) sim-
ple to implement. Being gradient free, HOOF also avoids
the limitations of gradient-based methods (Sutton, 1992;
Luketina et al., 2016; Xu et al., 2018) for learning hyperpa-

rameters. While such methods can be more sample efficient
than grid search or PBT, they can be sensitive to the choice
of their own hyperparameters (see Sections 4 and 5.1) and
thus require more than one training run to tune their own
hyperparameters.

Furthermore, when reward is a sum of multiple separately
observed reward streams (van Seijen et al., 2017), HOOF
can learn different hyperparameter schedules for each re-
ward stream, leading to even faster and better learning.

We evaluate HOOF across a range of simulated continuous
control tasks using the Mujoco OpenAI Gym environments
(Brockman et al., 2016). First, we apply HOOF to A2C
(Mnih et al., 2016), and show that using it to learn the
learning rate can improve performance. Next, we show that
using HOOF to learn optimal hyperparameter schedules for
NPG can outperform TRPO. This suggests that while strictly
enforcing the KL constraint enables TRPO to outperform
NPG, doing so becomes unnecessary once we can properly
adapt NPG’s hyperparameters. Finally, we consider tasks
with multiple reward streams and show that HOOF enables
faster learning in such settings.

2. Background
Consider the RL task where an agent interacts with its en-
vironment and tries to maximise its expected return. At
timestep t, it observes the current state st, takes an ac-
tion at, receives a reward rt = r(st, at), and transitions
to a new state st+1 following some transition probabil-
ity P . The value function of the state st is V (st) =
Ea∼π,s∼P [

∑∞
i=0 γ

irt+i] for some discount rate γ ∈ [0, 1).
The undiscounted formulation of the objective is to find
a policy that maximises the expected return J(π) =
Ea∼π,s∼P,s0∼p(s0)[

∑
t rt]. In stochastic policy gradient

algorithms, at is sampled from a parametrised stochastic
policy π(a|s) that maps states to actions. We abuse notation
to use π to denote both the policy as well as the parameters.
These methods perform an update of the form

π′ = π + f(ψ, π). (1)

Here f(ψ, π) represents a step along the gradient direction
for some objective function estimated from a batch of tra-
jectories {τπ1 , τπ2 , . . . , τπK} which have been sampled using
policy π, and ψ is the set of hyperparameters. Since we are
interested in optimising ψ, for ease of notation we will drop
π from f(ψ, π) and write it as f(ψ) for the rest of the paper.

For first order policy gradient methods with GAE, ψ =
(α, γ, λ), and the update takes the form:

f(α, γ, λ) = αg(γ, λ)

= α
∑
t

∇ log π(at|st)AGAE(γ,λ)
t , (2)
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where α is the learning rate, AGAE(γ,λ)
t = (1− λ)(A

(1)
t +

λA
(2)
t +λ2A

(3)
t +...) withA(k)

t = −V (st)+rt+γrt+1+...+
γk−1rt+k−1 + γkV (st+k). By discounting future rewards
and bootstrapping off the value function, GAE reduces the
variance due to rewards observed far in the future, but adds
bias to the policy gradient estimate. Well chosen (γ, λ)
can significantly speed up learning (Schulman et al., 2016;
Henderson et al., 2018a; Mahmood et al., 2018).

In first order methods, small updates in parameter space
can lead to large changes in policy space, leading to large
changes in performance. Second order methods like NPG
address this by restricting the change to the policy through
the constraint KL(π′||π) ≤ δ. An approximate solution to
this constrained optimisation problem leads to the update
rule:

f(δ, γ, λ) =

√
2δ

gT I(π)−1g
I(π)−1g, (3)

where I(π) is the estimated Fisher information matrix
(FIM).

Since the above is only an approximate solution, the
KL(π′||π) constraint can be violated in some iterations.
Further, since δ is not adaptive, it might be too large
for some iterations. TRPO addresses these issues by
requiring an improvement in the surrogate Lπ(π′) =

Ea∼π,s∼P [π
′(a|s)
π(a|s) A

GAE(γ,λ)], as well as ensuring that the
KL-divergence constraint is satisfied. It does this by per-
forming a backtracking line search along the gradient direc-
tion. As a result, TRPO is more robust to the choice of δ
(Schulman et al., 2015).

