
HTN Planning with Semantic Attachments

Maurı́cio Cecı́lio Magnaguagno, Felipe Meneguzzi
School of Computer Science (FACIN)

Pontifical Catholic University of Rio Grande do Sul (PUCRS)
Porto Alegre - RS, Brazil

mauricio.magnaguagno@acad.pucrs.br
felipe.meneguzzi@pucrs.br

Abstract

Hierarchical Task Networks (HTN) generate plans us-
ing a decomposition process guided by extra domain
knowledge to guide search towards a planning task.
While many HTN planners can make calls to external
processes (e.g. to a simulator interface) during the de-
composition process, this is a computationally expen-
sive process, so planner implementations often use such
calls in an ad-hoc way using very specialized domain
knowledge to limit the number of calls. Conversely,
the few classical planners that are capable of using ex-
ternal calls (often called semantic attachments) during
planning do so in much more limited ways by gener-
ating a fixed number of ground operators at problem
grounding time. In this paper we develop the notion
of semantic attachments for HTN planning using semi
co-routines, allowing such procedurally defined predi-
cates to link the planning process to custom unifications
outside of the planner. The resulting planner can then
use such co-routines as part of its backtracking mecha-
nism to search through parallel dimensions of the state-
space (e.g. through numeric variables). We show empir-
ically that our planner outperforms the state-of-the-art
numeric planners in a number of domains using mini-
mal extra domain knowledge.

Introduction
Planning in domains that require numerical variables, for
example, to drive robots in the physical world, must rep-
resent and search through a space defined by real-valued
functions with a potentially infinite domain, range, or both.
This type of numeric planning problem poses challenges in
two ways. First, the description formalisms (Fox and Long
2003) might not make it easy to express the numeric func-
tions and its variables, resulting in a description process
that is time consuming and error-prone for real-world do-
mains (Strobel and Kirsch 2014). Second, the planners that
try to solve such numeric problems must find efficient strate-
gies to find solutions through this type of state-space. Previ-
ous work on formalisms for domains with numeric values
developed the Semantic Attachment (SA) construct (Dorn-
hege et al. 2009) in classical planning. Semantic attachments
were coined by (Weyhrauch 1981) to describe the attach-
ment of an interpretation to a predicate symbol using an ex-
ternal procedure. Such construct allows the planner to reason

about fluents where numeric values come from externally
defined functions. In this paper, we extend the basic notion
of semantic attachment for HTN planning by defining the
semantics of the functions used as semantic attachments in
a way that allows the HTN search and backtracking mecha-
nism to be substantially more efficient. Our current approach
focused on depth-first search HTN implementation without
heuristic guidance, with free variables expected to be fully-
ground before task decomposition continues.

Most planners are limited to purely symbolic opera-
tions, lacking structures to optimize usage of continuous re-
sources involving numeric values (Gerevini, Saetti, and Se-
rina 2008). Floating point numeric values, unlike discrete
logical symbols, have an infinite domain and are harder to
compare as one must consider rounding errors. One could
overcome such errors with delta comparisons, but this solu-
tion becomes cumbersome as objects are represented by sev-
eral numeric values which must be handled and compared
as one, such as points or polygons. Planning descriptions
usually simplify such complex objects to symbolic values
(e.g. p25 or poly2) that are easier to compare. Detailed nu-
meric values are ignored during planning or left to be de-
cided later, which may force replanning (Şucan and Kavraki
2011). Instead of simplifying the description or doing mul-
tiple comparisons in the description itself, our goal is to
exploit external formalisms orthogonal to the symbolic de-
scription. To achieve that we build a mapping from symbols
to objects generated as we query semantic attachments. Se-
mantic attachments have already been used in classical plan-
ning (Dornhege et al. 2009) to unify values just like predi-
cates, and their main advantage is that new users do not need
to discern between them and common predicates. Thus, we
extend classical HTN planning algorithms and their formal-
ism to support semantic attachment queries. While external
function calls map to functions defined outside the HTN de-
scription, we implement SAs as semi co-routines (Dahl, Di-
jkstra, and Hoare 1972), subroutines that suspend and re-
sume their state, to iterate across zero or more values pro-
vided one at a time by an external implementation, mitigat-
ing the potentially infinite range of the external function.

