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ABSTRACT

Recently, the convolutional neural networks (CNNs) have shown great success
on semantic segmentation task. However, for practical applications such as au-
tonomous driving, the popular supervised learning method faces two challenges:
the demand of low computational complexity and the need of huge training dataset
accompanied by ground truth. Our focus in this paper is semi-supervised learning
for semantic segmentation. We wish to use both labeled and unlabeled data in the
training process. A highly efficient semantic segmentation network is our plat-
form, which achieves high segmentation accuracy with a low model size and high
inference speed. We propose a semi-supervised learning scheme to improve seg-
mentation accuracy by including extra images without labels. While most existing
semi-supervised learning methods are designed based on the adversarial learning
techniques, we present a new and different approach, which trains an auxiliary
CNN network that validates labels (ground-truth) on the unlabeled images. In
the supervised training phase, both the segmentation network and the auxiliary
network are trained using the labeled images. Then, in the unsupervised training
phase, the unlabeled images are segmented and a subset of image pixels are picked
up by the auxiliary network; and then they are used as ground truth to train the seg-
mentation network. Thus, at the end, all dataset images can be used for retraining
the segmentation network to improve the segmentation results. We use Cityscapes
and CamVid datasets to verify the effectiveness of our semi-supervised scheme.
Our experimental results show that it can improve the mean IoU for about 1.2%
to 2.9% on the challenging Cityscapes dataset.

1 INTRODUCTION

Semantic Segmentation, which identifies the category label of each pixel, is an important task in
computer vision. A number of convolutional neural network (CNN) based semantic segmentation
systems have been developed in recent years such as Chen et al. (2017a;b; 2018); Long et al. (2015);
Zhao et al. (2017); Ronneberger et al. (2015). For practical applications such as autonomous driving,
there is a high demand for real-time processing and sufficient training data. Hence, different research
directions have been explored. For example, some researchers proposed various efficient network
structures (Chen et al., 2019; Paszke et al., 2016; Poudel et al., 2018; Lo et al., 2018; Poudel et al.,
2019; Yu et al., 2018; Zhao et al., 2018; Romera et al., 2017; Li et al., 2019), and the others focus
on the weakly- or semi-supervised learning schemes (Hung et al., 2018; Lin et al., 2016; Bearman
et al., 2016; Qi et al., 2016; Rajchl et al., 2016; Pathak et al., 2015; Papandreou et al., 2015; Hong
et al., 2015; Luc et al., 2016; Dai et al., 2015; Pathak et al., 2014; Zhu et al., 2019; Mittal et al.,
2019).

In this study, we first design an efficient segmentation network inherited from Chen et al. (2019) as
our baseline model, and then propose a semi-supervised learning scheme. There are three training
stages in our system. In the first stage, the segmentation network is trained using the labeled images.
Then, in the second stage, an auxiliary network is trained using the segmentation network model
trained in the previous stage and the labeled data to generate the confidence map. Inspired by Hung
et al. (2018), we use the concept of confidence map to assign a confidence score to each segmented
pixel on the unlabeled images. In their work (Hung et al., 2018), the confidence map is the output
of a GAN discriminator network (Goodfellow et al., 2014), where the discriminator network learns
to distinguish between the segmentation map and the ground truth map. However, we find that
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the trusted (high confidence) regions in their confidence map are mostly located on the large target
objects, and thus the effectiveness of semi-supervised learning is limited. To obtain more reliable
small object labels, we adopt a different approach in generating the confidence map. In our approach,
the confidence map is generated by an auxiliary (CNN) network, which is trained using the proposed
auxiliary loss function. We carefully design the auxiliary loss function such that it leads to a reliable
confidence map, particularly, on the small objects. In the third stage, the unlabeled images are used
as inputs to the proposed system to generate the labels. Therefore, we can use both originally labeled
and unlabeled images to retrain the segmentation network model to achieve a better performance in
the end.

In summary, our main contributions of this work are as follows. First, Based on DSNet-fast (Chen
et al., 2019), we design a powerful segmentation network, which achieves a very good balance
between speed and accuracy. It produces 73.9% mean IoU on the Cityscapes testing set with a speed
of 73 FPS on a single GTX 1080Ti card. Second, We propose a semi-supervised learning scheme
with the notion of auxiliary network, which can be used to annotate the unlabeled images. Third,
with the help of auxiliary network, our semi-supervised learning method can include the unlabeled
images in training, which improves the segmentation accuracy.

