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ABSTRACT

We propose a novel quantitative measure to predict the performance of a deep
neural network classifier, where the measure is derived exclusively from the graph
structure of the network. We expect that this measure will become a fundamental
first step in developing a method to evaluate new network architectures and re-
duce the reliance on the computationally expensive trial and error or “brute force”
optimisation processes involved in model selection. The measure is derived in
the context of multi-layer perceptrons (MLPs), but the definitions are shown to be
useful also in the context of deep convolutional neural networks (CNN), where
it is able to estimate and compare the relative performance of different types of
neural networks, such as VGG, ResNet, and DenseNet. Our measure is also used
to study the effects of some important “hidden” hyper-parameters of the DenseNet
architecture, such as number of layers, growth rate and the dimension of 1×1 con-
volutions in DenseNet-BC. Ultimately, our measure facilitates the optimisation of
the DenseNet design, which shows improved results compared to the baseline.

1 INTRODUCTION

Deep neural networks (DNN) have achieved outstanding results in several classification
tasks (Huang et al., 2017; He et al., 2016). There is some theoretical understanding of the workings
of individual elements, such as convolutional filters, activation funtions, and normalisation (Good-
fellow et al., 2016; LeCun et al., 2015; Schmidhuber, 2015). However, current ideas behind the DNN
graph design are still based on ad-hoc principles (Mishkin et al., 2017). These principles are largely
qualitative and tend to improve classification accuracy – examples of these principles include: an
increase of the network depth (Szegedy et al., 2015), and an increase of the representation dimen-
sionality (by, for example, expanding the number of channels in deeper parts of the DNN) (Huang
et al., 2017; He et al., 2016). We notice that an effective DNN graph design is largely independent
of the data set, as long as the type of data (e.g., images) and task (e.g., classification) are similar.
Hence, we argue that good design principles can be encoded in a quantitative measure of the graph
and should be justified by a quantitative assessment of the DNN architecture performance. An alter-
native way of designing a DNN graph structure is based on (meta-)optimisation methods (Jenatton
et al., 2017; Kandasamy et al., 2019; Mendoza et al., 2016; Snoek et al., 2012). Although useful in
practice, such optimisation methods add little to our understanding of the design principles of new
DNN graphs and are computationally challenging to execute.

DNNs form a hierarchical structure of filters that can be seen as a directed graph. The first layers of
this graph contain neurons that are active for low level patterns, such as edges and patches (in the
case of images) (Zeiler & Fergus, 2014), while deeper layer neurons are active for more complex
visual patterns, such as faces or cars, formed by a hierarchical combination of a large number of
simpler filters (Zeiler & Fergus, 2014). In such representation, each neuron behaves like a binary
classifier of the visual pattern learned by the neuron. Also, the strength of the activation is related to
how well the pattern is matched.

We argue that this linear separability promoted by the neurons is the key ingredient behind an ef-
fective quantitative measure of model performance. In this paper, we introduce a new measure that
can be a proxy for DNN model performance. This proposed measure is first formulated in the con-
text of Multi Layer Perceptrons (MLPs) to quantitatively predict the classification accuracy of the
model. Then, we extend the applicability of the measure to predict the classification accuracy of
the following CNNs: VGG (Simonyan & Zisserman, 2014), ResNet (He et al., 2016) and DenseNet
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(Huang et al., 2017). The experiments demonstrate how this quantity can be used to predict the
“correct” depth of a simple feed forward DNN with constraints on the parameter budget. The exper-
iments also show how the proposed quantity can be used to improve the design of DenseNet (Huang
et al., 2017) and in the study of the effects of some important “hidden” hyper-parameters such as the
dimension of 1 × 1 convolutions in the bottlenecks of DenseNet-BC, the number of layers, and the
growth rate.

2 METHOD

We first define the proposed measure using discrete calculations, then we relax the computation with
continuous mathematics to formulate an optimisation problem for the proposed quantity. We then
make some assumptions that facilitate the calculation and optimisation of the measure. We close the
section showing how we can relax these assumptions without loosing predictive power.