Our contributions are threefold. First, we introduce SAs
for HTN planning as a mechanism to describe and evaluate
external predicates at execution time. Second, we introduce
a symbol-object table to improve the readability of symbolic

descriptions and the plans generated, while making it easier
to handle external objects and structures. Finally, we em-
pirically compare the resulting HTN planner with a mod-
ern classical planner (Ilghami and Nau 2003) in a number of
mixed symbolic/numeric domains showing substantial gains
in speed with minimal domain knowledge.

Background
Classical Planning
Classical planning algorithms must find plans that transform
properties of the world from an initial configuration to a goal
configuration. Each property is a logical predicate, a tuple
with a name and terms that relate to objects of the world. A
world configuration is a set of such tuples, which is called a
state. To modify a state one must apply an operator, which
must fulfill certain predicates at the current state, as precon-
ditions, to add and remove predicates, the effects. Each op-
erator applied creates a new intermediate state. The set of
predicates and operators represent the domain, while each
group of objects, initial and goal states represent a prob-
lem within this domain. In order to achieve the goal state
the operators are used as rules to determine in which or-
der they can be applied based on their preconditions and ef-
fects. To generalize the operators and simplify description
one can use free variables to be replaced by objects avail-
able, a process called grounding. Once a state that satisfies
the goal is reached, the sequence of ground operators is the
plan (Nebel 2000). A plan is optimal, iff it achieves the best
possible quality in some criteria, such as number of opera-
tors, time or effort to execute; or satisficing if it reaches the
goal without optimizing any metrics. PDDL (McDermott et
al. 1998) is the standard description language to describe do-
mains and problems, with features added through require-
ments that must be supported by the planner. Among such
features are numeric-valued fluents to express numeric as-
signments and updates to the domain, as well as events and
processes to express effects that occur in parallel with the
operators in a single instant or during a time interval.

Hierarchical Task Networks
Hierarchical planning shifts the focus from goal states to
tasks to exploit human knowledge about problem decom-
position using a hierarchy of domain knowledge recipes as
part of the domain description (Nau et al. 1999). This hi-
erarchy is composed of primitive tasks that map to opera-
tors and non-primitive tasks, which are further refined into
sub-tasks using methods. The decomposition process is re-
peated until only primitive-tasks mapping to operators re-
main, which results in the plan itself. The goal is implicitly
achieved by the plan obtained from the decomposition pro-
cess. If no decomposition is possible, the task fails and a new
expansion is considered one level up in the hierarchy, until
there are no more possible expansions for the root task, only
then a task decomposition is considered unachievable. Un-
like classical planning, hierarchical planning only considers
tasks obtained from the decomposition process to solve the
problem, which both limits the ability to solve problems and
improves execution time by evaluating a smaller number of

operators. The HTN planning description is more complex
than equivalent classical planning descriptions, since it in-
cludes domain knowledge with potentially recursive tasks,
being able to solve more problems than classical planning.

Symbolic-Geometric Planning
Classical planners with heuristic functions can solve prob-
lems mixing symbolic and numeric values efficiently using
a process of discretization. A discretization process converts
continuous values into sets of discrete symbols at often pre-
defined granularity levels that vary between different do-
mains. However, if the discretization process is not possible,
one must use a planner that also supports numeric features,
which requires another heuristic function, description lan-
guage and usually more computing power due to the number
of states generated by numeric features. Numeric features
are especially important in domains where one cannot dis-
cretize the representation, they usually appear in geometric
or physics subproblems of a domain and cannot be avoided
during planning. Unlike symbolic approaches where liter-
als are compared for equality during precondition evalua-
tion, numeric value comparison is non-trivial. To avoid do-
ing such comparison for every numeric value the user is left
responsible for explicitly defining when one must consider
rounding errors, which impacts description time and com-
plexity. For complex object instances (in the object-oriented
programming sense), such as polygons that are made of
point instances, comparison details in the description are
error-prone. Details such as the order of polygon points and
floating point errors in their coordinates are usually irrele-
vant for the planner and the domain designer and should not
be part of the domain description as they are part of a low-
level specification.