2 RELATED WORK

Recently, CNNs have been widely used in many fields of computer vision. For the semantic seg-
mentation task, FCN (Long et al., 2015) is a pioneer. It replaces the fully-connected layers of the
classification network (Krizhevsky et al., 2012) with the convolution layers, and thus it can gener-
ate dense labels on the input image of the same size. Then, SegNet (Badrinarayanan et al., 2017)
was subsequently proposed, which uses a symmetric encoder-decoder architecture for feature map
down-sampling and up-sampling. The U-Net (Ronneberger et al., 2015) introduces the concate-
nation operation to up-sample the features with different levels. PSPNet (Zhao et al., 2017) and
DeepLab (Chen et al., 2017a;b; 2018) propose the atrous spatial pyramid pooling (ASPP) module to
integrate multi-scale features. There are many other studies on improving the segmentation results;
however, for practical applications, a high inference speed network is very desirable. For example,
ENet (Paszke et al., 2016) is a real-time segmentation model with good segmentation results. ICNet
(Zhao et al., 2018) and BiSeNet (Yu et al., 2018) were recently proposed, and they aim at a better
balance between speed and accuracy.

Another challenge in training a semantic segmentation network is the need of a large amount of la-
beled data (ground truth). The labeling cost of pixel-level annotation is extremely expensive. Hence,
in recent years, the study of the weakly- and semi-supervised learning approaches to tackle this prob-
lem attracted a lot of attention. For the weakly supervised methods, the pixel-level annotation is no
longer used to train the segmentation network, but instead, other forms of annotations obtained at
low costs are used for training. Several different types of weakly-supervision have been studied, in-
cluding bounding box supervision (Rajchl et al., 2016; Dai et al., 2015), scribbles supervision (Lin
et al., 2016), point supervision (Bearman et al., 2016), and image-level supervision (Qi et al., 2016;
Pathak et al., 2014). Particularly, the development of image-level supervision is the most popular
one. Pathak et al. (2015) convert image-level labels to restrict the distribution of CNN output. Pa-
pandreou et al. (2015) combine image-level labels using EM algorithms to train the segmentation
model. Wei et al. (2018) propose a generic classification network, which adopts the convolutional
blocks with different dilated rates to generate dense object localization maps. It can produce reli-
able segmentation masks for training the segmentation model. For semi-supervised learning, Hong
et al. (2015) propose a method to separately train the classification and segmentation networks, and
then pass the information from the classification network to the segmentation network to reduce
the search space for effective segmentation. Luc et al. (2016) employ an adversarial network to
enhance the segmentation quality. Recently, Zhu et al. (2019) propose a video prediction model to
generate new samples for improving segmentation accuracy. Moreover Hung et al. (2018) propose
a self-taught learning approach based on the dense pixel-level probability maps produced by adver-
sarial network. Mittal et al. (2019) describe the dual-branch method including a semi-supervised
classification branch to learn from unlabeled data.

In this study, we propose an auxiliary network, which can determine the credibility of each pixel
on the segmentation map of unlabeled images and then the trusted pixels can be used as additional
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Figure 1: The process of generating annotations for unlabeled image.

ground truth data in training. Different from the previous works, we focus on the quality of the
generated labels. We believe that the supervision signals of small objects are more important than the
larger ones. Thus, we assign different weights to the generated tags of different categories, especially
biased towards the small objects. In training the auxiliary network, we propose an auxiliary loss
function containing two critical terms to achieve this objective.

3 METHODOLOGY

In this section, we first describe the general framework of our semi-supervised semantic segmenta-
tion scheme, and then we describe the architecture and design concepts of the proposed segmentation
network and auxiliary network.

3.1 SEMI-SUPERVISED LEARNING USING AUXILIARY NETWORK

There are in total three training stages in our semi-supervised learning scheme. In the first stage, we
simply train the segmentation network using the labeled images. In this paper, we simply use the
typical cross entropy loss in the supervised training of segmentation network. Then in the second
stage, an auxiliary network is trained using the proposed auxiliary loss function. Both the originally
labeled images and the previously trained segmentation network are used in this stage. Our auxiliary
network takes the class probability maps of size H×W ×C produced by the segmentation network
as input, where H and W are the height and width of the image size and C denotes the number of
classes. The auxiliary network outputs a confidence map of size H ×W × 1. Each pixel of the
confidence map is a probability value between 0 and 1, which represents the credibility of that pixel
on the segmentation map. In the third stage, we feed the unlabeled images into the segmentation
network pre-trained in the first stage to obtain the class probability map, and then pass this map
through the auxiliary network to obtain the confidence map. Based on the probability value of each
pixel of the confidence map, we can determine the segmentation reliability of each pixel on the
segmentation map. Then, we select the pixels with high reliability as the annotated data points. And
we ignore the pixels with lower reliability in the next-phase training. We set a threshold Taux on the
confidence map to separate the high reliability pixels from the low reliability pixels. Hence, we can
mask the error-prone pixels on the output segmentation map and produce the reliable annotated maps
for the unlabeled images. Finally, since all the images now have labels, we retrain the segmentation
network using all of them, and produce a more accurate segmentation model. Figure 1 shows the
process for generating annotated labels for the images without ground truth.