3. Hyperparameter Optimisation on the Fly
The main idea behind HOOF is to automatically learn a
schedule for the hyperparameters by greedily maximising
the value of the updated policy, i.e., starting with policy πn
at iteration n, HOOF sets

ψn = argmax
ψ

J(πn+1)

= argmax
ψ

J(πn + f(ψ)), (4)

Given a set of sampled trajectories, f(ψ) can be computed
for any ψ, and thus we can generate different candidate
πn+1 without requiring any further samples. However,
solving the optimisation problem in (4) requires evaluat-
ing J(πn+1) for each such candidate. Any on-policy ap-
proach would have prohibitive sample requirements, so
HOOF uses weighted importance sampling (WIS) to con-
struct an off-policy estimate of J(πn+1). Given sam-
pled trajectories {τπn1 , τπn2 , .., τπnK }, with corresponding re-
turns {Rπn1 , Rπn2 , ..., RπnK }, the WIS estimate of J(πn+1)

is given by:

J(πn+1) =

K∑
k=1

(
wk∑K
k=1 wk

)
Rπnk , (5)

where wk =
P (τπnk ∼πn+1)

P (τπnk ∼πn)
. Since p(τ |π) =

p(s0)
∏T
i=0 π(ai|si)p(si+1|si, ai), we have:

wk =

∏T
i=0 πn+1(ai|ski )∏T
i=0 πn(ai|ski )

. (6)

The success of this approach depends critically on the qual-
ity of the WIS estimates, which can suffer from high vari-
ance that grows rapidly as the distributions of πn+1 and πn
diverge. Fortunately, for second order methods like NPG,
KL(πn+1||πn) is automatically approximately bounded by
the update, ensuring reasonable WIS estimates when HOOF
directly uses (4). In the following, we consider the more
challenging case of first order methods.

3.1. First Order HOOF

Without a KL bound on the policy update, it may seem that
WIS will not yield adequate estimates to solve (4). How-
ever, a key insight is that, while the estimated policy value
can have high variance, the relative ordering of the policies,
which HOOF solves for, has much lower variance. Nonethe-
less, HOOF could still fail if KL(πn+1||πn) becomes too
large, which can occur in first order methods. Hence, First
Order HOOF modifies (4) by constraining KL(πn+1||πn):

ψn = argmax
ψ

J(πn+1) s.t. KL(πn+1||πn) < ε. (7)

While this yields an update that superficially resembles that
of natural gradient methods, the KL constraint is applied
only during the search for the optimal hyperparameter set-
tings using WIS. The direction of the update is determined
solely by a first order gradient update rule, and estimation
and inversion of the FIM is not required. From a practical
perspective, this constraint is enforced by computing the KL
for each candidate policy based on the observed trajectories,
and the candidate is rejected if this sample KL is greater
than the constraint.

If learning the learning rate using HOOF, we can also use
the KL constraint to dynamically adjust the search bounds:
At each iteration, if none of the candidates violate the KL
constraint, we increase the upper bound of the search space
by a factor ν, while if a large proportion of the candidates
violate the KL constraint, we reduce the upper bound by
ν. This makes HOOF even more robust to the initial set-
ting of the search space. Note that this is entirely optional,
and is simply a means to reduce the number of number of
candidates that would otherwise need to be generated and
evaluated to ensure that a good solution to (4) is found.
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Algorithm 1 HOOF

input Initial policy π0, number of policy iterations N ,
search space for ψ, KL constraint ε if using first or-
der policy gradient method.

