Under review as a conference paper at ICLR 2020

EQUIVARIANT NEURAL NETWORKS AND EQUIVARIFI-
CATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Equivariant neural networks are special types of neural networks that preserve
some symmetries on the data set. In this paper, we provide a method to modify a
neural network to an equivariant one, which we call equivarification.

1 INTRODUCTION

One key issue in deep neural network training is the difficulty of tuning parameters, especially when
the network size grows larger and larger (2015). In order to reduce the complexity of the
network, many technigues have been proposed by analyzing the structural characteristics of data,

for example, sparsity (2016), invariance in movement/Goodfellow et all (2009).

One of the most important structural characteristics of data is symmetry. By utilizing the translation
symmetry of an object in the photo, convolutional neural network (CNN)(Krizhevsky et al/ (2012))
uses shared filters to reduce the number of parameters compared with fully connected networks.
However, to handle the case of rotation and reflection, people usually use the data augmentation
approach to generate additional input data that has a bunch of training images with different rotation
angles of the original images.

In contrast to data augmentation approach, another idea is to design more sophisticated neural net-
works, such that the input data with certain symmetries can be trained together and applied to reduce
the training complexity. Recent attempts have been made in the equivariant CNNm

(20164); (Cohen et al! (2018); Weiler et all (2018). These existing works target at special cases and

cannot be easily generalized to arbitrary networks and arbitrary symmetries.

In this paper, we take advantage of the symmetry of the data set and provide a general method
to modify an arbitrary neural network so that it preserves the symmetry. The process is called
equivarification. A key feature is that our equivarification method can be applied without detailed
knowledge of a layer in a neural network, and hence, can be generalized to any feedforward neural
networks. Another feature is that the number of parameters in the new neural network that we
need to train is the same as the original one, if we equivarify the original network globally (see the
second paragraph in Section [for details). In addition, we can also output how each data instance
is changed from the canonical form (for example, in an image classification problem, additionally
we can also output how many degrees an image is rotated from original upside-up image) using the
same network.

We rigorously prove that our equivarification method produces truely equivariant neural networks.
Practically, we equivarify a CNN as an illustration. We conduct experiments using the MNIST data
set where the resulting equivariant neural network predicts the number and also the angle. If we
forget the angle and keep only the number, we get an invariant neural network.

1.1 MOTIVATION

By the symmetry of the data set, we mean a group action (see Definition on the data set. Let us
consider a simple cat image classification example. Then the data set can be the set of all images of
a fixed size. Rotation symmetry means that we can rotate an image and the resulting image still lies
in the data set. In other words, the group of rotations acts on the data set.

One can build a cat classifier that assigns a number between 0 and 1 to each image indicating the
probability that it is an image of a cat. If one image is a rotation (say by 90 degree counterclockwise)

Under review as a conference paper at ICLR 2020

of another one, then it makes sense to require a classifier to assign the same probability to these two
images. A classifier that satisfies this property is said to be invariant under 90-degree rotation, which
is a special case of being equivariant under 90-degree rotation. To give an example of an (non-
invariant) equivariant neural network, we furthermore require our classifier not only produces the
probability of being a cat image, but also outputs an angle, say in {0, 90, 180, 270} (more precisely,
the probability of each angle). Suppose that the equivariant classifier predicts that an image is rotated
by 90 degrees, then it should predict a 270-degree rotation for the same image but rotated by 180
degrees.

Not only does it make sense to require the cat classifier to be equivariant, but also it is more “eco-
nomical” to be equivariant if implemented correctly. Roughly speaking, a regular classifier “treats”
an image and its rotated ones as separated things, but ideally an equivariant neural network “sees”
their connections and “treats” them together. From another point of view, given a regular neural
network, if we apply the data augmentation method carefully, since the training data is symmetric,
it is possible that after training, the network is (approximately) equivariant (depending on the ini-
tialization). The fact that it is equivariant implies that there is now symmetry among the parameters.
For example, some parameters are the same as other parameters, so there is redundancy. While in
our equivariant neural network, the equivariance of our neural network is built into the structure of
the neural network by sharing parameters, and in particular, it is independent of the loss function,
initialization, and the data set. For instance, for the training data, it does not make any difference
in results whether we prepare it by randomly rotating and recording the angles, or not rotating and
labeling everything as degree 0.