Such low-level specifications can be implemented by ex-
ternal function calls to improve what can be expressed and
computed by a HTN planner. Such functions come with dis-
advantages, as they are not expected to keep an external
state, returning a single value solely based on the provided
parameters. While HTN planners can abstract away the nu-
meric details via external function calls, there are limitations
to this approach if a particular function is used in a decom-
position tree where it is expected to backtrack and try new
values from the function call (i.e. if the function is meant
to be used to generate multiple terms as part of the search
strategy). An external function must return a list of values to
account for all possible decompositions so the planner tries
one at a time until one succeeds. Generating a complete list
is too costly when compared to computing a single value,
as the first value could be enough to find a feasible plan.
A semantic attachment, on the other hand, acts as an exter-
nal predicate that unifies with one possible set of values at
a time, rather than storing a complete list of possible sets of
values to be stored in the state structure. This implementa-
tion saves time and memory during planning, as only back-
tracking causes the external co-routine to resume generating
new unifications until a plan (or a certain amount of plans) is
found. Each SA acts as a black box that simulates part of the
environment encoding the results in state variables that are
often orthogonal to other predicates (Francès et al. 2017).

Intermediate layer External layerSymbolic layer

Declarative state

External calls

Lifted SA

Ground SA
Functions

Coroutines

External library
or simulator

Sy
m

bo
l-o

bj
ec

t t
ab

le

Figure 1: Symbolic and external layers share information
through an intermediate layer that maps representations and
calls between them.

While common predicates are stored in a state structure,
SAs are computed at execution time by co-routines. With
a state that is not only declarative, with parts being procedu-
rally computed, it is possible to minimize memory usage and
delegate complex state-based operations to external methods
otherwise incompatible or too complex for current planning
description languages and planners that require grounding.

We abstract away the numeric parts of the planning pro-
cess encoded through SAs in a layer between the symbolic
planner and external libraries. We leverage the abstract ar-
chitecture of Figure 1 with three layers inspired by the work
of de Silva and Meneguzzi (2015). In the symbolic layer
we manipulate an anchor symbol as a term, such as poly-
gon1, while in the external layer we manipulate a Polygon
instance with N points as a geometric object based on what
the selected external library specifies. With this approach
we avoid complex representations in the symbolic layer. In-
stances created by the external layer that must be exposed
to the symbolic layer are compared with stored object in-
stances to reuse a previously defined symbol or create a new
one, i.e. always represent position 〈2,5〉 with p1. This pro-
cess makes symbol comparison work in the planning layer
even for symbols related to complex external objects. The
symbol-object table is also used to transform symbols into
usable object instances by external function calls and SAs.
Such table is global and consistent during the planning pro-
cess, as each unique symbol will map the same internal ob-
ject, even if such symbol is discarded in one decomposition
branch. Once operations are finished in the external layer the
process happens in reverse order, objects are transformed
back into symbols that are exposed by free variables. The
intermediate layer acts as the foreign function interface be-
tween the two layers, and can be modified to accommodate
another external library without modifications to the sym-
bolic description.

SAs can work as interpreted predicates (Mohr et al. 2018),
evaluating the truth value of a predicate procedurally, and
also grounding free variables. SAs are currently limited to be
used as method preconditions, which must not contain dis-
junctions. As only conjunctions and negations are allowed,
one can reorder the preconditions during the compilation
phase to improve execution time, removing the burden of the
domain designer to optimize a mostly declarative descrip-
tion by hand, based on how free variables are used as SA

Listing 1: Abstract method with SAs among preconditions.
(:attachments (sa1 ?a ?b) (sa2 ?a ?b))
(:method (m ?t1 ?t2)
label
(; preconditions

(call != ?t1 ?t2) ; no dependencies
(call != ?fv1 ?fv2) ; ?fv1 and ?fv2 dependencies
(sa1 ?t1 ?fv1) ; no dependencies, ground ?fv1
(pre1 ?t1 ?t2) ; no dependencies
(sa2 ?fv1 ?fv2) ; ?fv1 dependency, ground ?fv2
(pre2 ?fv3 ?fv1) ; ?fv1 dependency, ground ?fv3

)
(; subtasks

(subtask ?t1 ?t2 ?fv1 ?fv2)
)

