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Abstract. This paper addresses the challenging problem of segmenta-
tion of intervertebral discs (IVDs) in three-dimensional (3D) T2-weighted
magnetic resonance (MR) images. We propose a deeply supervised multi-
scale fully convolutional network for segmentation of IVDs in 3D MR
images. After training, our network can directly map a whole volumetric
data to its volume-wise labels. Multi-scale deep supervision is designed
to alleviate the potential gradient vanishing problem during training. It
is also used together with partial transfer learning to boost the training
efficiency when only small set of labeled training data are available. The
present method was validated on the MICCAI 2015 IVD segmentation
challenge datasets. Our method achieved a mean Dice overlap coefficient
of 92.0% and a mean average symmetric surface distance of 0.41 mm.
The results achieved by our method are better than those achieved by
the state-of-the-art methods.
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1 Introduction

Intervertebral disc (IVD) degeneration is a major cause for chronic back pain
and function incapacity [1]. In clinical practice, spine magnetic resonance (MR)
imaging (MRI) is the preferred modality in diagnosis and treatment planning
of various spinal pathologies such as disc herniation, slipped vertebra and so
on, not only because MRI is non-invasive and does not use ionizing radiation,
but more importantly because it offers good soft tissue contrast that allows for
visualization of disc’s internal structure [2].

Accurate IVD segmentation from spine MR image is therefore very important
for correct diagnosis and treatment planning [1,3]. Traditionally, most quantita-
tive studies on IVD degeneration have been done by manually segmenting the
data, which is tedious, time-consuming and error-prone. On the other hand, a
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fully-automatic system for IVD identification will significantly reduce the time of
the diagnosis. An automatic system might also help reduce errors caused by sub-
jective factors and improve the consistency of diagnosis standards. In this way, it
can immediately benefit clinical applications and spinal biomechanics research.

In the literature, different methods have been proposed of IVD segmentation
[4-8]. There exist methods based on watershed algorithm [4], atlas registration
[5], graph cuts with geometric priors from neighboring discs [6], template match-
ing and statistical shape model [7], or anisotropic oriented flux detection [8].
Most of these methods work only on two-dimensional sagittal images and only a
few methods [7] address the challenging three-dimensional (3D) IVD segmenta-
tion problem. See [9] for a comprehensive review of existing IVD segmentation
methods.

Recently, machine learning-based methods have gained more and more inter-
est. For example, Zhan et al. [10] presented a hierarchical strategy and local
articulated model to detect vertebrae and discs 3D MR images and Kelm et al.
[11] proposed to use iterated marginal space learning for spine detection in com-
puted tomography (CT) and MR images. A unified data-driven regression and
classification framework was suggested by Chen et al. [12] to tackle the problem
of localization and segmentation of IVDs from T2-weighted MR data, and Wang
et al. [13] proposed to address the segmentation of multiple anatomic structures
in multiple anatomical planes from multiple imaging modalities via a sparse
kernel machines-based regression.

The more recent development on deep neural networks, and in particular on
convolutional neural networks (CNN), suggests another course of methods to
solve the challenging IVD segmentation problem [14-22]. Contrary to conven-
tional shallow learning methods where feature design is crucial, deep learning
methods automatically learn hierarchies of relevant features directly from the
training data [15]. More recently, 3D volume-to-volume segmentation networks
were introduced, including 3D U-Net [20], 3D V-Net [21] and a 3D deeply super-
vised network [22].

In this paper, we propose a deeply supervised multi-scale fully convolutional
network (FCN) called “DSMS-FCN” for fully automatic IVD segmentation in
3D T2-weighted MR images. After training, our network can directly map a
whole volumetric data to its volume-wise label. Multi-scale deep supervision is
designed to alleviate the potential gradient vanishing problem during training. It
is also used together with partial transfer learning to boost the training efficiency
when only small set of labeled training data are available.

The paper is organized as follows. In Sect. 2, we will describe the proposed
architecture and algorithm. The application to the MICCAT 2015 IVD segmen-
tation challenge dataset will be presented in Sect.3, and we conclude with a
discussion in Sect. 4.