In our approach, to make a neural network equivariant, at each layer other than the input layer we add
a bunch of neurons (multiplying by the order of the group), but we don’t introduce new parameters.
Instead the added neurons share parameters with the original ones.

1.2 RELATED WORK

Invariance in neural networks has attracted attention for decades, aiming at designing neural
networks that capture the invariant features of data, for example, face detection system at any
degree of rotation in the image plane Rowley et al ,| (1998), invariance for pattern recognition
[Barnard & Casasent (1991), translation, rotation, and scale invariance [Perantonis & Lisboa (1992).

Recently, several works have started to look into eqﬁlvariant CNN, by studying the exact map-

ping functions of each layer|Cohen & Welling (20164:b); (Cohen et all (2018); Marcos et all (2017);
[Lenssen et al! (2018);/Cohen et all (2019), and some symmetries are studied such as translation sym-
metry, rotation symmetry. These methods have been used in different application domains, such as

in remote sensing [Marcos et al! (2018), digital pathology [Veeling et al! (2018), galaxy morphology
predictionDieleman et al! (2015).

There are also works that aiming to construct an equivariant neural network without having to spec-

ify the symmetry Sabour et al! (2017).

As far as we know, our construction provides the first truly equivariant neural network (See Sec-

tion[5.1).

2 PRELIMINARIES

In this section, we talk about some basics in group theory, like group actions, equivariance, etc. For
those who would like to get a more close look at the group theory and various mathematical tools
behind it, please refer to any abstract algebra books, for example, m (2002).

Here, we first give a couple of definitions about groups in order to help readers quickly grasp the
concepts.

@ 9

Definition 2.1. A group (G, -) consists of a set G together with a binary operation “-” (which we
usually call multiplication without causing confusing with the traditional sense of multiplication for
real numbers) that needs to satisfy the four following axioms.

1) Closure: for all a,b € G, the multiplicationa - b € G.

Under review as a conference paper at ICLR 2020

2) Associativity: for all a, b, ¢ € G, the multiplication satisfies (¢ - b) - c=a- (b- ¢).

3) Identity element: there exists a unique identity element e € G, such that, for every element
a € G,wehavee-a=a-e=a.

4) Inverse element: for each element a € G, there exists an element b € G, denoted ¢!, such that
a-b=">-a = e, where e is the identity element.

Note that in general, commutativity does not apply here, namely, for a,b € G, a - b = b - a does not
always hold true.

For example, all integers with the operation addition (Z,+). One can easily check that the four
axioms are satisfied and O is the identity element.

As another example, a group consists of a set {0, 1} together with the operation + (mod 2) where
0+1=140=1and 141 = 0+0 = 0. The identity element is 0. When applying this to the image
processing tasks, this can be interpreted as follows. 1 represents the action of rotating an image by
180¢° and 0O represents the action of not rotating an image. Then 0 + 1 represents the combination of
operations that we first rotate an image by 180° and then keep it as it is, so that the final effect is to
rotate an image by 1807; while 1 4 1 represents that we first rotate an image by 180° and then rotate
again by 180°, which is equivalent to that we do not rotate the original image.

Similarly, we can define the element 1 as the operation of flipping an image vertically or horizontally,
which we can give similar explanations for the group.

Therefore, instead of using translations, rotations, flippings, etc., we can use abstract groups to
represent operations on images, and hence, we are able to design corresponding equivariant neural
networks disregarding the operations of images (symmetries of data) and just following the group
representation.

In the following, we give a definition about group actions. Let X be a set, and GG be a group.

Definition 2.2. We define a G-action on X to be a map
T:GxX—X
(on the left) such that for any x € X

e T'(e,x) =z, where e € G is the identity element,

e forany g1, g2 € G, we have
T(gla T(QQa ‘T)) = T(glg% ,T)

Frequently, when there is no confusion, instead of saying that 7" is a G-action on X or equivalently
that G acts on X via T, we simply say that G acts on X; and 7 is also understood from the notation,
i.e., instead of T'(g, «) we simply write gz, and the above formula becomes g1 (g2x) = (g1g2)x.

We say G acts trivially on X if gx = z forall g € G and x € X.

Let X, Y be two sets, and GG be a group that acts on both X and Y.

Definition 2.3. A map F' : X — Y is said to be G-equivariant, if F(gz) = gF(z) forall x € X
and g € G. Moreover, if GG acts trivially on Y then we say F' is G-invariant.