)

terms. Each free variable creates a dependency between the
first predicate or SA that contains such variable as a term and
the next predicates or SAs that contain the same term. The
first predicate or SA is responsible for grounding such vari-
able while the next predicates or SAs only verify if the pre-
viously ground value matches with the current state. Predi-
cates have priority over SAs to ground free variables, as the
possible values are obtained from the current (finite) state,
while SAs may cover a possibly infinite number of values.
Consider the abstract method example of Listing 1, with two
SAs among preconditions, sa1 and sa2. The compiled out-
put shown in Algorithm 1 has both SAs evaluated after com-
mon predicates, while function calls happen before or after
each SA, based on which variables are ground at that point.
In Line 4 the free variables fv1 and fv3 have a ground value
that can only be read and not modified by other predicates
or SAs. In Line 7 every variable is ground and the second
function call can be evaluated.

Algorithm 1 Compilation phase may reorder preconditions
to optimize execution time.
1: function M(t1, t2)
2: if t1 6= t2
3: for each fv1, fv3; state⊂ {〈pre1,t1,t2〉,〈pre2,fv3,fv1〉} do
4: for each sa1(t1, fv1) do
5: free variable fv2
6: for each sa2(fv1, fv2) do
7: if fv1 6= fv2
8: decompose([〈subtask, t1, t2, fv1, fv2〉])

The other limitation of current SA co-routines is that they
must unify with a valid value within their internal itera-
tions or have a stop condition, otherwise the HTN process
will keep backtracking and evaluating the SA seeking new
values and never returning failure. Due to the implementa-
tion support of arbitrary-precision arithmetic and accessing
data from real-world streams of data/events (which are al-
ways new and potentially infinite) a valid value may never
be found, and we expect the domain designer to implement
mechanisms to limit the maximum number of times a SA
might try to evaluate a call (i.e. to have finite stop condi-
tions). This maximum number of tries can be implemented

as a counter in the internal state of a SA, which is mostly
used to mark values provided to the HTN to avoid repeti-
tion, but may achieve side-effects in external structures. The
amount of side-effects in both external functions calls and
SAs increase the complexity of correctness proofs and the
ability to inspect and debug domain descriptions.

Examples
Discrete distance between objects
A common problem when moving in dynamic and continu-
ous environments is to check for object collisions, as agents
and objects do not move across tiles in a grid. One solution
is to calculate the distance between both objects centroid po-
sitions and verify if this value is in a safe margin before con-
sidering which action to take. To avoid the many geomet-
ric elements involved in this process we can map centroid
position symbols to coordinate instances and only check the
symbol returned from the symbol-object table, ignoring spe-
cific numeric details and comparing a symbol to verify if ob-
jects are near enough to collide. This process is illustrated in
Figure 2, in which p0 and p1 are centroid position symbols
that match symbols S0 and S1 in the symbol-object table,
which maps their value to point objects O0 and O1. Such in-
ternal objects are used to compute distance and return a sym-
bolic distance in situations where the actual numeric value
is unnecessary.

Symbol-object table

S0 O0

S1 O1
...

p0

p1

distance

1.41 symbol near

Figure 2: The symbol to object table maps symbols to
object-oriented programming instances to hide procedural
logic from the symbolic layer.

An iterator for HTN
In order to find a correct number to match a spatial or tem-
poral constraint one may want to describe the relevant inter-
val and precision to limit the amount of possibilities without
having to discretely add each value to the state. Planning de-
scriptions usually do not contain information about numeric
intervals and precision, and if there is a way to add such
information it is through the planner itself, as global defini-
tions applied to all numeric functions, i.e. timestep, mantissa
and exponent digits of DiNo (Piotrowski et al. 2016). The
STEP SA described in Algorithm 2 addresses this problem,
unifying t with one number at time inside the given interval
with an ε step.