2 Method

Figure 1 illustrates the architecture of our proposed neural network for the auto-
matic IVD segmentation in 3D T2-weighted MR images. Our network employs a
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Fig. 1. A schematic illustration of our proposed network architecture. For each block,
the digits above indicate the number of feature stack while the numbers below represent
the data size.

deeply supervised multi-scale fully convolutional network. In this section, firstly
the detailed architecture of our proposed model is elaborated, and then we will
introduce the multi-scale deep supervision. Finally, partial transfer learning,
which is designed to boost the training efficiency, will be described.

2.1 3D FCN with Skip Connection

Our proposed network is inspired by 3DFCN [23] but with significant differences.
Similar to 3DFCN, our network is also a 3D fully convolutional network and con-
sists of two parts, i.e., the encoder part (contracting path) and the decoder part
(expansive path). The encoder part focuses on analysis and feature representa-
tion learning from the input data while the decoder part generates segmentation
results, relying on the learned features from the encoder part. Our network can
take arbitrary-sized volumetric data as input and outputs voxel-wise segmenta-
tion probability map in the same size as the input.

Different from 3DFCN, long and short skip connections, which help recover
spatial context lost in the contracting encoder, are used in our network as shown
in Fig. 1. The importance of skip connection in biomedical image segmentation
has been demonstrated by previous studies [24]. Skip connections have been
widely used in many different convolutional neural networks including Resi-Net
[25] and 3D U-Net [20].

In 3DFCN [23], big kernel sizes (e.g. 5x7x7) are utilized in the convolutional
layers. However, previous studies have shown that small kernel size are more
helpful for training of deep neural network [26]. For this reason, in our network,
kernel size of 3 x 3 x 3 and strides of 1 are utilized for all convolutional layers,
and kernel size of 2 x 2 x 2 is used in all max pooling layers. Batch normalization
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(BN) [27] and rectified linear unit (ReLU) are adopted to speed up the training
and to enhance the gradient back propagation.

2.2 Multi-scale Deep Supervision

Training a deep neural network is challenging. As the matter of gradient van-
ishing, final loss cannot be efficiently back propagated to shallow layers, which
is more difficult for 3D cases when only a small set of annotated data is avail-
able. To address this issue, we inject two down-scaled branch classifiers into our
network in addition to the classifier of the main network, which is another dif-
ference between our network and 3DFCN [23]. By doing this, segmentation is
performed at multiple output layers. For the classifier at the coarse scale which
is closer to the encoder part, it generates segmentation results with the coars-
est resolution, while the classifiers at the middle and the fine scales generate
segmentation results with the intermediate and the finest resolutions, respec-
tively. As a result, classifiers in different scales can take advantage of multi-scale
context, which has been demonstrated in previous work on segmentation of 3D
liver CT and 3D heart MR images [22]. Furthermore, with the loss calculated by
the prediction from classifiers from different scales, more effective gradient back
propagation can be achieved by direct supervision on the hidden layers.
Specifically, let W be the weights of main network and w = {w°, w!,
wM=1} be the weights of classifiers at different scales, where M is the number
of classifier branches. For the training samples S = (X,Y), where X represents
training sub-volume patches and Y represents the class labels while Y € {0, 1}.

Las(X,Y;Ww) = Z S aml™ @iy Wow™), (1)

m=0 (z;,y;)€ES™

where S = {89 S ..., SM~1}: S0 is a sub-volume patch directly sampled from
a training image while S™ contains the examples (z;,y;) at scale of m > 0, which
is obtained by downsampling S° by a factor of 2™ along each dimension; w™ is
the weights of the classifier at scale of m; a,, is the weight of I"™, which is the
loss calculated by a training sample x;, y; at scale of m.

U™ (@i, ys| W, w™) = —log p(y; = t(x;)|xi; W,w™), (2)

where p(y; = t(z;)|x;; W,w™) is the probability of predicted class label #(x;)
corresponding to sample xz; € S™.
The total loss of our multi-scaled deeply supervised model will be:

Ltotat(X,Y;W,w) = Las (X, Y Wow) + A (W) + Y ¢(w™),  (3)

m

where () is the regularization term (Lo norm in our experiment) with hyper
parameter \.
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2.3 Partial Transfer Learning

It is difficult to train a deep neural network from scratch because of limited
annotated data. Training deep neural network requires large amount of anno-
tated data, which are not always available, although data augmentation can
partially address the problem. Furthermore, randomly initialized parameters
make it more difficult to search for an optimal solution in high dimensional
space. Transfer learning from an existing network, which has been trained on a
large set of data, is a common way to alleviate the difficulty. Previous studies
[28] demonstrated that transferring features from another pre-trained model can
boost the generalization, and that the effect of transfer learning was related to
the similarity between the task of the pre-trained model and the target task.
Furthermore, the same study also demonstrated that weights of shallow layers
in deep neural network were generic while those of deep layers were more related
to specific tasks.

