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ABSTRACT

Personalized probabilistic forecasts of time to event (such as mortality) can be
crucial in decision making, especially in the clinical setting. Inspired by ideas
from the meteorology literature, we approach this problem through the paradigm
of maximizing sharpness of prediction distributions, subject to calibration. In
regression problems, it has been shown that optimizing the continuous ranked
probability score (CRPS) instead of maximum likelihood leads to sharper prediction
distributions while maintaining calibration. We introduce the Survival-CRPS, a
generalization of the CRPS to the time to event setting, and present right-censored
and interval-censored variants. To holistically evaluate the quality of predicted
distributions over time to event, we present the scale agnostic Survival-AUPRC
evaluation metric, an analog to area under the precision-recall curve. We apply
these ideas by building a recurrent neural network for mortality prediction, using
an Electronic Health Record dataset covering millions of patients. We demonstrate
significant benefits in models trained by the Survival-CRPS objective instead of
maximum likelihood.

1 INTRODUCTION

Having patient-specific predictions of time to an event such as mortality or bone fracture allows
caregivers to make better informed decisions around patient care. Historically, prognosis scores
have served as simple tools to stratify patient risk within a predefined time window (Lau et al.,
2006; Cardona-Morrell & Hillman, 2015). However, such models tend to be too simplistic to be
widely useful. They are often estimated from a large population of patients, and do not take into
account patient-specific information to make individualized predictions (Yu et al., 2011). Meanwhile,
the adoption of Electronic Health Record (EHR) systems over the past few decades has resulted
in the collection of observational data on millions of patients spanning multiple years. This data
enables development of patient-specific prediction models using machine learning. Such models are
applicable to the larger patient population without being specific to a disease type or demographic,
and this makes it possible to develop novel workflows in care delivery. For example, a high predicted
probability of 3-12 month mortality could proactively notify palliative care teams of otherwise
overlooked patients with end-of-life needs (Avati et al., 2017).

One way to obtain patient-specific survival predictions is to treat the problem as probabilistic
classification; that is, training a binary classifier to predict outcomes of event by a particular time
of interest (Avati et al., 2017; Rajkomar et al., 2018). However, such an approach has drawbacks.
First, the model is specific to the time of interest it was trained upon – it is not straightforward how to
take a model that was trained to predict probabilities of 1-year mortality and obtain predictions of
6-month mortality from it. Second, it is not usually possible to use data on all patients – for example,
if a patient has only 3 months of history in the EHR system, it is neither possible to include that
patient as a positive case nor a negative case in the 1-year mortality prediction task. Third, the process
of constructing the data set implicitly conditions on the future outcome to select prediction times
– evaluation is performed only at times looking backward from the event of interest. It has been
shown that evaluation metrics can be overly optimistic relative to real world performance as a result
(Sherman et al., 2017).

An alternative approach to the problem is survival prediction; that is, predicting time to event by
estimating a distribution over future time. In this setting, traditional survival analysis methods such
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Figure 1: Example of a patient’s predicted distributions for age of death under different models. Our
proposed techniques improve sharpness of predicted distributions, subject to calibration. Repeated
interactions (indicated by darker color) between the patient and the EHR yield more confident
predictions of time of death.

as the Cox proportional hazards model (R., 1972) or accelerated failure time models (J.) are capable
of handling data with censored observations (cases in which the event was not observed, but we
know that the event did not occur up to a certain time). This addresses concerns raised by the
classification approach, but there are a few nuances. First, traditional models typically make strong
assumptions, such as proportional hazards or linearity. Second, challenges of low prevalence often
arise when these methods are applied to large-scale observational datasets with heavy censoring,
which is the case in real EHR data. Third, these survival analysis methods are typically evaluated
as point estimates of risk, such as 10-year probabilities of events, rather than holistic measures of
quality of the predicted distributions (Goff et al., 2014; Ranganath et al., 2016; Lee et al., 2018).
Common metrics of evaluation include the C-statistic (Uno et al., 2007), log-`1 loss (Yu et al.,
2011), and mean-squared-error (Katzman et al., 2018). While useful for the purposes of relative risk
stratification, model comparisons made using point estimates leaves the quality of uncertainty in
predicted distributions left unmeasured. If a point prediction is way off, it is penalized by the same
amount whether the model was confident or not (that is, whether the predicted distribution had low or
high variance).

In contrast, forecasts in the field of meteorology are typically made as full prediction distributions
over all weather conditions given past and current observations (Gneiting et al., 2008). Evaluation of
predictive performance is assessed by the paradigm of maximizing the sharpness of the predictive
distribution, subject to calibration (Gneiting & Katzfuss, 2014). The intuition behind this paradigm is
that probabilities have to be calibrated in order to be correct. However, that does not necessarily make
them useful (one could always predict the marginal probability of an outcome without looking at the
data, and still be well calibrated). The usefulness of a prediction distribution lies in its sharpness,
or how well its mass concentrates. In summary, uncalibrated predictions (sharp or not) are useless,
calibrated but non-sharp predictions are correct but less useful, and calibrated and sharp distributions
are most useful.