2.1 DISCRETE PATH COUNTING

The goal of DNN models is to maximise the chances to have a large number of useful patterns
recognised by each layer. In each layer, new low level patterns must be recognised without losing
the ability to separate patterns that were separable in previous layers. One possible way to realise
such goal is by increasing the dimension of the representation (Vapnik, 2013). This argument can
be quantified by computing the number of paths that affect a neuron in layer k as

∏
i<kNi, where

Ni is the number of nodes or channels in layer i, i.e., nodes for multi-layer perceptrons (MLP) and
channels for convolutional neural networks (CNN). Such definition resembles a concept called for-
ward path entropy that studies the hierarchy of complex networks (Corominas-Murtra et al., 2013).
We argue that modern CNNs are man-made complex networks developed incrementally by a large
number of researchers, and so comply with many of the assumptions behind complex networks. A
measure of number of paths in DNNs was proposed by Veit et al. (2016) to explain the effective-
ness of residual networks (ResNet) (He et al., 2016), their work counts the paths of the residual
connections, which is different from our approach.

The maximisation of the number of paths defined above, given a fixed number of parameters, im-
plies that the optimal design would be of a very deep network, where each channel (or node) has
size 2. Unfortunately, this clearly does not match the collective wisdom of the field regarding the
design of deep learning models. In this paper, we aim to propose an alternative measure that can
explain more effectively the superior performance of recently proposed DNNs.

State-of-the-art DNNs can be represented by a graph that takes in data with a small number of chan-
nels for CNNs (e.g., 3 channels for colour images) or a small number of input neurons for MLPs, and
after each layer, it expands the dimension of this representation by increasing the number of channels
or neurons. Also when the number of neurons does not increase, the effectively used dimensions of
the representation is likely to increase nonetheless. Increasing the dimension of the representation
helps in classification tasks because it makes samples belonging to different classes ”more” linearly
separable – this is analogous to the kernel trick argument (Vapnik, 2013). Consequently, we re-
define paths to be the number of additional channels or neurons between two consecutive layers,
as in pathi = Ni −Ni−1. We justify this definition by arguing that for each additional layer i, only
the “extra” dimensions (Ni−Ni−1) are beneficial to enable new linearly separable patterns without
losing the separability of patterns already learned by earlier layers. These extra dimensions allow to
embed the data encoded in the previous layer in a higher dimensional space, where classes become
more linearly separable (Cover, 1965; Budinich, 1991; Fink et al., 2017).

For MLPs, we propose the following objective function to maximise:

paths =
∏
i

(Ni+1 −Ni), (1)

subject to a fixed number of parameters P =
∑
iNi+1Ni, disregarding the biases for simplicity.

This measure can be extended for CNNs by replacing Ni with Ni × filter width × filter height. To
make the calculation of the paths manageable, following the same approach taken in the definition
of entropy, we take the log(.) of the objective in equation 1:

Z = log (paths) =
∑
i

log (Ni+1 −Ni). (2)
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Finally, for the definition to work in cases where the number of channels does not change (or de-
creases) for a few layers, we consider the upper limit of the paths calculated under the constrain of
the available neurons:

Z = sup
{Di|Di≤Ni}

∑
i

log (Di+1 −Di), (3)

where the optimal values for Di can be trivially found. For instance, for a block of layers that have
the same number of channelsNi, the values ofDi optimising Z in equation 3 grow linearly between
D0 and Dlast, with D0 typically representing the number of input channels.

2.2 CONTINUOUS PATH COUNTING

In the limit of large number of layers, it is easier to optimise Z in equation 2 as a continuous function
of the layer depth. Then, i becomes the continuous variable λ (with Λ denoting the total number
of layers), where the discrete Ni is approximated by the continuous variable n(λ). Replacing the
summations with integrals, the total number of parameters is defined by:

P (Λ) =

∫ Λ

0

n2(λ)dλ, (4)

and the log of the number of paths is

Z(Λ) =

∫ Λ

0

log

(
dn(λ)

dλ

)
dλ. (5)

From equation 4, we have dλ = dp/n2, so equation 5 can be re-written as

Z(P ) =

∫ P

0

log (n2 dn
dp )

n2
dp. (6)

In the next section we show that, by making weak assumptions about the network structure, we can
obtain a closed form solution for Z from equation 6.