Lazy adjacency evaluation
To avoid having complex effects in the move operators one
must not update adjacencies between planning objects dur-
ing the planning process. Instead one must update only the

Algorithm 2 The STEP SA replaces the pointer of t with a
numeric symbol before resuming control to the HTN.
1: function STEP(t,min = 0,max =∞, ε = 1)
2: for i←min to max step ε do
3: t← symbol(i)
4: yield . Resume HTN

object position, deleting from the old position and adding the
new position. Such positions come from a partitioned space,
previously defined by the user. The positions and their adja-
cencies are either used to generate and store ground opera-
tors or stored as part of the state. To avoid both one could
implement adjacency as a co-routine while hiding numeric
properties of objects, such as position. Algorithm 3 shows
the main two cases that appear in planning descriptions. In
the first case both symbols are ground, and the co-routine
resumes when both objects are adjacent, doing nothing oth-
erwise, failing the precondition. In the second case s2, the
second symbol, is free to be unified using s1, the first sym-
bol, and a set of directions D to yield new positions to re-
place s2 pointer with a valid position, one at a time. In other
terms, this co-routine either checks whether s2 is adjacent to
s1 or tries to find a value adjacent to s1 binding it to s2 if
such value exists.

Algorithm 3 This ADJACENT SA implementation can either
check if two symbols map to adjacent positions or generate
new positions and their symbols to unify s2.
1: D← {(-1,-1),(0,-1),(1,-1),(-1,0),(1,0),(-1,1),(0,1),(1,1)}
2: function ADJACENT(s1, s2)
3: s1← object(s1)
4: if s2 is ground
5: s2← object(s2)
6: if |x(s1) - x(s2)| ≤ 1 ∧ | y(s1) - y(s2)| ≤ 1
7: yield
8: else if s2 is free
9: for each (x, y) ∈ D do

10: nx← x + x(s1); ny← y + y(s1)
11: if 0 ≤ nx < WIDTH ∧ 0 ≤ ny < HEIGHT
12: s2← symbol(〈nx, ny〉)
13: yield

Domains and Experiments
We conducted emprirical tests in a machine with Dual 6-
core Xeon CPUs @2GHz / 48GB memory, repeating ex-
periments three times to obtain an average. The results
show a substantial speedup over the original classical de-
scription from ENHSP (Scala et al. 2016) with more com-
plex descriptions. Our HTN implementation is available at
github.com/Maumagnaguagno/HyperTensioN U.

Plant Watering / Gardening
In the Plant Watering domain (Frances and Geffner 2015) one or
more agents move in a 2D grid-based scenario to reach taps to ob-
tain certain amounts of water and pour water in plants spread across
the grid. Each agent can carry up to a certain amount of water and
each plant requires a certain amount of water to be poured. Many
state variables can be represented as numeric fluents, such as the

Listing 2: Excerpt of the Plant Watering HTN domain used
as input to our implementation, the ADJACENT SA is de-
scribed separately.
(:attachments (adjacent ?x ?y ?nx ?ny ?gx ?gy))
(:method (travel ?a ?gx ?gy)

base
(; preconditions
(call = (call function (x ?a)) ?gx)
(call = (call function (y ?a)) ?gy)

)
() ; empty subtasks
keep_moving
(; preconditions
(adjacent (call function (x ?a))

(call function (y ?a)) ?nx ?ny ?gx ?gy)
)
(; subtasks
(!move ?a ?nx ?ny)
(travel ?a ?gx ?gy)

)
)

coordinates of each agent, tap and plant, the amount of water to
be poured and being carried by each agent, and the limits of how
much water can be carried and the size of the grid. There are two
common problems in this scenario, the first is to travel to either a
tap or a plant, the second is the top level strategy. To avoid con-
sidering multiple paths in the decomposition process one can try
to move straight to the goal first, and only to the goal in scenarios
without obstacles, which simplifies the travel method. To achieve
this straightforward movement we modify the ADJACENT SA to
consider the goal position also, using an implementation of Algo-
rithm 4. The top level strategy may consider which plant is closer to
a tap or closer to an agent, how much water an agent can carry and
so on. The simpler top level strategy is to verify how much water
must be poured to a plant, travel to a tap, load water, travel to the
previously selected plant and pour all the water loaded. Repeating
this process until every plant has enough water poured. The travel
method description using our modified JSHOP input language is
shown in Listing 2 and compiled to Algorithm 5. We compare with
the fastest satisficing configurations of ENHSP (sat and c sat)
in Figure 3, which shows that our approach is faster with execution
times constantly below 0.01s, with both planners obtaining non-
step-optimal plans.