Loss function for auxiliary network To train the auxiliary network, we create another auxiliary
ground truth map of dimension H ×W × 1. Assuming that we have the original labeled ground
truth class map and the estimated (segmented) class map produced by the segmentation network, the
pixel value on the auxiliary ground truth map is set to 1 if the class at that pixel on the estimated
segmentation map matches that on the ground truth class map; and it is set to 0, if not. Different
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from the typical binary cross entropy loss, we assign weights to the terms in the loss function for
auxiliary network, which is defined below.

Laux = −
∑
h,w

Wn
h,w(γ

n
h,w × ynh,w log(ah,w(x

n)) + (1− ynh,w) log(1− ah,w(xn))) (1)

where ynh,w equals to 1 if the estimate class on the segmentation map at pixel (h,w) is identical to
the class value on the ground truth label map at the same pixel, and ynh,w equals to 0 if they are
different. In equation (1), ah,w(xn) denotes the confidence map output at pixel (h,w), when the
auxiliary network takes the class probability map xn as input. Wn

h,w represents the class weighting
value at pixel (h,w) on the confidence map, and it is defined as 1/ ln(c + pclass), inspired by
ENet (Paszke et al., 2016), where we set c equal to 1.04. The class weighting at different locations
of confidence map is decided by the ground truth label map. For example, when the class at the
pixel (h,w) on ground truth label map is class i, the class weight at that pixel on the confidence
map is the weight value associated with class i. Class weighting term is used to tackle the data
imbalance issue. That is, some classes having few number of pixels are often unfavored in training.
With class weighting, our auxiliary network performs well not only on the big objects but also
on the small objects. Moreover, for different classes, the imbalance issue between positive and
negative samples are quite different. Thus, we propose a weight term γnh,w, which is defined as
#negative pixelclass/#positive pixelclass, and it is calculated using the auxiliary network ground
truth. Similarly, this weight term is location variant depending on the ground truth label map. Both
Wn

h,w and γnh,w are the critical terms in the proposed auxiliary loss function. There were several
versions tested and the current version gives the best result.

3.2 NETWORK ARCHITECTURE

3.2.1 SEGMENTATION NETWORK

We adopt the DSNet-fast (Chen et al., 2019) as our backbone model, but we made some modifica-
tions. Based on our observations, once the receptive field of the network is large enough to cover
the entire image, making good use of the shallow-layer features is more effective than increasing
the network depth for the semantic segmentation task. Thus, we redesigned the initial block and
the early block of DSNet-fast, and reduced the CNN layers in the deeper block to achieve a better
accuracy and inference speed. The overall architecture is shown in Figure 2.

Figure 2: The architecture of the proposed segmentation network. “NB”: non-bottleneck unit. “B”:
bottleneck unit. “T”: transition layer. The number of output channels for each block are marked
inside parentheses.

In the encoder part, we adopt the same bottleneck unit and transition layer in DSNet-fast, and pro-
pose new initial block and non-bottleneck units. All our core units are shown in Figure 3. In the
initial block, after applying the 3×3 convolution with stride 2 on the input image, we split it into
two branches. The 1×1 convolution is applied to the left branch to integrate features and reduce the
number of channels, and on the right branch, a stack of two 3×3 convolutions is used to learn the
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Figure 3: Proposed core units. (a) initial block. (b) non-bottleneck unit. (c) bottleneck unit. “C”:
the number of channels from input. “gr”: growth rate, which is set to 32 in all our bottleneck unit.
The number of channels for each layer are marked inside parentheses.

features. Furthermore, the feature maps of these two branches are concatenated and followed by an
average pooling with stride 2 to produce the output. Since the 1×1 convolution does not take the
spatial information into account, the feature map concatenated from the two branches have different
receptive fields, and thus it helps the network to extract features at different scales. On the other
hand, due to dimension reduction made by the 1×1 convolution operation, the left branch helps
the right branch to produce more feature channels under the constraint of fixed number of concate-
nated feature maps. Similarly, we use the same concept to design our non-bottleneck unit. We find
that this design strategy is indeed helpful in producing better segmentation results at similar model
complexity.

In the decoder part, we employ 3×3 convolutions with {24, 32, 16, 24} channels after the Blocks
1-4, respectively, to reduce the computational complexity. Furthermore, the up-sampling and con-
catenation operations are adopted, same as DSNet-fast, to integrate the feature maps at different
spatial levels. Finally, the concatenated feature map is up-sampled by a factor of 4 using a decon-
volution kernel to produce the estimated segmentation map. All the convolution layers are followed
by batch normalization (Ioffe & Szegedy, 2015) and ReLU activations.