Example 2.4. Let X be the space of all images of 28 x 28 pixels, which contains the MNIST data
set. Let G be the cyclic group of order 4. Pick a generator g of G, and we define the action of g on
X by setting gx to be the image obtained from rotating x counterclockwise by 90 degrees. Let Y be
the set {0,1,2,...,9} x {0,90, 180, 270}. For any y = (num, §) € Y we define

gy := (num, (¢ + 90)modsep).
An equivariant neural network that classifies the number and rotation angle can be viewed as a map

F from X to Y. Equivariance means if F(z) = (num, 6) then F(gz) = (num, (6 + 90)modsep),
forallz € X.

Thus, we can see that we can model each layer in the neural network as a group G that acts on a set
X, where we can interpret the set X as input to this layer and the group action as the function map-
ping or operation of this layer. By abstracting the behaviors on the original input data using groups

Under review as a conference paper at ICLR 2020

(for example, using a same group to represent either rotation by 180° and flipping, or even more
abstract operations during intermediate layers), we are able to apply group actions on different sets
X1, X9, X3, ... (where each one represents input to different layers) and design similar equivariant
network structures based on an original one.

3 EQUIVARIFICATION

In this section, we talk about the detailed method of performing equivarification and its theoretical
foundation. This is the key part of the paper to understand our proposed equivarification method.
Those who would like to avoid mathematical proofs can directly go to the examples we provide to
get intuitive ideas of how we construct the equivariant neural networks.

In this section we fix X and Z to be two sets, and G to be a group that acts on X.
Definition 3.1. Define the G-product of Z to be

7*¢ ={s:G— Z},
the set of all maps from G to Z.

We define a G-action on Z*¢ by

G x 7*C¢ & 7%6¢
(9,5) — gs,

where gs as a map from G to Z is defined as

(95)(g") = s(g™"9), G.1)
forany ¢’ € G.
We have the projection map p : Z*¢ — Z defined by

p(s) = s(e), (3.2
for any s € Z*“ where e € @ is the identity element. Then

Lemma 3.2. For any map F : X — Z, there exists a unique G-equivariant map F:X — zx¢

~

such that p(F(x)) = F(z) forallx € X.

Proof. Forany x € X, we define F (x) as a map from G to Z by

(F(x))(9) = F(g~"x),

for any g € G. To see that Fis G-equivariant, we need to check forany z € X and g € G,

~

F(gz) = g(F(x)). Forany h € G, (F(gx))(h) = F(h~'gz) by the definition of F', while
(g(F(x)))(h) = (F(x))(g~th) = F(h~tgx). We leave the proof of uniqueness to the readers. [

Remark 3.3. In the Definition B0l and Lemma[3.2] G is an arbitrary group and Z is an arbitrary
set. It is easy to see that we can adjust them, if we consider other categories. For example, when
G is a compact Lie group and Z is a differentiable manifold, we can re-define Z* < to be the space
of differentiable maps from G to Z; when G is a non-compact Lie group and Z is a differentiable
manifold, we can consider the space of compact supported smooth maps. When we implemented
the neural network for infinite (&, we have to approximate it by a finite subset of G. Then in this
case, we need to work in the realm of approximately equivariant. For this implementation reason,
we restrict our group G to be a finite group for the rest of the paper.

This lemma can be summarized as the commutative diagram in Figure[Il It motivates the following
general definition.

Definition 3.4. We say a tuple (2 ,T,p) a G-equivarification of Z if

e 7 is a set with a G-action T';

Under review as a conference paper at ICLR 2020

X —— Z
F
Figure 1: For any X and F/, there exists a unique lift F such that the diagram commutes.

e pis amapfr0m2t0 Z;

° For any set X with a G- actlon and map F' : X — Z, there exists a G-equivariant map
F:X > ZsuchthatpoF F.

Here o denotes the composition of maps. As usual, 7" will be omitted from notation.

In Section] we will see applications of G-equivarification to neural networks. From Lemma 3.2]
we know that the triple of the G-product Z*%, the G-action defined in the Formula 3] and the
projection p defined in Formula[3.2lis a G-equivarification. There are other G-equivarifications. See
Appendix for more discussion.