To improve the sharpness of prediction distributions in the survival setting, we propose the use of
proper scoring rules beyond maximum likelihood as the training objective. Proper scoring rules are
known to measure calibration, and any model trained with a proper scoring rule will tend to maintain
calibration (Gneiting & Katzfuss, 2014). For our purposes, we focus on the continuous ranked
probablity score (CRPS) which has been used as an objective in the regression setting (Gneiting
et al., 2008; Mohammadi et al., 2016; 2015). We generalize the CRPS for the survival setting, called
Survival-CRPS, with right-censored and interval-censored extensions. Our work is one among many
recent works Chapfuwa et al. (2018) in using non-MLE training objectives for survival prediction.

Summary of contributions. (1) We introduce the proper scoring rule Survival-CRPS, a generalization
of CRPS, as an objective in survival prediction. We present its right-censored and interval-censored
variants. (2) We propose a new metric, Survival-AUPRC, inspired by the paradigm of maximizing
sharpness subject to calibration, to holistically measure the quality of a prediction distribution with
respect to a possibly censored outcome. (3) We give practical recommendations for the mortality
prediction task, by recommending use of the log-normal parameterization and interval censoring
when training. (4) We employ the above techniques and demonstrate their efficacy by training a deep
recurrent neural network model for accurate survival prediction of patient mortality using EHR data.
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2 COUNTDOWN REGRESSION

Parametric survival prediction methods model the time to an event of interest with a family of
probability distributions, indexed by the distribution parameters. The survival function, denoted
S(t) : [0,∞)→ [0, 1], is a monotonically decreasing function over the positive reals with S(0) = 1
and limt→∞ S(t) = 0. The survival function represents the probability of an individual not having
the event of interest up to a given time. Every survival function has a corresponding cumulative
density function (CDF), denoted F (t) = 1− S(t), and probability density function (PDF), denoted
f(t) = d

dtF (t). The choice of the family of probability distributions implies assumptions made about
the nature of the data generating process.

We denote the medical record of a patient i as
(
{(x(i)t , a

(i)
t )}T (i)

t=1 , d
(i), c(i)

)
, where t ∈ {1 . . . T (i)}

denotes the interaction number of this patient with the health record, x(i)t ∈ RD is the set of features
corresponding to the t-th interaction, a(i)t ∈ R+ is age at time t, d(i) ∈ R+ is the age of death or age
of last known (alive) encounter, and c(i) ∈ {0, 1} is a censoring indicator where c(i) = 0 means the
age of death is d(i), and c(i) = 1 means the age of death is at least d(i). For each x(i)t we define the
quantity y(i)t = d(i) − a(i)t which represents the corresponding time to event or time to censoring.

Traditional methods in survival analysis are designed to handle right-censored outcomes, but we
observe that in many common scenarios outcomes are actually interval-censored. In the context of
mortality prediction, for example, we know that humans almost never live past 120 years of age.
Therefore, we assume that the true age of death lies between d(i) and A = 120 years, implying
that the true time to death lies between 0 and T (i)

t = A− a(i)t . We omit patient superscripts i and
interaction subscripts t for succinctness where possible. We note that although our notation focuses
on the problem of mortality prediction, our techniques generalize to any time to event task of interest.

2.1 SURVIVAL-CRPS: PROPER SCORING RULE OBJECTIVES

A scoring rule is a measure of the quality of a probabilistic forecast. A forecast over a continuous
outcome is a probability density function over all possible outcomes, f̂ with corresponding cumulative
density function F̂ . In reality, we observe some actual outcome, y. A scoring rule S takes a predicted
distribution and an actual outcome, and returns a loss S(F̂ , y). It is considered a proper scoring rule
if for all possible distributions G,

Ey∼F̂ [S(F̂ , y)] ≤ Ey∼F̂ [S(G, y)],

and strictly proper when equality holds if and only if F̂ = G (Gneiting et al., 2008). A proper scoring
rule is one in which the expected score is minimized by the distribution with respect to which the
expectation is taken. Intuitively, it encourages a model for being honest by predicting what it actually
believes (Savage, 1971). When a proper scoring rule is employed as a loss function, it naturally forces
the model to output calibrated probabilities (Gneiting & Katzfuss, 2014).

There are many commonly used proper scoring rules. Perhaps the most widely used is the logarithmic
scoring rule, equivalent to the maximum likelihood objective:

SMLE(F̂ , y) = − log f̂(y).

In the presence of possibly censored data, we maximize the density for observed outcomes, and tail
or interval mass for censored outcomes, and this is a proper scoring rule (Dawid & Musio, 2014).