Assuming that each layer has (1 + α) times the number of channels of the previous layer, i.e.,
Ni+1 = Ni × (1 + α), means that for the continuous case we have n(λ) = n0e

αλ, where n0 is the
number of channels in the first layer. This allows us to find a closed-form solution for equation 6
(explicit calculations are presented in Appendix A.1),

Z(α, n0, P ) =
log (αn0) log

(
2αP
n2
0

+ 1
)

2α
+

log
(

2αP
n2
0

+ 1
)2

8α
. (7)

Figure 1: Z as a function of α and n0 (left – computed
from equation 7) and as a function of Λ and n0 (right –
computed from equation 7 and inverting equation 10 from
the Appendix A.1).

If we set the number of parameters to
P = 35 × 106 as in ResNet101 (He
et al., 2016), the maximum value for
Z is at α = 0.0178 with the num-
ber of channels in the first layer n0 =
56.5. This means that the total num-
ber of layers is Λ = 167.5 and the op-
timal size of the last layer is n(Λ) =
1113 (Fig. 1). These numbers are re-
markably close to the actual hyper-
parameter values for large CNN ar-
chitectures, such as ResNet101 (He
et al., 2016), trained on large im-
age classification tasks (Deng et al.,
2009). This suggests that large im-
age classification tasks (Deng et al.,
2009) may not benefit from larger and deeper neural networks with a simply-connected feeedfoward
architecture. This also suggests that to really exploit models bigger than the current state-of-the-art
CNNs, we will need problems more complex than the 1000-class ImageNet (Deng et al., 2009). For
the case above with a fixed P , the maximum value for Z is 251. This number corresponds to 10109

paths, which represents an extremely large number of ways to activate the output neurons – this can
qualitatively explain how CNNs can learn complex tasks.
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By relaxing the constrain on the functional form of n(λ), defined above, we can rewrite equation
6 as: Z(n) + δZ(n, δn) = Z(n + δn). A necessary condition for Z being an optimum over the
space on functions n is δZ = 0. This imposes a set of conditions on n(λ) which is equivalent to
a differential equation and boundary conditions at λ = 0 and λ = Λ. Solving numerically this
differential equation, as shown in details in Appendix A.2, results in a solution qualitatively very
similar to an exponential, confirming the validity of the analytical results obtained above.

2.3 HOW TO CALCULATE Z FOR CONVOLUTIONS OF MIXED SIZES

The contribution to the paths for convolutions are proportional to the filter width and height, as
explained in Sec. 2.1. For example, if the filter has size 3 × 3, the contribution to Z is 9 times
what it would be for a filter of size 1 × 1. In the case of the DenseNet-BC bottleneck block,
we have first a layer of 1 × 1 and then a layer of 3 × 3 convolutions (Fig. 5a, middle). In the
original DenseNet paper (Huang et al., 2017), the number of channels in the 1 × 1 convolutions is
r = 4 times the number of channels in the 3 × 3 convolutions. Therefore, this particular block has
Z = log ((rk)(9k − rk)/9), where the 1 × 1 layers contributes rk, because its input has a skip
connection, and the 3× 3 layer contributes (9k − rk)/9 because each convolution has 9 inputs and
its input has no skip connection. If we optimise r for the highest Z, we find r & 4.5, with small r
favored by economy of parameters. This explains well the value of 4 used in the original DenseNet-
BC (Huang et al., 2017). Increasing r further is expected to bring little return in performances, as Z
does not increase and the network ends up having unnecessary channels in the 1× 1 filters.

3 LITERATURE REVIEW

There is a vast collection of papers that describe the ”tricks of the trade”, consisting of suggestions
about network structures, activation functions, different types of network layers, etc. (Goodfellow
et al., 2016; LeCun et al., 2015; Schmidhuber, 2015). Even though such suggestions are useful
from a practical point of view, they are fundamentally qualitative descriptions that lack rigour and
offer little insight into the design of new classification models. Some other papers have aimed to
characterise the performance of deep learning model in a post-hoc manner, and consequently offered
little help in the design of new deep learning models (Keskar et al., 2016; Lee et al., 2016; Liao et al.,
2018; Littwin & Wolf, 2016; Sagun et al., 2016; Soudry & Carmon, 2016).