Example 3.5. Let G be the cyclic group of order 4. More concretely, we order elements of G by
(e,9,9%, g%). The set Z*& can be identified with Z** = Z x Z x Z x Z via the map

s (s(e),s(g),5(9%), s(g°)). (3.3)

Then G acts on Z** by g(zo, 21, 22, 23) = (23, 20, 21, 22), and the projection map p : Z** — Z is
given by (20, 21, 22, 23) — z0. Let F' : X — Z be an arbitrary map, then after the identification F’
becomes a map from X to Z*4 and

F(z) = (F(z),F(g~ '), F(g~%z), F(g~°x)).
One can check that F is G-equivariant. The map p is given by
p(ZO, 21, %2, 23) = 2.

It is easy to see that p o F=F.

4 APPLICATION TO NEURAL NETWORKS

In this section, we show through an example how our proposed equivarification method works.

Let {L; : X; — X;41}, be an n-layer neural network (which can be CNN, multi-layer percep-
trons, etc.). In particular, X is the input data set, and X, is the output data set. Let G be a finite
group that acts on Xj. Let L be the composition of all layers

LZLnOLn_lo-'-OLQ2X0—>Xn+1.

Then we can equivarify L and get maps L: Xy, — X, and P Xn+1 — X,4+1. Then L is an
equivariant neural network.

Alternatively, one can construct an equivariant neural network layer by layer. More precisely, the
equivariant neural network is given by {L; op; : X; — X411}, where L; o p; is the equivari-
fication of L; o p; fori € {0,1,....n}, Xo = X and py = id is the identity map (See Figure 2)).
More precisely, by the commutativity of Figure 2| we know that

—

pn+1oLnopnoLn710pn71O"'OLOOpo:L:poL'

Then both Lﬂn o Ln_l/o\pn_l 0---0 mo and L are equivarifications of L. Suppose that for

both equivarifications we have chosen Xn+1 tobe X411~ % Then by the statement in Theorem[3.2]
we have

o — — _— —~

LnopnoLnflopnflo"'OLOOpo:L'

Under review as a conference paper at ICLR 2020

Xiy1
LZ‘O %
Di+1
Xi ———— Xia
Liop;

Figure 2: Equivarification layer by layer.

Sometimes, other than equivarifying the map L; o p; :)A(l — X;+1, it makes sense to construct

some other map L; from X; to some other set X;_ |, and then we can equivarify L;. This makes the
equivariant neural network more interesting (see the example below).

Example 4.1. Let the 0-th layer Lo : Xo — X, of a neural network that is defined on the MNIST
data set be a convolutional layer, and X; = R?, where ¢; = 28 x 28 x ¢y, and ¢; is the number
of channels (strides = (1, 1), padding = ‘same’). Let G = {e, g, g% ¢°} be the cyclic group of
order 4 such that g acts on X as the 90-degree counterclockwise rotation. Then we construct
Lo : Xo — R4 by

zo — (Lo(z0), Lo(g™ ' 20), Lo(9 ™ *x0), Lo(g ™ *x0)).

For the next layer, instead of equivarifying L; o p; : R** — R’ we can construct another con-
volutional layer directly from R*“* by concatenating the four copies of R’* along the channel axis
to obtain R28*28x4¢1 and build a standard convolution layer on it. This new construction of course
changes the number of variables compared to that of the original network.

From the above analysis and Lemma[3.2] it is not hard to derive the following summary.

Mainresult Ler X ={L;: X; — XZ+1}0<Z<H+1 be an original neural network that can process
input data {xO}J C Xy and labelling data {z?, +1}J C Xyn+1. Let G be a finite group that acts on
XO The proposed G-equivarification method is able to generate a G- -equivariant neural network

= {L P X1+1}0<1<n+1 that can process input data {xO}J C Xy = XO and enhanced

labellng data {anrl}J C Xn+1 Furthermore, the number of parameters ofX is the same as that
of X.

5 EXPERIMENTS

In this section, we show our experiments on the MNIST dataset, which achieve promising perfor-
mancd]

Our designed equivariant neural network using the proposed equivarification method is shown in
Figure Bl Note that equivarification process does not increase the number of variables. In our case,
in order to illustrate flexibility we choose not to simply equivarify the original neural network, so
the layer conv2 and conv3 have four times the number of variables compared to the corresponding
original layers.