SMLE-RIGHT(F̂ , (y, c)) = − log
(
(1− c)f̂(y) + cŜ(y)

)
SMLE-INTVL(F̂ , (y, c, T )) = − log

(
(1− c)f̂(y) + c(F̂ (T )− F̂ (y))

)
However, the logarithmic scoring rule is asymmetric, and harshly penalizes predictions that are wrong
yet confident. This results in the training process becoming sensitive to outliers, and in general
conservative in prediction-making (that is, hesitant to make sharp predictions) (Gneiting & Raftery,
2007).
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Figure 2: Graphical intuition for the Survival-CRPS scoring rule. For uncensored observations, we
minimize mass before and after the observed time of event. For right-censored observations, we
minimize mass before observed time of censoring. For interval-censored observations, we minimize
mass before observed time of censoring, and mass after the time by which event must have occurred.

Another proper scoring rule for forecasts over continuous outcomes is the CRPS (Gneiting et al.,
2007), defined as

SCRPS(F̂ , y) =

∫ ∞
−∞

(
F̂ (z)− 1{z ≥ y}

)2
dz =

∫ y

−∞
F̂ (z)2dz +

∫ ∞
y

(1− F̂ (z))2dz.

The CRPS has been used in regression as an objective function that yields sharper predicted dis-
tributions compared to maximum likelihood, while maintaining calibration (Gneiting et al., 2008).
Intuition for the CRPS is better understood by analyzing the latter expression and noting that the two
integral terms correspond to the two shaded regions in Figure 2a. The CRPS score is completely
reduced to zero when the predicted distribution places all the mass on the point of true outcome, or
equivalently, when the shaded region completely vanishes.

In the context of time to event predictions we propose the Survival-CRPS which accounts for the
possibility of right-censored or interval-censored data:

SCRPS-RIGHT(F̂ , (y, c)) =

∫ y

0

F̂ (z)2dz + (1− c)
∫ ∞
y

(1− F̂ (z))2dz,

SCRPS-INTVL(F̂ , (y, c, T )) =

∫ y

0

F̂ (z)2dz + (1− c)
∫ T
y

(1− F̂ (z))2dz +

∫ ∞
T

(1− F̂ (z))2dz.

Note that when c = 0, both of the above expressions are equivalent to the original CRPS. Again,
the intuition behind the Survival-CRPS is better understood by mapping each of the integral terms
to the corresponding shaded region in Figure 2b and Figure 2c. The Survival-CRPS behaves like
the original CRPS when the time of event is uncensored. For censored outcomes, it penalizes the
predicted mass that occurs before the time of censoring and, if interval censored, also the mass after
time by which the event must have occurred.

Both variants of the Survival-CRPS are proper scoring rules. They are special cases of the threshold
weighted CRPS (Gneiting & Ranjan, 2011), where the weighting function is an indicator over the
uncensored regions.

2.2 EVALUATION BY SHARPNESS SUBJECT TO CALIBRATION

Calibration assesses how well forecasted event probabilities match up to observed event probabilities.
It is crucial in development of useful predictive models, especially for clinical decision-making.
In binary prediction tasks without censoring, the Hosmer-Lemeshow test statistic (Hosmer et al.,
2011) is commonly used to assess goodness-of-fit by comparing observed versus predicted event
probabilities at quantiles of predicted probabilities. Extensions to account for censoring have been
proposed (Grønnesby & Borgan, 1996; D’Agostino & Nam, 2003; Demler et al., 2015), but these
methods apply only to predictions of dichotomous outcomes within a particular time frame (for
example, 1-year risks of mortality).

There is no widely accepted method for evaluating the calibration of a set of entire prediction
distributions, over multiple time frames, in the survival setting. D-calibration has been recently
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proposed as a method for holistic evaluation (Andres et al., 2018), but relies on handling censored
observations by assuming the true times to death are uniformly distributed past the times of censoring
in the predicted distributions. When censored observations far outnumber the uncensored observations,
this can lead to overly optimistic assessments of calibration. Another option is to evaluate observed
event times on the cumulative density scale of predicted distributions, using a Kaplan-Meier estimate
to account for censoring (Harrell, 2006). Again, this method has limitations in the heavily censored
setting, as the quantiles in the tail of predicted cumulative densities have few uncensored observations,
and will rarely yield well calibrated values.

We instead employ the following method to measure calibration. We compare predicted cumulative
densities against observed event frequencies, evaluated at quantiles of predicted cumulative den-
sity. Right-censored observations are removed from consideration in quantiles that correspond to
times after their points of censoring. Interval-censored observations are similarly removed from
consideration in quantiles that correspond to times after censoring, but are additionally re-introduced
in quantiles that correspond to times past the time by which the event must have occurred (in the
mortality prediction task, this corresponds to 120 years of age).

Subject to calibration, we strive for prediction distributions that are sharp (i.e, concentrated). There
are several metrics that could be used for measuring sharpness, such as variance or entropy. In the
context of time to event predictions, holding two distributions with vastly different means to the same
standard of variance or entropy would be unfair (for example, we would want lower variance for
a prediction distribution with a mean of a day, compared to a mean of a year). Instead, we use the
coefficient of variation (CoV) as a reasonable measure of sharpness. The CoV is defined as the ratio

of one standard deviation to the mean, CoV(F̂ ) =

√
Var[F̂ ]

E[F̂ ]
.