To best utilize the advantage of transfer learning, we need to transfer from
a model trained on a related task. In this paper, a pre-trained model in our
previous work was adopted [29], which is designed for the task of segmentation
of the proximal femur from 3D T1-weighted MR Images. More specifically, the
weights of the main network are initialized from our previous model [29], while
the weights of all branch classifiers are initialized from a Gaussian distribution
(u=0,0 =0.01).

2.4 Implementation Details

The proposed network was implemented in python using TensorFlow framework
and trained on a desktop with a 3.6 GHz Intel(R) i7 CPU and a GTX 1080 Ti
graphics card with 11 GB GPU memory.

3 Experiments and Results

3.1 Data Description

The training data provided by the MICCAI 2015 IVD challenge organizers con-
sist of 15 3D T2-weighted turbo spin echo MR images and the associated ground
truth segmentation [9]. These 15 3D T2-weighted MR images were acquired from
fifteen patients in two different studies. Each patient was scanned with 1.5 Tesla
MRI scanner of Siemens (Siemens Healthcare, Erlangen, Germany). The pixel
spacings of all the images are sampled to 2 x 1.25 x 1.25 mm3. There are 7 IVDs
T11-L5 to be segmented from each image. Thus, in each image these IVD regions
have been manually identified and segmented.

The MICCAT 2015 IVD challenge organizers also released two test datasets.
Each test dataset consists of five 3D T2-weighted turbo spin echo MR images.
Thus, in this paper, our network was trained on the fifteen 3D training data
first, and are then evaluated on the ten test data.
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3.2 Training Patches Preparation

In order to enlarge the training samples, data augmentation was utilized. Specif-
ically, each training data was rotated (90, 180, 270) degrees around the y axis of
the image and flipped horizontally (taking the z axis as the vertical direction).
After that, we got in total 120 images for training our network.

Our network takes a fixed-sized sub-volume as input, and employs end-to-end
learning and voxel-wise inference. During training, sub-volume patches with the
size of 16 x 256 x 128 was randomly cropped from 120 training examples whose
size are about 40 x 300 x 300. In each epoch of training, 120 training images
were randomly shuffled and then sub-volume patches was randomly cropped with
batch-size of 2 by 5 times from each volumetric training image. Before fed into
the network for training, each sub-volume patch was normalized by zero mean
and unit variance. In total, for each epoch of training, we trained the network
using 1200 (120 x 5 x 2) sub-volume patches.

3.3 Training

We trained our network for 10,000 iterations after partial transfer learning.
All weights were updated by the stochastic gradient descent (SGD) algo-
rithm (momentum = 0.9, weight decay =0.005). Learning rate was initialized as
1 x 1072 and halved by every 3,000 times. In our experiment, we used three
branch classifiers at three different scales. The loss weights of three classifiers
ag, a1 and ao are 1.0, 0.67 and 0.33, respectively. The hyper parameter A\ was
chosen to be 0.005.

3.4 Testing

Our trained models can estimate labels of an arbitrary-sized volumetric image.
Given a test volumetric image, we extracted overlapped sub-volume patches with
the size of 16 x 256 x 128, and fed them to the trained network to get prediction
probability maps. For the overlapped voxels, the final probability maps would
be the average of the probability maps of the overlapped patches, which were
then used to derive the final segmentation results. After that, we conducted
morphological operations to remove isolated small volumes and internal hole.

3.5 Valuation

The segmented results were compared with the associated ground truth segmen-
tation. For each test image, we evaluated both the surface distance as well as
the volume overlap measurements of results obtained by different segmentation.