Next, we discuss the labeling of the input data. Since the neural network is G-equivariant, it makes
sense to encode the labels G-equivariantly. Suppose (o, Zn4+1) € Xo X X,41 is one labelled data
point. Then in the ideal case, one hopes to achieve L(xy) = x,+1. Assuming this, to give a new
label for the data point xq for our equivariant neural network we need to define T, 1 = f(:vo). For
this, it is sufficient to define L(x0)(g) for all g € G. By equivariance, L(z)(g) = L(g~tzo). If
g = ethen L(20)(g) = L(20) = @ny1. If g # e, itis very likely that the data g~ 'z, originally does
not have a label, so we do not know ideally what L(g~'z¢) should be. In the naive data augmentation
approach, L(g~'zo) is labeled the same as L(xo) hoping to get L as close to an invariant map as
possible. In our case, we do not have such restriction, since we do not need L to be invariant. In

!"The code in tensorflow is uploaded as the supplementary material. In the code, we also include a version
that allows 90 degree rotation and horizontal and vertical flips, just to make the group non-commutative.

Under review as a conference paper at ICLR 2020

dense o poglsconv3 og—?

com X3 poek Xy der X5

convfog— x

chnviog—2 > X1

N x

Xo convt Xi

Figure 3: In this figure, convl is a standard convolution layer with input = X, and output = X;.
After equivarification of convl, we get four copies of X;. Then we stack the four copies along
the channel direction, and take this whole thing as an input of a standard convolution layer conv2.
We equivarify conv2, stack the four copies of X5, and feed it to another convolution layer conv3.
Now instead of equivarifying conv3, we add layer pool and layer dense (logistic layer), and then we
equivarify their composition dense o pool o conv3 og~! and get X? = R0, To get the predicted
classes, we can take an argmax afterwards.

Under review as a conference paper at ICLR 2020

M (7, 270.0)
G003y [2.05644876e-11 6.89517124e-11 5.01109980e-07 6.22865715e-09
00030 5.35240304e-07 8.97988194e-12 8.34397795e-09 1.27654602e-07
et 1.18565313e-09 3.18130478e-09 3.08501069e-04 1.61850835e-08
o 4.97675671e-07 2.57115262e-05 1.05485029e-03 3.34337237e-04

4.84817519e-08 8.35981488e-01 1.82691263e-04 1.62110627e-01
e 4.72504891e-12 7.35331907e-16 1.25806601e-10 3.94726135e-13
2000 1.83841592e-12 1.07023745e-13 1.10608278e-12 3.46214758e-11
o000s 1.79656135e-13 1.57663108e-12 5.79642349e-15 1.74851886e-17
00000 1.78956502e~12 4.06364692e-16 8.03018893e~13 1.37484061e-14
4.26493346e-12 4.94882846e-18 3.94265207e-15 1.48675974e-16]

- (7, 180.0)

o035 [5.79642349e-15 1.74851886e-17 1.78956502e-12 4.06364692e-16
—_— 8.03018893e-13 1.37484061e-14 4.26493346e-12 4.94882846e-18
i 3.94265207e-15 1.4867597de-16 2.05644876e-11 6.89517124e-11

5.01109980e-07 6.22865715e-09 5.35240304e-07 8.97988194e-12
e 8.34397795e-09 1.27654602e-07 1.18565313e-09 3.18130478e-09
ogo1s 3.08501069e-04 1.61850835e-08 4.97675671e-07 2.57115262e-05
acot0 1.05485029e-03 3.34337237e-04 4.84817519e-08 8.35981488e-01
ao00s 1.82691263e-04 1.62110627e-01 4.72504891e-12 7.35331907e-16
- 1.25806601e-10 3.94726135e-13 1.83841592e-12 1.07023745e-13

1.10608278e-12 3.46214758e-11 1.79656135e-13 1.57663108e-12]

. (7, 0.0)

e [3.08501069e-04 1.61850835e-08 4.97675671e-07 2.57115262e-05
iy 1.05485029e-03 3.34337237e-04 4.84817519e-08 8.35981488e-01

1.82691263e-04 1.62110627e-01 4.72504891e-12 7.35331907e-16
e 1.25806601e-10 3.94726135e-13 1.83841592e-12 1.07023745e-13
— 1.10608278e-12 3.46214758e-11 1.79656135e-13 1.57663108e-12
00015 5.79642349e-15 1.74851886e-17 1.78956502e-12 4.06364692e-16
a0t 8.03018893e-13 1.37484061e-14 4.26493346e-12 4.94882846e-18
00005 3.94265207e-15 1.48675974e-16 2.05644876e-11 6.89517124e-11
— 5.01109980e-07 6.22865715e-09 5.35240304e-07 8.97988194e-12