2.3 SURVIVAL-AUPRC: HOLISTIC EVALUATION OF TIME TO EVENT PREDICTIONS

Since sharpness is only a function of the predicted distributions, a measure of sharpness is only
meaningful if the model is sufficiently calibrated. We now propose a metric that measures how
concentrated the mass of the prediction distribution is around the true outcome, robust to miscali-
bration. The idea is similar to the area under a precision-recall curve, except here it is with respect
to only one predicted distribution and one outcome. We first consider the uncensored case. As an
analog to precision, we consider intervals relative to the true time of event, defined by ratios. For
example, a region of precision 0.9 around an event that occurs at time y is the interval [0.9y, y/0.9].
Corresponding to this region of precision, the analogy to recall is the mass assigned by the predicted
distribution over this interval, F̂ (y/0.9)− F̂ (0.9y). By exploring the full range of precision from 0
to 1, we obtain the Survival Precision Recall Curve. The area under this curve measures how quickly
predicted mass concentrates around the true outcome as we expand the precision window.

Survival-AUPRCUNCENS(F̂ , y) =

∫ 1

0

(F̂ (y/t)− F̂ (yt))dt

The highest possible score is 1, when the predicted distribution is a Dirac δ function centered over
the time of outcome. The lowest possible score is 0, when the predicted distribution is infinitely
dispersed. The mean of all Survival-AUPRC scores across examples provides an overall measure of
the quality of the predictions.

The aforementioned metric only applies when the event outcome is uncensored. In the case of
censored observations, we use the same analogy but with the right end of precision intervals defined
with respect to the time by which the event must have occurred in the interval-censored case, or
infinity in the right-censored case.

Survival-AUPRCRIGHT(F̂ , y) =

∫ 1

0

(1− F̂ (yt))dt

Survival-AUPRCINTVL(F̂ , y, T ) =

∫ 1

0

(F̂ (T /t)− F̂ (yt))dt
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2.4 RECURRENT NEURAL NETWORK MODEL

We apply our techniques to the mortality prediction task by building a multilayer recurrent neural
network (RNN) with parameters θ, denoted RNNθ, that takes as input a sequence of features (in our
case, information about a patient recorded in the EHR, for each interaction they had with the hospital)
to predict parameters of a parametric probability distribution F̂ over time to death at each timestep
(Figure 3). The network depends only on data from the current and previous timesteps, and not the
future. The approach here is similar to the recently proposed Weibull time to event RNN (Martinsson,
2016), though we generalize to any choice of noise distribution. The distributions that are output in
each timestep are used to construct an overall loss,

LRIGHT =

N∑
i=1

T (i)∑
t=1

SRIGHT

(
F̂

RNNθ
{
x
(i)
1:t

}, (y(i)t , c(i)
))

LINTVL =

N∑
i=1

T (i)∑
t=1

SINTVL

(
F̂

RNNθ
{
x
(i)
1:t

}, (y(i)t , c(i), T (i)
t

))
,

where N is the total number of patients in the training set, T (i) is the sequence length for patient i,
and F̂RNNθ denotes the distribution parameterized by the output of the RNN. It is the sequential and
monotonically decreasing predicted times to event that inspires the name Countdown Regression.

2.5 CHOICE OF LOG-NORMAL NOISE DISTRIBUTION

Common parametric distributions over time to event used in traditional survival analysis models
include the Weibull, log-normal, log-logistic, and gamma (in order to be sufficiently expressive
in model space, we seek distributions with at least two parameters). We choose the log-normal
distribution because other distributions either involve the Gamma function in their density, or involve
the pattern (y/p1)p2 , where p1 and p2 are parameters output from the neural network. We found
these patterns to be highly sensitive to the inputs and to suffer from numerical instability issues.

For the log-normal distribution, a closed form expression for the CRPS is well known (Baran &
Lerch, 2015). However, a closed form expression for the Survival-CRPS does not exist. We perform a
change of variable to express the integral terms as finite integrals, and numerically approximate with
the trapezoid rule. When training, we then back-propagate through the trapezoidal approximation.
Details are given in Appendix B and C. We note that the approximation formulas are themselves
proper scoring rules, as they are just weighted sums of Brier scores. Closed form expressions for the
log-normal Survival-AUPRC are also given in Appendix D, E, and F.

3 EXPERIMENTS

We run experiments for the mortality prediction task to evaluate four different training objectives: max-
imum likelihood SMLE-RIGHT and SMLE-INTVL, and our scoring based loss SCRPS-RIGHT and SCRPS-INTVL.
For interval censoring we assume a maximum lifespan of A = 120 years.

(a) Dead (uncens) patients.

RNN 
Step 1 

RNN
Step 2 

RNN
Step 3 

RNN
Step T 

Patient Age

LogNormal

LogNormal

LogNormal

Death

Attention Attention Attention Attention

(b) Alive (right-cens) patients.

RNN 
Step 1 

RNN
Step 2 

RNN
Step 3 

RNN
Step T 

Patient Age

LogNormal

LogNormal

LogNormal

Censor

Attention Attention Attention Attention

(c) Alive (interval-cens) patients.