Algorithm 4 In this goal-driven ADJACENT SA the positions
are coordinate pairs, and two variables must be unified to a
closer to the goal position in an obstacle-free scenario.
1: function ADJACENT(x, y, nx, ny, gx, gy)
2: x← numeric(x); y← numeric(y)
3: gx← numeric(gx); gy ← numeric(gy)
4: . compare returns -1, 0, 1 for <,=, >, respectively
5: nx← symbol(x + compare(gx, x))
6: ny ← symbol(y + compare(gy, y))
7: yield

Car Linear
In the Car Linear domain (Bryce et al. 2015) the goal is to con-
trol the acceleration of a car, which has a minimum and maximum
speed, without external forces applied, only moving through one
axis to reach its destination, and requiring a small speed to safely

Algorithm 5 Compiled output of the Plant Watering HTN
domain excerpt from Listing 2.
1: function TRAVEL(a, gx, gy)
2: if x(a) = gx ∧ y(a) = gy
3: decompose([])
4: free variables nx, ny
5: for each adjacent(x(a), y(a), nx, ny, gx, gy) do
6: decompose([〈move, a, nx, ny〉, 〈travel, a, gx, gy〉])

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60 70

T
im

e(
s)

Problem (index)

HTN with SA
ENHSP(sat)

ENHSP(c sat)

Figure 3: Time in seconds to solve Plant Watering problems.

stop. The idea is to propagate process effects to state functions, in
this case acceleration to speed and speed to position, while being
constrained to an acceptable speed and acceleration. The planner
must decide when and for how long to increase or decrease accel-
eration, therefore becoming a temporal planning problem. We use
a STEP SA to iterate over the time variable and propagate temporal
effects and constraints, i.e. speed at time t. We compare the execu-
tion time of our approach with ENHSP with aibr, ENHSP main
configuration for planning with autonomous processes, in Table 1.
There is no comparison with a native HTN approach, as one would
have to add a discrete finite set of time predicates (e.g. 〈time 0〉)
to the initial state description to be selected as time points during
planning.

Problem 1 2 3 4 5 6 7 8 9
ENHSP (aibr) 0.461 0.462 0.427 0.461 0.475 0.474 0.443 0.466 58.256
HTN with SA 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 03.920

Table 1: Time in seconds to solve Car Linear problems.

Bitangent movement
For an agent to move in a continuous space it is common practice
to simplify the environment to simpler geometric shapes for faster
collision evaluation. One possible simplification is to find a circle
or sphere that contains each obstacle and use this new shape to eval-
uate paths. In this context the best path is the one with the shortest
lines between initial position and goal, considering bitangent lines
between each simplified obstacle plus the amount of arc traversed
on their borders, also know as Dubins path (Dubins 1957). One
possible approach for a satisficing plan is to move straight to the
goal or to the closest obstacle to the goal and repeat the process.
A precondition to such movement is to have a visible target, with-
out any other obstacle between the current and target positions. A

second consideration is the entrance direction, as clock or counter-
clockwise, to avoid cusped edges. Cusped edges are not part of op-
timal realistic paths, as the moving agent would have to turn around
over a single point instead of changing its direction a few degrees to
either side. For the problem defined in Figure 4 the possible paths
from point i to g are ACG, ADH, BEG, BFH.

Obstacle1 Obstacle2

A

B

C

D

E

F

G

H

i

g

Figure 4: Possible bitangent paths from i to g with two cir-
cular obstacles.

Two possible approaches can be taken to solve the search over
circular obstacles using bitangents. One is to rely on an external
solver to compute the entire path, a motion planner, which could
happen during or after HTN decomposition has taken place. When
done during HTN decomposition, as seen in Listing 3, one must
call the SEARCH-CIRCULAR function and consume the resulting
steps of the plan stored in the intermediate layer, not knowing about
how close to the goal it could reach in case of failure. When done
after HTN decomposition, one must replace certain dummy oper-
ators of the HTN plan and replan in case of failure. The second
approach is to rely on parts of the external search, namely the VIS-
IBLE function and CLOSEST SA, to describe continuous search to
the HTN planner. The VISIBLE function returns true if from a point
on a circle one can see the goal, false otherwise. The CLOSEST SA
generates unifications from a circle with an entrance direction to a
point in another circle with an exit direction, new points closer to
the goal are generated first. Differently from external search, one
can deal with failure at any moment, while being able to modify
behavior with the same external parts, such as the initial direction
the search starts with. Another advantage over the original solution
is the ability to ask for N plans, which forces the HTN to back-
track after each plan is found and explore a different path until the
amount of plans found equals N or the HTN planner fails to back-
track. A description of such approach is show in Listing 4. The
execution time variance between the solutions is not as important
as their different approaches to obtain a result, from an external
greedy best-first search to a HTN depth-first search. The external
search also computes bitangents on demand, as bitangent precom-
putation takes a significant amount of time for many obstacles.