1: for n = 0, 1, 2, 3, . . . , N do
2: Sample trajectories τ1:K using πn.
3: for z = 1, 2, . . . Z do
4: Generate candidate hyperparameter {ψz} from the

search space.
5: Compute candidate policy πz using ψz in (1)
6: Estimate J(πz) using WIS (5)
7: Compute KL(πz||πn) if using first order policy

gradient method,
8: end for
9: Select ψn, and hence πn+1, according to (7) for first

order methods, or (4) for second order methods
10: end for

3.2. HOOF with Multiple Reward Streams

In some environments, the reward function is a sum of
multiple reward streams, i.e., rt = r1

t + r2
t + ... + rLt

(van Seijen et al., 2017). For example, if we are trying to
learn a locomotion behaviour for a robot there could be a
reward stream for forward motion, another that penalises
joint movement, and another for reaching the goal. If each
of these reward streams is observable, we can use HOOF
to learn hyperparameters specific to each reward stream. In
this setting, the GAE in (2) is simply a linear combination
of the advantages for each reward stream, each with its own
set of (γ, λ) parameters:

A
GAE(γ,λ)
t = A

GAE(γ1,λ1)
t,1 + . . .+A

GAE(γL,λL)
t,L . (8)

3.3. Greedy Maximisation

Setting the hyperparameters at each iteration with HOOF
requires greedily maximising J(πn+1) by solving (4). This
can be done using random search or BO, depending on the
computational expense of generating and evaluating each
candidate πn.

In (2), g(γ, λ) is independent of α. Thus, if we only want
to learn a schedule for α, the gradient g(γ, λ) needs to be
computed once. Subsequently, computing πn+1 for different
α involves a multiplication and an addition operation, which
is far cheaper than computing the gradient. Thus, in this
case we can employ random search to solve (4) efficiently.

If we use HOOF to learn (γ, λ) as well, gn has to be com-
puted for each setting of (γ, λ). With neural net value func-
tion approximations, we modify our value function such
that its inputs are (s, γ, λ), similar to Universal Value Func-
tion Approximators (Schaul et al., 2015). Thus we learn

a (γ, λ)-conditioned value function that can make value
predictions for any candidate (γ, λ) at the cost of a single
forward pass.

A computationally expensive step arises when using second
order methods combined with deep neural net policies with
tens of thousands of parameters. If the policy had few
enough parameters that I(π)−1 can be computed exactly
and stored in memory, then an update to πn can be computed
efficiently. To work with large policies, TRPO uses the
conjugate gradient method to approximate I(π)−1g directly
without explicitly computing I(π)−1. When used with NPG,
the resulting algorithm is referred to as Truncated Natural
Policy Gradients (TNPG) (Duan et al., 2016). This implies
that each setting of (γ, λ) considered requires a new run
of the conjugate gradient algorithm. Thus, BO might be a
suitable choice in such situations. However, our experiments
suggest that random search with a rather small sample size
of 10 performs well even in this case.

4. Related Work
Most hyperparameter search methods can be broadly clas-
sified into sequential search, parallel search, and gradient
based methods.

Sequential search methods perform a training run with some
candidate hyperparameters, and use the results to inform
the choice of the next set of hyperparameters for evaluation.
BO is a sample efficient global optimisation framework that
models performance as a function of the hyperparameters,
and is especially suited for sequential search as each training
run is expensive. After each training run BO uses the ob-
served performance to update the model in a Bayesian way,
which then informs the choice of the next set of hyperparam-
eters for evaluation. Several modifications have been sug-
gested to further reduce the number of evaluations required:
input warping (Snoek et al., 2014) to address nonstationary
fitness landscapes; freeze-thaw BO (Swersky et al., 2014)
to decide whether a new training run should be started and
the current one discontinued based on interim performance;
transferring knowledge about hyperparameters across simi-
lar tasks (Swersky et al., 2013); and modelling training time
as a function of dataset size (Klein et al., 2016). To fur-
ther speed up the wall clock time, some BO based methods
use a hybrid mode wherein batches of hyperparameter set-
tings are evaluated in parallel (Contal et al., 2013; Desautels
et al., 2014; Shah & Ghahramani, 2015; Wang et al., 2016;
Kandasamy et al., 2018).

By contrast, parallel search methods like grid search and
random search run multiple training runs with different
hyperparameter settings in parallel to reduce wall clock
time, but require more parallel computational resources.
These methods are easy to implement, and have been shown
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to perform well (Bergstra et al., 2011; Bergstra & Bengio,
2012).