RNN 
Step 1 

RNN
Step 2 

RNN
Step 3 

RNN
Step T 

Patient Age

LogNormal

LogNormal

LogNormal

Censor

Attention Attention Attention Attention

Age=120yrs

Figure 3: RNN model overview. For each interaction, we attend over recorded ICD codes at that
timestep and predict parameters µ, σ2 of a log-normal distribution, minimizing a proper scoring rule.
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Table 1: Metrics measuring sharpness and calibration for models trained on the right-censored and
interval-censored variants of the maximum likelihood and Survival-CRPS objectives.

Metric MLE-RIGHT MLE-INTVL CRPS-RIGHT CRPS-INTVL

Calibration slope 1.125 ± 3e-4 1.139 ± 3e-4 1.003 ± 3e-4 0.959 ± 5e-4
Mean coefficient of variation 18.42 ± 5e-3 0.911 ± 4e-4 0.332 ± 1e-4 0.301 ± 1e-4
Mean prob of survival to age 120 yrs 0.754 ± 2e-5 0.045 ± 3e-5 0.015 ± 3e-5 0.005 ± 1e-6
Dead: mean Surv-AUPRC (uncen) 0.233 ± 2e-4 0.319 ± 3e-4 0.343 ± 4e-4 0.366 ± 4e-4
Alive: mean Surv-AUPRC (intvl-cen) 0.407 ± 6e-5 0.963 ± 2e-5 0.977 ± 3e-5 0.976 ± 3e-5
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Figure 4: Calibration plots for each of the models. We compare predicted cumulative densities against
observed event frequencies, evaluated at quantiles of predicted cumulative density. Right-censored
observations are removed from consideration in quantiles past times of censoring, interval-censored
observations are additionally re-introduced in quantiles corresponding to times past 120 years.

The neural network architecture is kept identical for all four experiments and implemented in PyTorch
(Paszke et al., 2017). The input at each timestep consists of both real valued (for example, age of
patient) and discrete valued (for example, ICD codes) data. Discrete data is embedded into a trainable
real-valued 126-dimensional vector space, and vectors corresponding to the codes recorded at a given
timestep are combined into a weighted mean by a soft self-attention mechanism. All real valued inputs
are appended to the averaged embedding vector. We also provide the real valued features to every
layer by appending them to the output of previous layer. The input vector feeds into a fully connected
layer, followed by multiple recurrent layers. We use the Swish activation function (Ramachandran
et al., 2017) and layer normalization (Ba et al., 2016) at every layer. Recurrent layers are defined
using GRU units (Chung et al., 2014) with layer normalization inside. After the set of recurrent
layers, the network has multiple branches, one per parameter of the survival distribution (for the
lognormal, µ and σ2). The final layer in each branch has scalar output, optionally enforced positive
with the softplus function, Softplus(z) = log(1 + exp(z)). We use Bernoulli dropout (Srivastava
et al., 2014) at all fully connected layers, and Variational RNN dropout (Gal & Ghahramani, 2015) in
the recurrent layers, with a dropout probability of 0.5. Optimization is performed using the Adam
optimizer (Kingma & Ba, 2014), with a fixed learning rate of 1e-3.

3.1 DATA

We use electronic health records, with IRB approval, from the STARR Data Warehouse (previously
known as STRIDE) for training and evaluation (Lowe et al., 2009). The Warehouse contains de-
identified data for over 3 million patients (about 2.6% having a recorded date of death), spanning
approximately 27 years. Each timestep in the sequence for a patient corresponds to all the data in the
EHR for a given day. Only days having any data have a corresponding timestep in the sequence for
each patient. We use diagnostic codes, medication order codes, lab test order codes, encounter type
codes, and demographics (age and gender). Each code has a randomly initialized embedding vector
as a trainable parameter. The set of 3 million patients, correspond to 51 million overall timesteps, and
was randomly split in the ratio 8:1:1 into train, validation and test splits.

3.2 RESULTS

We first verify that all models are reasonably well-calibrated (Figure 4). Both the coefficient of
variation and the Survival-AUPRC metrics suggest that the Survival-CRPS with interval censoring
yields the sharpest prediction distributions (Table 1). Inspecting the mass past 120 years of age shows
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that a naively trained prediction model with maximum likelihood can assign more than 75% of the
mass to unreasonable regions, which is highly undesirable for the purpose of prediction. We note that
this behavior is largely due to low prevalence of uncensored examples, which is typical in real world
EHR data sets. As a result, the loss for the censored examples, which can be minimized by pushing
mass as far away to the right as possible, dominates the small number of uncensored examples.

By predicting an entire distribution over time to death, the same model can be used to make classifica-
tion predictions at various time points, highlighting the flexibility of our approach. When evaluated at
6 month, 1 year, and 5 year probabilistic predictions of mortality, our model remains well-calibrated
with high discriminative ability (Appendix G, Figure 6).