Conclusion
We developed a notion of semantic attachments for HTN planners
that not only allows a domain expert to easily define external nu-
merical functions for real-world domains, but also provides sub-
stantial improvements on planning speed over comparable classical
planning approaches. The use of semantic attachments improves
the planning speed as one can express a potentially infinite state
representation with procedures that can be exploited by a strat-
egy described as HTN tasks. As only semantic attachments present
in the path decomposed during planning are evaluated, a smaller
amount of time is required when compared with approaches that
precompute every possible value during operator grounding. Our
description language is arguably more readable than the commonly
used strategy of developing a domain specific planner with cus-
tomized heuristics. Specifically, we allow designers to easily de-
fine external functions in a way that is readable within the domain

Listing 3: Search over circular obstacles using bitangents is
done entirely by external function and resulting plan steps
stored in intermediate layer are consumed by the HTN.
(:method (forward ?agent ?goal)
base
((at ?agent ?goal)) ; preconditions
() ; empty subtasks
search
(; preconditions

(at ?agent ?start)
(call search-circular ?agent ?start ?goal)

)
; subtasks
((apply-plan ?agent ?start 0 (call plan-size)))

)
(:method (apply-plan ?agent ?from ?index ?size)
index-equals-size
((call = ?index ?size)) ; preconditions
() ; empty subtasks
get-next-action
; preconditions
((assign ?to (call plan-position ?index)))
(; subtasks

(!move ?agent ?from ?to)
(apply-plan ?agent ?to (call + ?index 1) ?size)

)
)

Listing 4: Search over circular obstacles using bitangents is
done by the HTN using CLOSEST SA to generate each step.
(:attachments (closest ?circle ?to ?outcircle

?indir ?outdir ?goal))
(:method (forward-attachments ?agent ?goal)
clockwise
((at ?agent ?start)) ; preconditions
(; subtasks

(loop ?agent ?start ?start clock ?goal)
)
counter-clockwise
((at ?agent ?start)) ; preconditions
(; subtasks

(loop ?agent ?start ?start counter ?goal)
)

)
(:method (loop ?agent ?from ?circle ?indir ?goal)
base
((call visible ?from ?circle ?goal)) ; preconditions
((!move ?agent ?from ?goal)) ; subtasks
recursion
(; preconditions

(closest ?circle ?to ?outcircle
?indir ?outdir ?goal)

(not (visited ?agent ?to))
)
(; subtasks

(!move ?agent ?from ?to)
(!!visit ?agent ?from)
(loop ?agent ?to ?outcircle ?outdir ?goal)
(!!unvisit ?agent ?from)

)
)

knowledge encoded in HTN methods at design time, and also dy-
namically generate symbolic representations of external values at
planning time, which makes generated plans easier to understand.

Our work is the first attempt at defining the syntax and operation
of semantic attachments for HTNs, allowing further research on
search in SA-enabled domains within HTN planners. Future work
includes implementing a cache to reuse previous values from exter-
nal procedures applied to similar previous states (Dornhege, Hertle,
and Nebel 2013) and a generic construction to access such values in
the symbolic layer, to obtain data from explored branches outside
the state structure, i.e. to hold mutually exclusive predicate infor-
mation. We plan to develop more domains, with varying levels of
domain knowledge and SA usage, to obtain better comparison with
other planners and their resulting plan quality. The advantage of
being able to exploit external implementations conflicts with the
ability to incorporate such domain knowledge into heuristic func-
tions, as such knowledge is outside the description. Further work
is required to expose possible metrics from a SA to heuristic func-
tions.

Acknowledgements
We acknowledge the support given by CAPES/Pro-Alertas
(88887.115590/2015-01) and CNPQ within process number
305969/2016-1 under the PQ fellowship.
This paper was achieved in cooperation with HP Brasil Indústria e
Comércio de Equipamentos Eletrônicos LTDA. using incentives of
Brazilian Informatics Law (Law no 8.2.48 of 1991).