In [9], to compute the average absolute distance (ASD) between the ground
truth IVD surface and the automatically segmented surface, surface meshes from
binary IVD segmentation were generated first using the Matlab toolbox Iso2mesh
[30]. In contrast, in this study, we adopted the average symmetric surface distance
(ASSD) as introduced in [31] to measure the surface distance. More specifically,
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Table 1. Results on the Testl dataset from the MICCAI 2015 intervertebral disc
segmentation challenge.

Parameters Mean £+ STD
Dice overlap coefficients (%) | 91.4 + 0.5
Jaccard (%) 84.2+1.0
Precision (%) 94.2 £2.5
Recall (%) 88.9 + 2.3
ASSD (mm) 0.44 £ 0.055

STD - standard deviation
ASSD - average symmetric surface distance

ASSD is given in millimeters and based on the surface voxels (instead of sur-
face meshes as in [9]) of two segmentation A and B. Surface voxels are defined
by having at least one on-object voxel within their 26-neighborhood. For each
surface voxel of A, the Euclidean distance to the closest surface voxel of B is cal-
culated using the approximate nearest neighbor technique [32] and stored. The
same process is then applied to surface voxels of B to A in order to symmetry.
The ASSD is then defined as the average of all stored distances, which is zero
for a perfect segmentation.

Given two binary segmentations of a test image, we compute following volume
overlap measurements including Dice overlap coefficient [33], Jaccard coefficient
[33], precision and recall.

3.6 Results

Table 1 shows the results of our method when evaluated on the Test1 dataset of
the MICCAI 2015 IVD segmentation challenge and Table 2 shows the results of
our method when evaluated on the Test2 dataset of the MICCAI 2015 IVD seg-
mentation challenge. A mean Dice overlap coefficient of 92.0% and a mean ASSD
of 0.41 mm were achieved by our method. Furthermore, slightly better results

Table 2. Results on the Test2 dataset from the MICCAI 2015 intervertebral disc
segmentation challenge.

Parameters Mean £+ STD
Dice overlap coefficients (%) | 92.6 + 1.1
Jaccard (%) 86.4 + 2.0
Precision (%) 93.8+1.5
Recall (%) 914+ 1.6
ASSD (mm) 0.38 4 0.045

STD - standard deviation
ASSD - average symmetric surface distance
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Case #1 Case #2 Case #3 Case #4 Case #5

Fig. 2. Qualitative comparison of the results achieved by our method on the Testl
dataset (top two rows) and ground truth segmentation (bottom two rows). For each
case, two slices are shown.

were obtained when our method was evaluated on the Test2 dataset than when
our method was evaluated on Testl dataset. Without using any time-consuming
registration step or incorporating any advanced shape prior, our method achieved
results that were better than those achieved by the state-of-the-art methods [9].
For example, the best segmentation method in the MICCAT 2015 IVD segmen-
tation challenge was the on submitted by Korez et al. [34] where a mean Dice
overlap coeflicient of 91.8% was reported. Figure 2 shows examples of automatic
segmentation achieved by our method on the Testl dataset and Fig.3 shows
examples of segmentation achieved by our method on the Test2 dataset.

Implemented with Python using TensorFlow framework, our network took
about 40s to test one volumetric MR, image with size of 40 x 300 x 300.
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Fig. 3. Qualitative comparison of the results achieved by our method on the Test2
dataset (top two rows) and ground truth segmentation (bottom two rows). For each
case, two slices are shown.

4 Conclusion

In this paper, we proposed to use a deeply supervised multi-scale fully convolu-
tional network to solve the challenging IVD segmentation problem. The present
method was evaluated on the MICCAI 2015 IVD segmentation challenge datasets
and the results achieved by the present method were better than those achieved
by the state-of-the-art methods.

In comparison with 3DFCN as introduced by Chen et al. [23], where they
incorporate neither skip connection nor multi-scale deep supervision, our method
achieved much better segmentation results. More specifically, evaluated on the
Test1 and Test2 datasets of the MICCAI 2015 IVD segmentation challenge, their
method achieved a mean Dice overlap coefficient of 88.4% and 89.0%, respec-
tively. In contrast, evaluated on the same two datasets, our method achieved
a mean Dice overlap coefficient of 91.4% and 92.6%, respectively. The results
demonstrated that the incorporation of skip connections and the multi-scale
deep supervision, when combined with partial transfer learning, did improve the
performance of a 3D FCN.
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