An alternative to a proper understanding of the DNN graph structure is to turn the problem of
designing new models into an optimisation task. Unfortunately, this task often depends on what
is infamously known as the grad student optimisation: a gruesome trial and error of innumerous
DNN models (Kandasamy et al., 2019). Thankfully, smarter approaches have been developed, such
as Bayesian optimisation (Jenatton et al., 2017; Kandasamy et al., 2019; Mendoza et al., 2016; Snoek
et al., 2012), reinforcement learning (Zoph & Le, 2016), evolutionary methods (Liu et al., 2017),
and random optimisation (Li & Talwalkar, 2019). These optimisation methods are useful, but still
suffer from scalability and robustness issues to a certain extent. Also, when the network is finally
optimised, there is hardly any insight on why the selected model was chosen.

What we propose in our paper addresses these two issues: 1) we propose a method that increases
our current understanding of how deep learning methods work, and 2) our method does not rely
on computationally expensive optimisation processes to enable the design of a potentially interest-
ing model. Therefore, such increasing of our understanding can potentially improve our ability to
propose new structures that have higher chances of succeeding at producing more effective DNNs.
Also, the low run-time and memory costs involved in the calculation of our proposed measure makes
it significantly more efficient in terms of computational costs than the optimisation approaches men-
tioned above. The main challenge involved in our approach is that the computation of Z requires
a non-trivial understanding of the model to design the formula to compute Z. We provide general
guidelines on how to formulate Z in Sec. 5

4 EXPERIMENTS

We first run experiments using simple setups, in terms of data set and models, to show the effec-
tiveness of our proposed measure. Then, we run an experiment that compares the proposed measure
Z for several DNN models: VGG (Simonyan & Zisserman, 2014), ResNet (He et al., 2016) and
DenseNet (Huang et al., 2017). We then optimise the DenseNet architecture to maximise our mea-
sure Z. All experiments are run on two data sets. Fashion-MNIST (Xiao et al., 2017) is a 10-class
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data set that has a training set of 60,000 grey scale images and a testing set of 10,000 images, where
each image has 28 × 28 pixels. CIFAR-10 (Krizhevsky & Hinton, 2009) has 10 classes and a total
of 50,000 32 × 32 training colour images and 10,000 testing images – this data set is extended to
CIFAR-10+, which relies on standard data augmentation (mirroring and shifting) to build the train-
ing set (He et al., 2016). All data sets are balanced, i.e., they have the same number of training
images per class. We train the models for the FashionMNIST experiments with sgd+momentum for
30 epochs, learning rate 0.001, momentum 0.9, and mini-batch size of 100. We follow the experi-
mental setup suggested by Huang et al. (2017) for our dense-net experiments on CIFAR-10+: 300
epochs, initial learning rate of 0.1 divided by 10 at epoch 150 and again at epoch 225.

4.1 EXPERIMENTS WITH MLP ON CIFAR-10

Figure 2: (Left) Accuracy and Z as a function of number of layers for a fixed parameter budget
using a simple MLP on PCA whitened CIFAR10. The top axis shows the corresponding number
of neurons of the first layer (n0). The multiple points for each model are the accuracy values at
epochs 5, 10, 15, 30 and 50 for the optimal choice of initialisation and learning rate. The solid line
represents Z calculated assuming linear growth of effective neurons (equation 3). (Right) Variance
of PCA decomposition of the test set features at different layers depth of the best performing MLP
(largest Z on the left panel). The effective dimensionality of the representation grows from 100
(input) to 200 (output) gradually using all the available neurons.