8.34397795e-09 1.27654602e-07 1.18565313e-09 3.18130478e-09]

(7, 90.0)

aGiss [4.72504891e-12 7.35331907e-16 1.25806601e-10 3.94726135e-13

1.83841592e-12 1.07023745e-13 1.10608278e-12 3.46214758e-11
g 1.79656135e-13 1.57663108e-12 5.79642349e-15 1.74851886e-17
amzs 1.78956502e-12 4.06364692e-16 8.03018893e-13 1.37484061e-14
00020 4.26493346e-12 4.94882846e-18 3.94265207e-15 1.48675974e-16
aoos 2.05644876e-11 6.89517124e-11 5.01109980e-07 6.22865715e-09
Sidin: 5.35240304e-07 8.97988194e-12 8.34397795e-09 1.27654602e-07
-~ 1.18565313e-09 3.18130478e-09 3.08501069e-04 1.61850835e-08

4.97675671e-07 2.57115262e-05 1.05485029e-03 3.34337237e-04
. 4.84817519e-08 8.35981488e-01 1.82691263e-04 1.62110627e-01]

Figure 4: On the left, we have the rotated images; on the right, we have the predicted numbers,
angles, and the probability vectors in R*?, each component of which corresponds to the probability
of a (number, angle) combination. The equivariance in this case means that the four vectors are
related by shifts.

practice, X, 11 is a vector space, and we choose to label L(g~*

MNIST example, this choice is the same as the following.

Form € {0,1,2,...,9} denote

xo) by the origin of X,,;1. In our

em = (0,---,0,1,0,---,0) € R,
T

m-th spot

For an unrotated image zo € X that represents the number m, we assign the label e,,, D0B0D 0 €
R40. Then based on the equivariance, we assign

gro—0@e,, ® 0 & 0,

g2x0n—>OEB 0 e, 0,

Pro—= 00 0 ® 0 @ ep.
For each testing image in the MNIST data set, we randomly rotate it by an angle of degree in
{0,90, 180,270}, and we prepare the label as above. For the training images, we can do the same,

but just for convenience, we actually do not rotate them, since it won’t affect the training result at
all.

5.1 EQUIVARIANCE VERIFICATION

To spot check the equivariance after implementation, we print out probability vectors in R° of an
image of the number 7 and its rotations. We see that the probability vectors are identical after a shift
by 10 slots. See Figure[d

Under review as a conference paper at ICLR 2020

5.2 ACCURACY

Here we count the prediction as correct if both the number and the angle are predicted correctly. The
accuracy of our neural network on the test data is 96.8%. This is promising when considering the
fact that some numbers are quite hard to determine its angles, such as 0, 1, and 8.

6 CONCLUSION

In this paper, we proposed an equivarification method to design equivariant neural networks that are
able to efficiently process input data with symmetries. Our proposed method can be generalized to
arbitrary networks or functions by leveraging group action, which enables our design to be uniform
across layers of feedforward neural networks, such as multi-layer perceptrons, CNNs, without being
aware of the knowledge of detailed functions of a layer in a neural network. As an illustration
example, we show how to equivarifying a CNN for image classification. Results show that our
proposed method performs as expected, yet with significantly reduction in the design and training
complexity.

A APPENDIX - MORE ABOUT EQUIVARIFICATION

In Section 3l we define (Z* %, p) as an example of G-equivarification. In this section, we show that
it is “minimal” in the sense of its universal property.
Lemma A.1 (universal property). For any G-equivarification (2’ ,0') of Z, there exists a G-

equlvarlantmapw 7' — 7*C such thatp = pom. Moreoverforany set X andmap F : X — Z,
thelifts F : X — Z*C and F' . Z — 7' of F satisfy 7 o F' = F. (See Figure[3)

Proof. We define the map 7 : Z' — Z*C by [n(2)](g) = p'(9g~'%), where ' € Z' and g € G.
To show p’ = pom, forany 2/ € Z, Wechecprﬂ'() = p[r(Z")] = [#(2)](e) = p'(Z'). To

show 7 is G- equlvanant forany 7 € Z, and h € G, we compare ﬂ'(hz) and hw(Z’): for any
g€ G, [n(hz)](g) =Py 1hz)and [hw(N(g) = [7(Z)](h~tg) = p'(g~'hZ’). Lastly, we show

o~

7o F' = F. Note that o F' is a G- equivariant map from X to Z*%, and
po(moF)=p oF' =F,
50 by the uniqueness of Lemma[3.2] we get o F/ = F. O