In the interest of reproducibility, we run similar experiments on the publically available MIMIC-III
dataset (Johnson et al., 2016) (Appendix H), and have published our corresponding source code 1.

4 RELATED WORK

Recent works have demonstrated potential to significantly improve patient care by making predictions
with deep learning models on EHR data (Avati et al., 2017; Rajkomar et al., 2018), but these have
been limited in treating the task as binary classification over a fixed time frame. Predicting survival
curves instead of dichotomous outcomes has been explored (Yu et al., 2011; Lee et al., 2018), but
only over finite length horizons. Deep survival analysis (Ranganath et al., 2016) has been proposed,
but is limited to a fixed shape Weibull (bypassing the concerns we raised about stability, but limited
in expressivity). The work by Yang et al. (2017) is similar to ours in terms of using an RNN and
log-normal noise distribution, but limited to MLE training. DeepSurv (Katzman et al., 2018) uses a
Cox proportional hazards model, which similarly makes a set of inflexible assumptions. The WTTE-
RNN (Martinsson, 2016) model has a similar network architecture to ours, but is also limited to a
Weibull distribution. All aforementioned models have only been optimized for maximum likelihood,
instead of more robust proper scoring rules. The CRPS scoring rule has been used with Neural
Networks in (Rasp & Lerch, 2018). Work in (Alaa & van der Schaar, 2017) also predicts full survival
curves specific to a patient, but the use of GPs makes it difficult to scale to millions of patients. The
work in Miscouridou et al. (2018) predict survival curves (both non-parametric, and flexible flow
based parametric curves) while also handling missing covariates. Another recent work Chapfuwa
et al. (2018) uses adversarial training for survival prediction. It has been shown that modern neural
networks can be uncalibrated, and the work by Guo et al. (2017) suggests ways to improve calibration
(though the work focuses on classification).

5 CONCLUSION

Better survival prediction models can be built by exploring objectives beyond maximum likelihood
and evaluation metrics that assess the holistic quality of predicted distributions, instead of point
estimates. We introduce the Survival-CRPS objective, motivated by the fact that the CRPS scoring
rule is known to yield sharp prediction distributions while maintaining calibration. There are perhaps
others scoring rules that work better, leaving avenues for future work. To evaluate, we introduce the
Survival-AUPRC metric, which captures the degree to which a prediction distribution concentrates
around the observed time of event. We demonstrate success in large-scale survival prediction by using
a deep recurrent model employing a log-normal parameterization. By predicting an entire distribution
for time-to-event, we circumvent issues associated with binary classification. Meanwhile, our model
still yields accurate predictions when evaluated as dichotomous outcomes at particular times. The
impact of having meaningfully accurate survival models is tremendous, especially in healthcare. We
hope our work will be useful to those looking to build and deploy such models.
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APPENDIX

A. INTEGRAL IDENTITIES

Let Φµ,σ2(z) be the CDF of a Gaussian distribution with mean µ and variance σ2. Hence Φµ,σ2(log z)
is the CDF of a log-normal distribution with mean µ and variance σ2. For some integer K (typically
32 in our experiments), we define I to be the following integral, approximated by the trapezoidal rule:

Iµ,σ2(y, g) =

∫ y

0

Φµ,σ2(log z)2g(z)dz

≈
K−1∑
k=0

1

2

[
Φµ,σ2 (log zk+1)

2
g (zk+1) + Φµ,σ2 (log zk)

2
g (zk)

]
(zk+1 − zk)

where 0 = z0 < z1 < ... < zK = y and g is a function. We further define

I+µ,σ2(y) = Iµ,σ2(y, z 7→ z),

I−µ,σ2(y) = I−µ,σ2(1/y, z 7→ 1/z2).

B. SURVIVAL-CRPS FOR LOG-NORMAL (RIGHT-CENSORED)

For a general continuous prediction distribution F , with actual time to outcome y ∈ R+, and
censoring indicator c, we generalize the CRPS to the Right Censored Survival CRPS score as:

SCRPS-RIGHT(F, (y, c)) =

∫ ∞
−∞

(F (z)1{z ≤ log y ∪ c = 0} − 1{z ≥ log y ∩ c = 0})2dz

=

∫ ỹ

−∞
F (z)2dz + (1− c)

∫ ∞
ỹ

(F (z)− 1)2dz.

In the above expression F would generally be in the family of continuous distributions over the entire
real line (eg. Gaussian). Alternately, one could also use a family of distributions over the positive
reals (e.g log-normal), in which case the Survival CRPS becomes:

SCRPS-RIGHT(F, (y, c)) =

∫ ∞
0

(F (z)1{z ≤ y ∪ c = 0} − 1{z ≥ y ∩ c = 0})2dz

=

∫ y

0

F (z)2dz + (1− c)
∫ ∞
y

(F (z)− 1)2dz.