We start with simple experiments involving MLPs on CIFAR-10. The goal of this experiment is
to show an intuitive result to most deep learning practitioners: assuming a fixed parameter budget,
the optimal network structure shows a compromise between depth and width. We follow closely
the architectural choices suggested by Pennington et al. (2017). Our networks are MLPs containing
500K parameters with a depth in a range from few layers up to 800 layers. As shown by Pennington
et al. (2017), the training of such architectures involves an optimal choice of initialisation method
and learning rate. In particular, we will use the empirical relation for the dependency of the optimal
learning rate with depth (1/L) and the theoretical result for the optimal variance of the weight
initialisation (1 − σ2

w ' 1/L). We explore a range of values around the ones suggested by such
relations to make sure that we pick the optimal values for the initialisation method and learning
rate. Also, we train all models with weight decay of 10−5. To simplify the problem, we pre-
process CIFAR-10 by running PCA on the training set and keeping the first 100 whitened PCs.
Fig. 2(left) shows that for a given budget of parameters, the maximum trainable depth is obtainable
by optimising Z (equation 3). The best models train to an accuracy comparable to what is obtained
by Pennington et al. (2017). Fig. 2(right) shows the growth of dimensionality (illustrative of Di in
equation 3) of the feature representation in a trained network, starting with 100 dimensions up to the
size of the last layer.

4.2 ESTIMATION OF Z ON A SIMPLE FEED-FORWARD CNN ON FASHIONMNIST (XIAO
ET AL., 2017)

In this section, we try our proposed measure Z using a simple CNN, consisting of a variable
number of layers Λ, a variable number of channels in the first layer n0, fixed filter sizes of
3 × 3 and final fully connected layer before the softmax activation, and a number of channels
that grows exponentially with the layer index according to the function ni = n0e

αi. Figure 3
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Table 1: Z and P values, and top-1 error results for the deep learning models VGG16 (Simonyan
& Zisserman, 2014), ResNet34Plain (He et al., 2016), ResNet34 (He et al., 2016), WRN-18-1.5
and WRN-34-1.5 (Zagoruyko & Komodakis, 2016), and DenseNet121-BC (Huang et al., 2017) as
reported from the original papers on ImageNet (Deng et al., 2009).

VGG16 ResNet34Plain ResNet34 WRN-18-1.5 WRN-34-1.5 DenseNet121-BC
Z 77 82 120 73 133 448
P 138M 21M 21M 26M 47M 8M

Top-1 1crop − − 26.77 27.06 24.5 −
Top-1 10crops 28.7 28.54 25.03 − − 23.61

shows the accuracy of the models (multiple accuracy results at each value of Λ and n0 are ob-
tained from results of epochs between 10 and 30) and the value of Z as a function of depth Λ.

Figure 3: Accuracy and Z as a function of depth
Λ using a simple CNN on FashionMNIST (Xiao
et al., 2017). The multiple points represent the
results from epochs between 10 and 30. The solid
line is Z calculated with equation 3.

In all experiments, the number of parameters of
all networks is constrained to be P = 5 × 105.
For most models, the computed Z from equa-
tion 2 is shown to be a good predictor of the ac-
curacy of the models, supporting the idea that
optimising the network architecture to have a
large Z is beneficial to get an optimal design.

4.3 ESTIMATION OF Z ON STANDARD
CNNS: VGG (SIMONYAN & ZISSERMAN,
2014), RESNET (HE ET AL., 2016)
AND DENSENET (HUANG ET AL., 2017)

We estimate Z on several “real world”
CNN architectures trained and tested on Im-
ageNet (Deng et al., 2009). For VGG (Si-
monyan & Zisserman, 2014) and ResNet (He
et al., 2016), the number of layers does not
grow within each block, so we rely on equation 3 and the results observed in Sec. 4.1 to estimate
value of Z. Recall from Sec. 4.1 that the number of channels effectively used by the data in the net-
work grows gradually between the input dimension of the block Nin and the output Nout. A linear
growth in the number of channels used (Di) within each block gives the optimal value for Z. For
a block with m layers in a standard feed forward CNN, such as VGG16, we have Z = m log ∆N ,
where ∆N = Nout−Nin

m with the number of parameters defined by P = mN2
out. For a block of the

ResNet, we have one skip connection every two layers, so the contribution to the number of paths
is ∼ logN for the layer with skip connection, and ∼ log ∆N for the layer without skip connection,
where we again use that that the optimal configuration forDi grows linearly betweenNin andNout.
For ResNet, the number of parameters is P = mN2

out.