Now we discuss about finding a “smaller” equivarification in another direction, shrinking the group
by bring in the information about X. Let N = {g € G | gz = z for all z € G}, the set of elements
in G that acts trivially on X. It is easy to check that N is a normal subgroup of G. We say GG
acts on X effectively if N = {e}. In the case when G does not act effectively, it makes sense
to consider the G/N-product of Z, where G/N is the quotient group. More precisely, consider
Z*GIN = {s . G/N — Z}, which is smaller in size than Z*¢. For any map F : X — Z,
we can get a G/N-equivariant lift Fof F following the same construction as Lemma[3.2] (with G
replaced by G'/N). Since G’ maps to the quotient G//N, we have that G acts on Z*&/N and Fis
also G-equivariant.

REFERENCES

Etienne Barnard and David Casasent. Invariance and neural nets. IEEE Transactions on neural
networks, 2(5):498-508, 1991.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International confer-
ence on machine learning, pp. 2990-2999, 2016a.

Taco S Cohen and Max Welling. Steerable cnns. arXiv preprint arXiv:1612.08498,2016b.

Taco S Cohen, Mario Geiger, Jonas Kohler, and Max Welling. Spherical CNNs. arXiv preprint
arXiv:1801.10130,2018.

Under review as a conference paper at ICLR 2020

i
e
X — 7

Figure 5: Factors through.

Taco S Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max Welling. Gauge equivariant convolu-
tional networks and the icosahedral cnn. arXiv preprint arXiv:1902.04615,2019.

Sander Dieleman, Kyle W Willett, and Joni Dambre. Rotation-invariant convolutional neural net-
works for galaxy morphology prediction. Monthly notices of the royal astronomical society, 450
(2):1441-1459, 2015.

Ian Goodfellow, Honglak Lee, Quoc V Le, Andrew Saxe, and Andrew Y Ng. Measuring invariances
in deep networks. In Advances in neural information processing systems, pp. 646—-654, 2009.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149,2015.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-

lutional neural networks. In Advances in neural information processing systems, pp. 1097-1105,
2012.

Serge Lang. Algebra, GTM211. Springer, 2002.

Jan Eric Lenssen, Matthias Fey, and Pascal Libuschewski. Group equivariant capsule networks. In
Advances in Neural Information Processing Systems, pp. 8844-8853, 2018.

Diego Marcos, Michele Volpi, Nikos Komodakis, and Devis Tuia. Rotation equivariant vector field
networks. In Proceedings of the IEEE International Conference on Computer Vision, pp. 5048—
5057, 2017.

Diego Marcos, Michele Volpi, Benjamin Kellenberger, and Devis Tuia. Land cover mapping at very
high resolution with rotation equivariant cnns: Towards small yet accurate models. ISPRS journal
of photogrammetry and remote sensing, 145:96—-107, 2018.

Stavros J Perantonis and Paulo JG Lisboa. Translation, rotation, and scale invariant pattern recog-
nition by high-order neural networks and moment classifiers. IEEE Transactions on Neural Net-
works, 3(2):241-251, 1992.

Henry A Rowley, Shumeet Baluja, and Takeo Kanade. Rotation invariant neural network-based face
detection. In Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (Cat. No. 98CB36231), pp. 38—44. IEEE, 1998.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing be-
tween capsules. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information
Processing Systems 30, pp. 3856-3866. Curran Associates, Inc., 2017. URL
http://papers.nips.cc/paper/6975-dynamic—routing-between—capsules.pdf

Bastiaan S Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling. Rotation equiv-
ariant cnns for digital pathology. In International Conference on Medical image computing and
computer-assisted intervention, pp. 210-218. Springer, 2018.

Maurice Weiler, Fred A Hamprecht, and Martin Storath. Learning steerable filters for rotation equiv-
ariant cnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp- 849-858, 2018.

10

http://papers.nips.cc/paper/6975-dynamic-routing-between-capsules.pdf

Under review as a conference paper at ICLR 2020

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In Advances in neural information processing systems, pp. 2074-2082,
2016.

11

	Introduction
	Motivation
	Related Work

	Preliminaries
	Equivarification
	Application to neural networks
	Experiments
	Equivariance Verification
	Accuracy

	Conclusion
	Appendix - More About Equivarification