References
Bryce, D.; Gao, S.; Musliner, D. J.; and Goldman, R. P. 2015.
SMT-Based Nonlinear PDDL+ Planning. In AAAI, 3247–3253.
Dahl, O.-J.; Dijkstra, E. W.; and Hoare, C. A. R. 1972. Structured
programming. Academic Press Ltd.
de Silva, L., and Meneguzzi, F. 2015. On the design of symbolic-
geometric online planning systems. In 2015 Workshop on Hybrid
Reasoning (HR 2015), 1–8.
Dornhege, C.; Gissler, M.; Teschner, M.; and Nebel, B. 2009. Inte-
grating symbolic and geometric planning for mobile manipulation.
In Safety, Security & Rescue Robotics (SSRR), 2009 IEEE Interna-
tional Workshop on, 1–6. IEEE.
Dornhege, C.; Hertle, A.; and Nebel, B. 2013. Lazy evaluation and
subsumption caching for search-based integrated task and motion
planning. In IROS workshop on AI-based robotics.
Dubins, L. E. 1957. On curves of minimal length with a constraint
on average curvature, and with prescribed initial and terminal po-
sitions and tangents. American Journal of mathematics 79(3):497–
516.
Fox, M., and Long, D. 2003. PDDL 2.1: An extension to PDDL
for expressing temporal planning domains. Journal of Artificial
Intelligence Research (JAIR).
Frances, G., and Geffner, H. 2015. Modeling and computation
in planning: Better heuristics from more expressive languages. In
ICAPS, 70–78.
Francès, G.; Ramı́rez, M.; Lipovetzky, N.; and Geffner, H. 2017.
Purely declarative action descriptions are overrated: Classical plan-
ning with simulators. In Proceedings of the Twenty-Sixth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-17, 4294–
4301.
Gerevini, A. E.; Saetti, A.; and Serina, I. 2008. An approach to ef-
ficient planning with numerical fluents and multi-criteria plan qual-
ity. Artificial Intelligence 172(8-9):899–944.
Ilghami, O., and Nau, D. S. 2003. A general approach to synthesize
problem-specific planners. Technical report, DTIC Document.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram, A.;
Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL-the planning
domain definition language. Technical report, Technical Report
CVC TR-98-003/DCS TR-1165, Yale Center for Computational
Vision and Control.
Mohr, F.; Lettmann, T.; Hüllermeier, E.; and Wever, M. 2018.
Programmatic Task Network Planning. In Proceedings of the 1st
ICAPS Workshop on Hierarchical Planning, 31–39.
Nau, D.; Cao, Y.; Lotem, A.; and Muñoz-Avila, H. 1999. SHOP:
Simple hierarchical ordered planner. In Proceedings of the 16th
international joint conference on Artificial Intelligence-Volume 2,
968–973. Morgan Kaufmann Publishers Inc.
Nebel, B. 2000. On the Compilability and Expressive Power of
Propositional Planning Formalisms. Journal of Artificial Intelli-
gence Research 12:271–315.
Piotrowski, W. M.; Fox, M.; Long, D.; Magazzeni, D.; and Merco-
rio, F. 2016. Heuristic Planning for PDDL+ Domains. In AAAI
Workshop: Planning for Hybrid Systems.
Scala, E.; Haslum, P.; Thiébaux, S.; and Ramirez, M. 2016.
Interval-based relaxation for general numeric planning. In ECAI,
655–663.
Strobel, V., and Kirsch, A. 2014. Planning in the wild: modeling
tools for PDDL. In Joint German/Austrian Conference on Artificial
Intelligence (Künstliche Intelligenz), 273–284. Springer.
Şucan, I. A., and Kavraki, L. E. 2011. Mobile manipulation: En-
coding motion planning options using task motion multigraphs. In
Robotics and Automation (ICRA), 2011 IEEE International Con-
ference on, 5492–5498. IEEE.
Weyhrauch, R. W. 1981. Prolegomena to a theory of mechanized
formal reasoning. In Readings in Artificial Intelligence. Elsevier.
173–191.