In a DenseNet block, the number of channels per layer is equal to the growth-rate k. The dimen-
sionality of the data is equal to the growth rate plus the dimensions of the previous layer. In each
layer ∆N = Ni−Ni−1 = k, so Z = m log k. For the DenseNet block, the number of parameters is
defined by: P = (Nin+mk)2 +

∑
0≤i<m (Nin + ik)k = (1 + 2)mkNin+ (1 + 1/2)m2k2 +N2

in.
This means that if Nin < mk, the number of parameters grows quadratically with m and k.
Also, Z grows linearly in depth and logarithmically in growth-rate. Qualitatively, this means that
the optimal design has a small growth-rate and a depth that is not too high (to avoid a quadratic
growth of the number of parameters). This imposes a limit for the maximum depth of each block
(mmax ∼ Nin/k), which is, empirically, close to how the DenseNet architectures have been de-
signed. This principle can be used to explain the effectiveness of DenseNet(-BC) (Huang et al.,
2017) blocks and to optimise the design of new DenseNet(-BC) variants.

For all models above, we show how to compute the Z value per block. Therefore, we also need
to take all the blocks into account when computing the final values for Z. Table 1 shows the Z
values computed for various networks recently proposed in the field, along with their number of
parameters P and classification error results on ImageNet (Deng et al., 2009). The quantity Z is a
good predictor for the accuracy of the networks, for a given parameter budget P .
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Figure 4: (left) Accuracy andZ for different values of the r ratio on a DenseNet-BC bottleneck block
on CIFAR-10+ (Krizhevsky & Hinton, 2009). The horizontal axis r denotes the ratio of number of
layers between the 1× 1 convolution and the 3× 3 convolution. The graph at the bottom shows the
number of model parameters as a function of r. The green line shows the value for Z as a function of
r, where the peak is reached for r ≈ 4.5, as predicted in Sec. 2.3 (3 for DenseNet-Dense BC, right).
For larger values of r, adding channels to the 1×1 convolution does not contribute to the value of Z
(solid horizontal line). The larger blue points in the graph on the top shows the accuracy of trained
model, where the several smaller points represent the last 50 epochs of the training. (right) Study of
accuracy of our proposed DenseNet-dense BC bottleneck block (analogous to the left panel).

(a) On the left, we show a DenseNet block;
the middle graph displays the bottleneck
block of DenseNet-BC. On the right, our
proposed redesigned bottleneck block with
the additional dense connection to improve
the value for Z, as explained in Sec. 4.4.

Architecture P(mil.) Top-1
”Small” models

DenseNet-40-12 1.0 5.24
DenseNet-BC-100-12 0.8 4.51
DenseNet-148-3 (ours) 1.17 4.87

DenseNet-denseBC-100-12 (ours) 1.17 4.28
”Large” models

DenseNet-BC-250-24 15.3 3.62
DenseNet-BC-190-40 25.6 3.46

DenseNet-denseBC-250-24 (ours) 22.6 3.32

(b) P and top-1 error results of DenseNet architec-
tures on CIFAR-10+ data set (Krizhevsky & Hinton,
2009).

Figure 5: The DenseNet-DenseBC architecture and experimental results.

We also compare accuracy and Z in Fig. 4 on CIFAR-10+ (Krizhevsky & Hinton, 2009), which
shows the accuracy of models trained with different values of the ratio r for a DenseNet-BC bottle-
neck block. In general, it is observed that the accuracy of the model saturates for a ratio larger than
≈ 4.5. Recall from Sec. 2.3, that Z is maximised for r ≥ 4.5, and the accuracy remains relatively
high for r > 4.5. We conjecture that regularisation techniques applied during training reduces the
number of “effective” channels, corresponding to the set of Di values that maximise Z. Therefore,
Z explains when increasing further the number of channels (and parameters) of a 1 × 1 layer of a
bottleneck layer will not yield improved performances.