Both sequential and parallel search suffer from two key dis-
advantages. First, they require performing multiple training
runs to identify good hyperparameters. Not only is this
computationally inefficient, but when applied to RL, also
sample inefficient as each run requires fresh interactions
with the environment. Second, these methods learn fixed
values for the hyperparameters that are used throughout
training instead of a schedule, which can lead to suboptimal
performance (Luketina et al., 2016; Jaderberg et al., 2017;
Xu et al., 2018).

PBT (Jaderberg et al., 2017) is a hybrid of random and se-
quential search, with the added benefit of adapting hyperpa-
rameters during training. It starts by training a population of
hyperparameters which are then updated periodically to fur-
ther explore promising hyperparameter settings. However,
by requiring multiple training runs, it inherits the sample
inefficiency of random search.

HOOF is much more sample efficient because it requires no
more interactions with the environment than those gathered
by the underlying policy gradient method for one train-
ing run. Consequently, it is also far more computationally
efficient. However, while HOOF can only optimise hyperpa-
rameters that directly affect the policy update, these methods
can tune other hyperparameters, e.g., policy architecture,
and batch size. Combining these complementary strengths
in an interesting topic for future work.

Gradient based methods (Sutton, 1992; Bengio, 2000;
Luketina et al., 2016; Pedregosa, 2016; Xu et al., 2018)
adapt the hyperparameters by performing gradient descent
on the policy gradient update function with respect to the
hyperparameters. This raises the fundamental problem that
the update function needs to be differentiable. For example,
the update function for TRPO uses conjugate gradient to
approximate I(π)−1g, performs a backtracking line search
to enforce the KL constraint, and introduces a surrogate
improvement constraint, which introduce discontinuities in
the update and makes it non-differentiable.

A second major disadvantage of these methods is that they
introduce their own set of hyperparameters, which can make
them sample inefficient if they require tuning. For example,
the meta-gradient estimates can have high variance, which
in turn significantly affects performance. To address this,
the objective function of meta-gradients introduces refer-
ence (γ′, λ′) hyperparameters to trade off bias and variance.
As a result, its performance can be sensitive to these, as the
experimental results of Xu et al. (2018) show. Furthermore,
gradient based methods tend to be highly sensitive to the
setting of the learning rate, and these methods introduce
their own learning rate hyperparameter for the meta learner

which requires tuning, as we show in our experiments. As
a gradient-free method, HOOF does not require a differ-
entiable objective and, while it introduces a KL constraint
hyperparameter for first order methods, this do not affect
sample efficiency, as shown in Section 5.1.

Other work on non-gradient based methods includes that of
Kearns & Singh (2000), who derive a theoretical schedule
for the TD(λ) hyperparameter that they show is better than
any fixed value. Downey et al. (2010) learn a schedule for
TD(λ) using a Bayesian approach. White & White (2016)
greedily adapt the TD(λ) hyperparameter as a function of
state. Unlike HOOF, these methods can only be applied to
TD(λ) and, in the case of Kearns & Singh (2000), are not
compatible with function approximation.

5. Experiments
To experimentally validate HOOF, we apply it to four simu-
lated continuous control tasks from MuJoCo OpenAI Gym
(Brockman et al., 2016): HalfCheetah, Hopper, Ant, and
Walker. We start with A2C, and compare HOOF’s perfor-
mance with two baselines. Next, we use NPG as the un-
derlying policy gradient method and apply HOOF to learn
(δ, γ, λ) and show that it outperforms TRPO.

We repeat all experiments across 10 random starts. In all
figures solid lines represent the median, and shaded regions
the quartiles. Similarly all results in tables represent the me-
dian. Hyperparameters that are not tuned are held constant
across HOOF and baselines to ensure comparability. Details
about all hyperparameters can be found in the appendices.