For the case of F being log-normal, the expression becomes

SCRPS-RIGHT(FLN(µ,σ2), (y, c)) =

∫ y

0

Φµ,σ2(log z)2dz + (1− c)
∫ ∞
y

(1− Φµ,σ2(log z))2dz

=

∫ y

0

Φµ,σ2(log z)2dz + (1− c)
∫ ∞
y

Φ−µ,σ2(− log z)2dz

=

∫ y

0

Φµ,σ2(log z)2dz + (1− c)
∫ 1/y

0

Φ−µ,σ2(log z)2(1/z)2dz

= I+µ,σ2(y) + (1− c)I−µ,σ2(y).

C. SURVIVAL-CRPS FOR LOG-NORMAL (INTERVAL-CENSORED)

We further extend the Right Censored Survival CRPS to the case of interval censoring. This is
particularly useful for all-cause mortality prediction where we assume a particular event must occur
by time T . Using the same notations as before, the Interval Censored Survival CRPS is:

SCRPS-INTVL(F, (y, c, T )) =

∫ ∞
0

(F (z)1{{z ≤ y ∪ c = 0} ∪ z ≥ T } − 1{{z ≥ y ∩ c = 0} ∪ z ≥ T })2dz

=

∫ y

0

F (z)2dz + (1− c)
∫ T
y

(F (z)− 1)2dz +

∫ ∞
T

(F (z)− 1)2dz.
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For the case of F being log-normal, the expression becomes

SCRPS-INTVL(FLN(µ,σ2), (y, c, T )) =

∫ y

0

Φµ,σ2(log z)2dz + (1− c)
∫ T
y

(1− Φµ,σ2(log z))2dz

+

∫ ∞
T

(1− Φµ,σ2(log z))2dz

=

∫ y

0

Φµ,σ2(log z)2dz + (1− c)
∫ 1/y

1/T
Φ−µ,σ2(log z)2(1/z)2dz

+

∫ 1/T

0

Φ−µ,σ2(log z)2(1/z)2dz

= I+µ,σ2(y) + I−µ,σ2(T ) + (1− c)
[
I−µ,σ2(y)− I−µ,σ2(T )

]
.

D. SURVIVAL-AUPRC FOR LOG-NORMAL (INTERVAL-CENSORED)

We start with the most general case (interval censoring). For a general continuous prediction
distribution F with an interval outcome [L,U ], we define the Survival-AUPRC as

Survival-AUPRC(F,L, U) =

∫ 1

0

[F (U/t)− F (Lt)] dt.

Specifically for the case of log-normal, where φ and Φ are PDF and CDF of N (0, 1) respectively,
and L̃ = logL and Ũ = logU :

Survival-AUPRC(FLN(µ,σ2), L, U) =

∫ 1

0

[
FLN(µ,σ2)(U/t)− FLN(µ,σ2)(Lt)

]
dt

=

∫ 1

0

[
FN (µ,σ2)(Ũ − log t)− FN (µ,σ2)(L̃+ log t)

]
dt

(substituting s = log t) =

∫ 0

−∞

[
FN (µ,σ2)(Ũ − s)− FN (µ,σ2)(L̃+ s)

]
esds

=
[
FN (µ,σ2)(Ũ − s)− FN (µ,σ2)(L̃+ s)

]
es
∣∣s=0

s=−∞

−
∫ 0

−∞

[
−fN (µ,σ2)(Ũ − s)− fN (µ,σ2)(L̃+ s)

]
esds

=
(
FN (µ,σ2)(Ũ)− FN (µ,σ2)(L̃)

)
+

∫ 0

−∞

[
fN (µ,σ2)(Ũ − s) + fN (µ,σ2)(L̃+ s)

]
esds

=
(
FN (µ,σ2)(Ũ)− FN (µ,σ2)(L̃)

)
+

∫ 0

−∞
fN (µ,σ2)(Ũ − s)esds+

∫ 0

−∞
fN (µ,σ2)(L̃+ s)esds

=
(
FN (µ,σ2)(Ũ)− FN (µ,σ2)(L̃)

)
+

∫ 0

−∞

1

σ
φ

(
Ũ − s− µ

σ

)
esds+

∫ 0

−∞

1

σ
φ

(
L̃+ s− µ

σ

)
esds(

substituting u =
Ũ − s− µ

σ

)
=
(
FN (µ,σ2)(Ũ)− FN (µ,σ2)(L̃)

)
+

∫ Ũ−µ
σ

∞

1

σ
φ (u) eŨ−σu−µ(−σ)du+

∫ 0

−∞

1

σ
φ

(
L̃+ s− µ

σ

)
esds
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(
substituting v =

L̃+ s− µ
σ

)
=
(
FN (µ,σ2)(Ũ)− FN (µ,σ2)(L̃)

)
+

∫ Ũ−µ
σ

∞

1

σ
φ (u) eŨ−σu−µ(−σ)du+

∫ L̃−µ
σ

−∞

1

σ
φ (v) evσ−L̃+µσdv

=
(
FN (µ,σ2)(Ũ)− FN (µ,σ2)(L̃)