4.4 OPTIMISE THE DESIGN OF A DENSENET BLOCK

To test the usefulness of our measure for the design of a new DenseNet variant, we optimise the
block of a DenseNet-40-12 to increase Z (initially for this model, Z = 89) – this is the smallest of
the DenseNet architectures proposed by Huang et al. (Huang et al., 2017). The optimisation is based
on the reduction of the growth rate and increase of the number of layers by the same factor. This
approach is chosen because it is a simple way to increase Z without changing the number of input
and output channels (boundary conditions of the blocks). The first architecture that we propose is

7



Under review as a conference paper at ICLR 2020

a DenseNet-148-3 with 148 layers and growth rate of 3, which produces Z = 148 that compares
favourably with the original value. The number of parameters and classification results for the new
and original models are shown in the table of Figure 5b.

We propose another optimisation of the structure of the bottleneck blocks of the DenseNet-BC ar-
chitecture. Like before, we focus on optimising one of the smallest elements of the graph, which,
we argue, should be largely independent from the data set. In the original architecture, the BC
block is built with a 1 × 1 convolutional layer followed by a 3 × 3 convolutional layer, giving
Z = (rk)((9k − rk)/9). The 1 × 1 convolutional layer has 4 times more channels than the corre-
sponding 3× 3 convolutional layer. We replace the single 1× 1 layer with two 1× 1 layers that are
densely connected, as shown in Fig. 5a on the rightmost panel. With the new design, the number of
paths becomes larger, with Z = log ((rk)(rk)(9k − 2rk)/9), where rk is the number of channels
of each 1× 1 layer. The optimum Z for the minimum number of parameters is achieved with r = 3
– results are displayed in the table of Figure 5b, where we show two different proposed versions
of the DenseNet-BC architecture. In Figure 4 (right), we show the accuracy of different versions
of this architecture as a function of r. Similarly to what happens to the simpler DenseNet-BC, the
accuracy of the model increases significantly up to the optimal r, and then remains stable. This
behaviour strengthens our conjecture that regularisation techniques effectively reduce the number
of channels and parameters of the network. We finally performed a single experiment with the
DenseNet-denseBC-250-24, r = 3 (last line in the table of Fig. 5b) improving over the baseline and
DenseNet-BC-190-40, which represents the most accurate model from (Huang et al., 2017).

5 DISCUSSION AND CONCLUSIONS

Our measure (Z) is calculated based only on the graph structure of the model and assumes that
the initialisation and training strategies are close to optimal. We argue that the choice of these
strategies is important because it guarantees the realisation of the model potential for a partic-
ular classification problem. However, we see these strategies as somewhat orthogonal to net-
work design. We show in Fig. 3 that the value of Z is a good predictor of the optimal depth
Λ for a simple feed forward CNN. We also show that the value of Z is a good predictor of ac-
curacy for small values of r (channels of bottleneck layer), and for larger values of r, while
Z “saturates”, the accuracy tends to remain stable. We conjecture that this happens because
regularisation techniques are likely to reduce the effective number of channels when this al-
lows an increase in the number of paths. We find indicative support of this mechanism from
the study of the dimensionality of the PCA decomposition of MLP classifiers (Fig. 2(right)).

Figure 6: This example shows the rules to calculate the con-
tribution to the total number of paths given by each layer in
a NN. Each Ni can be≤ than the corresponding channels in
the NN.

We will leave the proof for this con-
jecture for a future work, note that
this behaviour does not undermine
the method – the implementation of
models with optimal Z appears to of-
fer best performance with the mini-
mum number of parameters.

We now provide guidelines on how to
formulate Z – see Fig. 6. When there
is a skip connection around a layer,
the number of channels in such layer
can contribute fully to the paths (Ni).
When two layers are in sequence, the
contribution to the paths is the difference of the channels after the reduction due to regularisation
(Ni −Ni−1). When the filter size changes (e.g., 1× 1 followed by 3× 3 convolution), the channels
of the first layer need to be divided by the ratio of the dimension of the filters ( 3×3

1×1 ). In the common
case of convolution blocks with constant number of channels, the supremum of eq 3 gives that the
optimal Di’s grow linearly between Nin and Nout.