5.1. HOOF with A2C

In the A2C framework, a neural net with parameters θ is
commonly used to represent both the policy and the value
function, usually with some shared layers. The update func-
tion (1) for A2C is a linear combination of the gradients of
the policy loss, the value loss, and the policy entropy:

f(α) =α{∇θ log πθ(a|s)(R− Vθ(s))
+ c1∇θ(R− Vθ(s))2 + c2∇θH(πθ(s))}, (9)

where we have omitted the dependence on the timestep and
other hyperparameters for ease of notation. The perfor-
mance of A2C is particularly sensitive to the choice of the
learning rate α (Henderson et al., 2018b), which requires
careful tuning.

We learn α using HOOF with the KL constraint ε = 0.03
(‘HOOF’). We compare this against two baselines: (1) Base-
line A2C, i.e., A2C with the initial learning rate set to the
OpenAI Baselines default (0.0007), and (2) learning rate
being learnt by meta-gradients (‘Tuned Meta-Gradient’),
where the hyperparameters introduced by meta-gradients
were tuned using grid search.
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(a) HalfCheetah (b) Hopper (c) Ant (d) Walker

Figure 1. Performance of HOOF with ε = 0.03 compared to Baseline A2C and Tuned Meta-Gradients. The hyperparameters (α0, β) of
meta gradients had to be tuned using grid search which required 36x the samples used by HOOF.

Table 1. Performance of HOOF with different values of the KL constraint (ε parameter). The results show that the performance is relatively
robust to the setting of ε.

KL constraint ε = 0.01 ε = 0.02 ε = 0.03 ε = 0.04 ε = 0.05 ε = 0.06 ε = 0.07

HalfCheetah 1,203 1,451 1,524 1,325 1,388 1301 1504
Hopper 359 358 350 362 359 370 365
Ant 916 942 952 957 971 963 969
Walker 466 415 467 475 456 402 457

Figure 2. Schedule for the learning rates learnt by HOOF. Refer to
Equations (9).

The learning curves in Figure 1 shows that across all envi-
ronments HOOF learns faster than Baseline A2C, and also
outperforms it in HalfCheetah and Walker, demonstrating
that learning the learning rate online can yield significant
gains. The learning rates learnt by HOOF are presented in
Figure 2.

The update rule for meta-gradients when learning α reduces
to α′ = α+ β∇θ′ log πθ′(a|s)(R− Vθ′(s)) fθ(ψ)

α , where β
is the meta learning rate. This leads to two issues: what
should the learning rate be initialised to (α0), and what
should the meta learning rate be set to? Like all gradient
based methods, the performance of meta gradients can be
sensitive to the choices of these two hyperparamters. When
we set α0 to the OpenAI baselines default setting and β to
0.001 as per Xu et al. (2018), A2C fails to learn at all. Thus,

we had to run a grid search over (α0, β) to find the optimal
settings across these hyperparameters. In Figure 1 we plot
the best run from this grid search. Despite using 36 times
as many samples (due to the grid search), meta-gradients
still cannot outperform HOOF, and learns slower in 3 of
the 4 tasks. The returns for each of the 36 points on the
grid are presented in Appendix B.1 and they show that the
performance of meta gradients can be sensitive to these two
hyperparamters.

To show that HOOF’s performance is robust to ε, its own
hyperparameter quantifying the KL constraint, we repeated
our experiments with different values of ε. The results
presented in Table 1 show that HOOF’s performance is
stable across different values of this parameter. This is not
surprising – the sole purpose of the constraint is to ensure
that the WIS estimates remain viable.

Appendix A.2 contains further experimental details, includ-
ing results confirming that the KL constraint is crucial to
ensuring sound WIS estimates.

In Appendix A.3 we also show that HOOF is robust to the
choice of the optimiser by running the experiments with
SGD (instead of RMSProp) as the optimiser. In this case the
difference in performance is highly significant with Baseline
A2C failing to learn at all.

5.2. HOOF with TNPG

A major disadvantage of second order methods is that they
require the inversion of the FIM in (3), which can be pro-
hibitively expensive for large neural net policies with thou-
sands of parameters. TNPG and TRPO address this by
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(a) HalfCheetah (b) Hopper (c) Ant (d) Walker

Figure 3. Performance of HOOF-All vs TRPO baselines.