)
− eŨ−µ

∫ Ũ−µ
σ

∞
φ (u) e−σudu+ e−L̃+µ

∫ L̃−µ
σ

−∞
φ (v) evσdv(

using
∫
ecxφ(x)dx = e

c2

2 Φ(x− c)
)

=
(
FN (µ,σ2)(Ũ)− FN (µ,σ2)(L̃)

)
+
U

eµ

[
e
σ2

2 Φ(u+ σ)
]u= Ũ−µ

σ

u=∞
+
eµ

L

[
e
σ2

2 Φ(v − σ)
]v= L̃−µ

σ

v=−∞

=
(
FN (µ,σ2)(Ũ)− FN (µ,σ2)(L̃)

)
+
U

eµ

[
e
σ2

2 Φ

(
Ũ − µ
σ

+ σ

)
− eσ

2

2

]
+
eµ

L

[
e
σ2

2 Φ

(
L̃− µ
σ
− σ

)]
=
(
FN (µ,σ2)(Ũ)− FN (µ,σ2)(L̃)

)
+ e

σ2

2

[
eµ

L
Φ

(
L̃− µ
σ
− σ

)
+
U

eµ

(
1− Φ

(
Ũ − µ
σ

+ σ

))]
= Φµ,σ2(logU)− Φµ,σ2(logL)

+ e
σ2

2

[
eµ

L
Φ

(
logL− µ

σ
− σ

)
+
U

eµ
Φ

(
− logU − µ

σ
− σ

)]
.

E. SURVIVAL-AUPRC FOR LOG-NORMAL (RIGHT-CENSORED)

For a general continuous prediction distribution F with an interval outcome [L,∞), we define
Survival-AUPRC as

Survival-AUPRC(F,L) =

∫ 1

0

[1− F (Lt)] dt.

Specifically for the case of log-normal, where Φ is the CDF of N (0, 1), and L̃ = logL (following
Appendix-D),

Survival-AUPRC(FLN(µ,σ2), L) =

∫ 1

0

[
1− FLN(µ,σ2)(Lt)

]
dt = 1− Φµ,σ2(L̃) +

eµ+
σ2

2

L
Φ

(
L̃− µ
σ
− σ

)
.

F. SURVIVAL-AUPRC FOR LOG-NORMAL (UNCENSORED)

For a general continuous prediction distribution F with a point outcome y, we define Survival-AUPRC

Survival-AUPRC(F, y) =

∫ 1

0

[F (y/t)− F (yt)] dt.

Specifically for the case of log-normal, where Φ is the CDF of N (0, 1), and ỹ = log y (following
Appendix-D),

Survival-AUPRC(FLN(µ,σ2), y) =

∫ 1

0

[
FLN(µ,σ2)(y/t)− FLN(µ,σ2)(yt)

]
dt

= e
σ2

2

[
eµ

y
Φ

(
ỹ − µ
σ
− σ

)
+

y

eµ
Φ

(
− ỹ − µ

σ
− σ

)]
.
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G. EVALUATION AS BINARY OUTCOME
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Figure 6: Discrimination and calibration of predictions from the interval-censored Survival-CRPS
model, evaluated as predictions for a dichotomous outcome at 6 months, 1 year, and 5 years.

H. EXPERIMENTS ON THE MIMIC-III DATASET

On the MIMIC-III dataset (Johnson et al., 2016), we built a feed forward neural network that takes
in 51015 hospital admissions in the dataset (70.1% censored) and makes predictions at the time of
discharge. There is only one time of prediction per patient, so a recurrent model was not used. We
removed admissions where the patient’s age was obfuscated or where the patient’s discharge time
occurred after their recorded date of death. As features, we used demographics (age and gender) and
embedded diagnostic codes into a 128-dimensional space.

Table 2: For MIMIC-III, metrics measuring sharpness and calibration for models trained on the right-
censored and interval-censored variants of the maximum likelihood and Survival-CRPS objectives.

Metric MLE-RIGHT MLE-INTVL CRPS-RIGHT CRPS-INTVL

Calibration slope 1.190 ± 5e-3 0.932 ± 9e-3 1.190 ± 5e-3 0.938 ± 7e-3
Mean coefficient of variation 4.062 ± 0.039 1.763 ± 0.006 4.062 ± 0.035 1.647 ± 0.012
Mean prob of survival to age 120 yrs 0.035 ± 4e-4 0.007 ± 2e-4 0.035 ± 4e-4 0.001 ± 2e-6
Dead: mean Surv-AUPRC (uncen) 0.266 ± 2e-3 0.338 ± 4e-3 0.266 ± 3e-3 0.348 ± 4e-3
Alive: mean Surv-AUPRC (intvl-cen) 0.993 ± 2e-4 0.999 ± 6e-5 0.993 ± 2e-4 1.000 ± 1e-5
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Figure 7: Calibration plots for each of the models in MIMIC-III. We compare predicted cumulative
densities against observed event frequencies, evaluated at quantiles of predicted cumulative density.
Right-censored observations are removed from consideration in quantiles past times of censoring,
interval-censored observations are additionally re-introduced in quantiles corresponding to times past
120 years.
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