In conclusion, in this manuscript we propose a quantitative principle for predicting the accuracy
of a deep learning classifier that takes into account the structure of the DNN graph. We hope that
this will be the basis for more general principles for network design and it will lead to a deeper
understanding of DNNs. As a practical application of this work, we also propose a new DenseNet-
denseBC architecture that improves over baseline results.
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A APPENDIX

A.1 SIMPLIFIED SOLUTION OF CONTINUOUS COUNTING

If we assume that each layer has (1 + α) the number of channels of the previous one:

N(i+1) = Ni(1 + α) (8)

the continuous case becomes:
n(λ) = n0e

αλ. (9)
Integrating Equations 4 and 6 we obtain:

Λ =
log
(

2αP
n2
0

+ 1
)

2α
(10)

10
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and

Z(α, n0,Λ) = Λ logαn0 +
αΛ2

2
(11)

Finally, substituting:

Z(α, n0, P ) =
log (αn0) log

(
2αP
n2
0

+ 1
)

2α
+

log
(

2αP
n2
0

+ 1
)2

8α
. (12)

A.2 MAXIMISING Z AS A FUNCTIONAL TO SOLVE CONTINUOUS COUNTING

A more effective way to maximise Z over all functions n(λ) under the constraint of a fixed number
of parameters P relies on the use of calculus of variations. More specifically, from equation 6, we
have

Z + δZ =

∫ P

0

log ((n+ δn)2 × d(n+δn)
dp )

(n+ δn)2
dp, (13)

where a maximum point of the function Z implies δZ = 0 for any (small) δn. By expanding Z+δZ
in the first order in δn, discarding higher order terms, and relying on integration by parts, we obtain:

Z + δZ '
∫ P

0

log ((n+ δn)2 d(n+δn)
dp )(1− 2δn/n)

n2
dp

'
∫ P

0

(
log (n2 dn

dp )

n2
−

2δn log (n2 dn
dp )

n3
+

2δn

n3
+

dδn
dp

n2 dn
dp

)
dp

'
∫ P

0

 log (n2 dn
dp )

n2
+

−2 log (n2 dn
dp )

n3
+

2

n3
−
d

(
1

n2 dn
dp

)
dp

 δn

 dp.

(14)

In the last step we integrate by parts and set the boundary conditions for n. To maximise the func-
tional in equation 14, we set boundary conditions with δn(P ) = δn(0) = 0. Note that the first term
of the integral in equation 14 is just Z, as defined in equation 6. We search for an optimal n such
that δZ does not grow (at first order), no matter the choice of δn. This is equivalent to have δZ = 0
for any δn� n(p), which means that for any p the factor inside the integral is zero – that is:

−
2 log (n2 dn

dp )

n3
+

2

n3
−
d 1
n2 dn

dp

dp
= 0. (15)

In other words, the optimal n(p) has to respect this differential equation. By defining v = dn
dp we

can re-write equation 15 as: − 2 log (n2v)
n3 + 2

n3 + 2
n3 +

dv
dp

n2v2 = 0. Since dv
dp = dv

dn
dn
dp = dv

dnv, we can
remove all the explicit occurrences of p and obtain:

dv

dn
=

2v

n

(
log (n2v)− 2

)
. (16)

This differential equation is a first order ordinary differential equation and, given the initial condition
for v at n(0), can be integrated numerically to obtain a family of solutions for v as a function of n.
Then, n(p) and n(λ) can be integrated numerically. Fig. 7 shows a family of solutions for n0 = 56.5.
The thick line is the solution with the largest Z ' 272, which is larger than 251, obtained in Sec. 2.2
with the exponential assumption (i.e., n(λ) = n0e

αλ). For comparison, we show this exponential
function from Sec. 2.2 as a thin black line. The system predicts a network depth Λ ≈ 174 (the
highest point in Fig. 7 right panel), which is comparable with the value of 167.5 found in Sec. 2.2.
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Figure 7: In the left panel, the dashed lines represent different solutions of the differential equation
obtained by maximising Z locally, with the same n(0) and different v(0). The solution for optimal
global Z is the thick grey line. The exponential approximation from Sec. 2.2 (i.e., n(λ) = n0e

αλ) is
the solid black line. In the right panel, the dots represent the depths Λ and the corresponding values
of Z of the solutions of the left panel. The diamond represents the exponential approximation
solution.
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