(a) HOOF-All: learnt δ (b) HOOF-All: learnt γ (c) HOOF-All: learnt γ

Figure 4. Hyperparameter schedule learnt by HOOF-All for HalfCheetah, Hopper, and Walker. The y-axes shows the bounds of the
respective search spaces.

using the conjugate gradient algorithm to efficiently com-
pute I(π)−1g. TRPO has been shown to perform better than
TNPG in continuous control tasks (Schulman et al., 2015), a
result attributed to stricter enforcement of the KL constraint.

However, in this section, we show that stricter enforcement
of the KL constraint becomes unnecessary once we properly
adapt TNPG’s learning rate. To do so, we apply HOOF to
learn (δ, γ, λ) of TNPG (HOOF-All), and compare it to two
baseline versions of TRPO: one with γ = 0.99 and λ = 1
following Schulman et al. (2015); Duan et al. (2016), and
another with γ = 0.995 and λ = 0.97 following Henderson
et al. (2018a); Rajeswaran et al. (2017). We refer to these as
TRPO(0.99,1) and TRPO(0.995,0.97). The KL constraint
for both is set to 0.01 following Schulman et al. (2015);
Henderson et al. (2018a).

Figure 3 shows the learning curves of HOOF-all and
the two TRPO baselines. Across all four environments
TRPO(0.995,0.97) outperforms TRPO(0.99,1). HOOF-All
learns much faster, and achieves a significantly better return
than TRPO(0.995,0.97) in HalfCheetah and Ant. In Hopper
and Walker, there is no significant performance difference
between HOOF and the TRPO(0.995,0.97) baseline. How-
ever, the large variation in the returns for all methods in
Walker suggests that the choice of the random seed has a
far greater impact on performance than the choice of the
hyperparameters.

Figure 4 presents the learnt (δ, γ, λ) for HalfCheetah, Hop-
per, and Walker. The results show that different KL con-
straints and GAE hyperparameters are needed for different

domains. See Appendix C.2 for plots of the learnt hyperpa-
rameters for Ant.

5.3. Tasks with Multiple Reward Streams

The reward function for HalfCheetah is the sum of two
components: positive reward for forward movement and
penalties for joint movements. Similarly for Ant, the agent
gets a fixed reward at each timestep it survives, together
with other rewards for forward movement and penalties for
joint movement. These additive reward components can be
exposed to the learning agent through Gym’s API. We use
this to test if learning a separate set of hyperparameters for
each reward stream with HOOF can improve learning.

Following (8), our method Multi-HOOF, learns a single KL
constraint, but a different γ for each reward stream. We
compare Multi-HOOF to a second HOOF baseline (BL-
HOOF) that learns a single KL constraint and γ for the full
reward function. For both λ was fixed to 1.

Figure 5 present the results, together with the learnt hyper-
parameters for HalfCheetah. They show that Multi-HOOF
learns a significantly different discount rate for each reward
stream and that this helps improve performance.

The results for Ant presented in Figure 6, show that once
again learning multiple discount schedules helps improve
performance. In Figure 6c, Multi-HOOF’s discount rate
schedule corresponding to the forward movement reward
stream starts lower than that of BL-HOOF’s discount rate,
but the two soon converge. The discount rate for the survival
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(a) Returns (b) Learnt KL constraints (c) Learnt discount rates

Figure 5. Performance and hyperparameters learnt by Multi-HOOF and BL-HOOF for each reward stream in HalfCheetah with multiple
reward streams.

(a) Returns (b) Learnt KL constraints (c) Learnt discount rates

Figure 6. Performance and hyperparameters learnt by Multi-HOOF and BL-HOOF for each reward stream in Ant with multiple reward
streams.

reward stream on the other hand starts high and then reduces.
We believe this is because during early stages of training the
key signal for policy improvement comes from the survival
reward stream as the agent learns to stay alive. Once it
starts getting the survival reward consistently, the forward
movement reward stream provides a much better signal for
learning a better policy.

6. Conclusions & Future Work
The performance of a policy gradient method is highly de-
pendent on its hyperparameters. However, methods typically
used to tune these hyperparameters are highly sample inef-
ficient, computationally expensive, and learn only a fixed
setting of the hyperparameters. In this paper we presented
HOOF, a sample efficient method that automatically learns a
schedule for the learning rate and GAE hyperparameters of
policy gradient methods without requiring multiple training
runs. We believe that this, combined with its simplicity and
ease of implementation, makes HOOF a compelling method
for optimising policy gradient hyperparameters.

While this paper focused on learning only a few hyperpa-
rameters of policy gradient methods, in principle HOOF
could be used to learn other hyperparameters as well, e.g.,
those of Generative Adversarial Imitation Learning (GAIL)
(Ho & Ermon, 2016) or Model Agnostic Meta-Learning

(MAML) (Finn et al., 2017), which could lead to more
stable learning.
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A. A2C Experimental details
We present further details about our A2C experiments in
this section.

A.1. Implementation details

Our codebase for the A2C experiments is based on OpenAI
Baselines (Dhariwal et al., 2017) implementation of A2C
and uses their default hyperparameters. Experiments involv-
ing HOOF use the same hyperparameters apart from those
that are learnt by HOOF. All hyperparameters are presented
in Table 2.

Table 2. Hyperparameters used for A2C experiments.

Hyperparameter Value

Number of environments (num envs) 40
Timesteps per worker (nsteps) 5
Total environment steps 5e6
Discounting γ 0.99
Max gradient norm 0.5

Optimiser RMSProp
– α 0.99
– ε 1e-5

Policy MLP
– Number of fully connected layers 2
– Number of units per layer 64
– Activation tanh

Default settings for Baseline A2C
– Initial learning rate 7e-4
– Learning rate schedule linear annealing
– Value function cost weight (c1) 0.5
– Entropy cost weight (c2) 0.01

HOOF specific hyperparameters
– Initial search bounds for α [0,1e-2]
– Number of random samples for α 100

For HOOF, αUB , the upper bound of the search space
for α was dynamically updated at each iteration based on
the following: if no candidates violate the KL constraint,
αUB ← 1.25αUB . If more than 80% of the candidates
violate the KL constraint, αUB ← αUB/1.25.

A.2. Performance of HOOF without KL constraint

Figure 7 shows that without a KL constraint HOOF does not
converge, which confirms that we need to constrain policy
updates so that WIS estimates remain sound.

A.3. Robustness to choice of optimiser

OpenAI implementation of A2C uses RMSProp as the de-
fault optimiser. To check how robust HOOF’s performance
is to the choice of the optimiser, we ran both Baseline A2C
and HOOF with SGD instead. The learning curves presented

in Figure 8 shows that in this case HOOF’s performance is
far better than that of Baseline A2C which fails to learn at
all.

B. Meta-Gradients update for α

The meta-gradient algorithm for hyperparameters ψ pro-
ceeds as follows: 1) Sample trajectories τθ1:K ∼ πθ. 2)
Update θ′ = θ + fθ(ψ) (where fθ is as per (9)). 3)
Sample trajectories τθ

′

1:K ∼ πθ′ . 4) Update ψ′ = ψ +

β
∂J ′(τθ

′
1:K ,ψ̄)
∂θ′

∂fθ(ψ)
∂ψ , where J ′ is the meta-objective with

ψ̄ the set of reference hyperparameters introduced by the
meta-gradient algorithm to balance bias-variance trade-
off within the meta-objective, and β is the meta learn-
ing rate. For ψ = α, ∂fθ(ψ)

∂ψ = fθ(ψ)
α , and we can use

the policy loss as the meta objective, with ∂J′(τθ
′

1:K ,ψ̄)
∂θ′ =

∇θ′ log πθ′(a|s)(R− Vθ′(s)).

An unconstrained meta-update can lead to α being negative.
Clipping α to 0 after each meta update is not feasible since
it leads to the situation where the policy does not update
at all. Hence a log transform was used instead to ensure
α > 0.

B.1. Results of grid search for meta gradients

The returns after 5 millions timesteps for each setting of
(α0, β) on the grid is given in Table 3. Note that very few
settings of the hyperparameters can match the performance
of HOOF, while some settings of (α0, β) can lead to the
algorithm failing to learn at all. Setting α0 = 1e − 3,
which is closest to the OpenAI Baselines default setting,
and β = 1e − 3 as was used by (Xu et al., 2018) in their
experiments leads to performance well below that of HOOF,
or even Baseline A2C.

It is also important to note that HOOF only requires 1 train-
ing run of samples (i.e. 5 million timesteps) while the grid
search over the hyperparameters means that meta-gradients
requires 36x samples to be able to match HOOF.

C. TNPG Experimental details
We present further details about our TNPG experiments in
this section.

C.1. Implementation details

Our codebase for the TNPG experiments is based on RLLab
(Duan et al., 2016) implementation. The hyperparameters
are presented in Table 4.
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Table 3. Results of grid search over meta-gradients hyperparameters. * denotes algorithm diverged with returns < −105. Settings with
returns greater than HOOF returns are shown in bold.

HalfCheetah β HOOF
1e− 2 1e− 3 1e− 4 1e− 5 1e− 6 1e− 7

α0

1e− 2 -10,972 -1,230 * * * -498

1523

1e− 3 -7,137 -221 468 1,080 1,568 1,272
1e− 4 * -245 313 441 -223 86
1e− 5 * -247 324 -499 -515 -518
1e− 6 -641 -224 -404 -618 -616 -631
1e− 7 -643 -351 -611 -633 -638 -639

Hopper β HOOF
1e− 2 1e− 3 1e− 4 1e− 5 1e− 6 1e− 7

α0

1e− 2 -2,950 -13,271 -808 -1,845 87 103

350

1e− 3 -12,045 -508 -801 54 378 368
1e− 4 -20,086 68 67 225 215 236
1e− 5 -3,309 70 65 67 61 61
1e− 6 35 67 63 64 64 50
1e− 7 -7,793 72 64 54 20 18

Ant β HOOF
1e− 2 1e− 3 1e− 4 1e− 5 1e− 6 1e− 7

α0

1e− 2 * 393 * * * *

952

1e− 3 * 761 752 950 926 884
1e− 4 -47,393 -156 687 672 666 655
1e− 5 * 375 588 -595 -739 -692
1e− 6 * 283 373 -1,081 -1,073 -1,006
1e− 7 -1,257 -514 -361 -1,017 -1,042 -964

Walker β HOOF
1e− 2 1e− 3 1e− 4 1e− 5 1e− 6 1e− 7

α0

1e− 2 -10,316 -2,922 109 294 176 159

467

1e− 3 -1,383 -2,636 28 445 492 485
1e− 4 -931 -153 31 220 133 124
1e− 5 -4,732 -117 125 112 116 121
1e− 6 -47,222 -3,005 137 113 39 12
1e− 7 -774 -22 111 113 2 0
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(a) HalfCheetah (b) Hopper (c) Ant (d) Walker2d

Figure 7. Comparison of the performance of HOOF with ε = 0.03 and HOOF without any KL constraint.

(a) HalfCheetah (b) Hopper (c) Ant (d) Walker2d

Figure 8. Comparison of the performance of HOOF with ε = 0.03 and Baseline A2C where the optimiser is SGD (instead of RMSProp).

Table 4. Hyperparameters used for TNPG experiments.

Batch size
– HalfCheetah-v1 20
– Hopper-v1 20
– Walker2d-v1 40
– Ant-v1 40

Baseline TRPO
– KL constraint 0.01
– Discounting γ 0.99 or 0.995
– GAE-λ 1.0 or 0.97

Policy MLP
– num of fully connected layers 2
– num of units per layer 100
– activation ReLU

HOOF specific hyperparameters
– search bounds for ε [0.00125, 0.045]
– search bounds for (γ) [0,95, 1]
– search bounds for (λ) [0.95, 1]

C.2. Learnt hyperparameter schedules for Ant

The hyperparameter schedule learnt by HOOF-All for Ant
are presented in Figure 9.

(a) HOOF-All: learnt δ

(b) HOOF-All: learnt (γ, λ)

Figure 9. Hyperparameter schedule learnt by HOOF-All for Ant.