3.2.2 AUXILIARY NETWORK

Our auxiliary network mainly consists of five convolution layers, one atrous spatial pyramid pooling
(ASPP) module, and one deconvolution layer. The overall architecture is shown in Table 1. A few
auxiliary network architectures have been tested before we settle on the current design, which is
quite simple but provides good results.

Table 1: Auxiliary network architecture.

Input size Block Output size

512×1024×3 3×3 Conv , stride 2 256×512×32

256×512×32 3×3 Conv , stride 1 256×512×64

256×512×64 3×3 Conv , stride 2 128×256×128

128×256×128 3×3 Conv , stride 1 128×256×256

128×256×256 3×3 Conv , stride 1 128×256×256

128×256×256 ASPP 128×256×160

128×256×160 8×8 Deconv , 4x 512×1024×1
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Since we find that detailed spatial information is vital in the auxiliary network, our feature map size
is only 1/4 of the original image size before the deconvolution layer. We use the 3×3 convolution
layers at the beginning, and then it is followed by a single atrous spatial pyramid pooling module
similar to DeepLab-v3+ (Chen et al., 2018) to extract multi-scale information as well as enlarging
the receptive field. For the ASPP (Atrous Spatial Pyramid Pooling) module of our auxiliary network,
we use the dilated convolution with dilated rate {1, 2, 4, 8, 16} for branch 1-5 respectively, and do
not use the image pooling branch. Each branch in our ASPP module has 32 feature channels. Finally,
the deconvolution kernel is applied after the ASPP module to rescale the output to the input size and
generate the dense confidence map; moreover, it is followed by the sigmoid function to limit the
output between 0 and 1. Same as the segmentation network, all the convolution layers are followed
by batch normalization (Ioffe & Szegedy, 2015) and ReLU activations.

4 EXPERIMENTAL RESULTS

In this section, we first introduce two datasets, Cityscapes (Cordts et al., 2016) and CamVid (Brostow
et al., 2008), that are used to evaluate proposed method. Both are popular road scene datasets. Then,
we describe our training details for the segmentation and the auxiliary networks. At the end, we
show the comparisons with the state-of-the-art methods as well as some visual results.

4.1 DATASETS

Cityscapes The Cityscapes dataset is a road scene dataset with the image resolution of 1024
×2048, and it provides 19 object classes for evaluation. There are two forms of annotation data
in its database, namely, fine and coarse. Only the fine annotation set is used in our experiments,
where it contains 2975, 500, 1525 images for training, validation, and testing respectively. We re-
size the image to 512×1024 for training and testing due to the hardware limitation; however, for
evaluation on the testing set, we restore the resolution of segmentation results to the original size for
fair comparison.

CamVid The CamVid dataset is also a road scene dataset, but its image resolution (about
360×480) is much smaller than that of the Cityscapes dataset. It provides 11 semantic classes,
and contains 367, 101, 233 images for training, validation, and testing.

4.2 IMPLEMENTATION DETAILS

We use PyTorch framework to implement our method, and we measure the network speed on a
single GTX 1080Ti GPU. The popular metric, mean IoU, is used to compute the segmentation
performance. In addition, the encoder part of our segmentation network has been pre-trained on
ImageNet (Deng et al., 2009) to produce better initial parameters.

Segmentation network To train the segmentation network for the Cityscapes dataset, we use the
stochastic gradient decent (SGD) optimization with momentum 0.9, weight decay 0.0001, and batch
size 4. We adopt the poly learning rate policy as described in Chen et al. (2017a) with power 0.9 in
all our experiments and the initial learning rate is set to 0.05 here. We train it for 200 epochs in total.
For the CamVid dataset, the SGD optimization is also used but with momentum 0.9, weight decay
0.0005, and batch size 8. In addition, the initial learning rate is set to 0.075, and we train it for 150
epochs in total.

For both Cityscapes and CamVid datasets, we adopt the class weighting scheme same as in Paszke
et al. (2016) with an additional hyper-parameter c set to 1.1, and the data augmentation strategies
are employed to boost the performance. Our data augmentation strategies include random horizontal
flip, random pixel translation, and random scaling. For the Cityscapes dataset, the scaling factors in
random scaling are {0.75, 1.0, 1.25, 1.5, 1.75}, and for the CamVid dataset, they are {0.8, 1.0, 1.3,
1.7}.

Auxiliary network To train the auxiliary network for Cityscapes dataset, we use the Adam op-
timization (Kingma & Ba, 2014) with momentum 0.9, weight decay 0.0001, batch size 4, and the
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Table 2: Comparison with the state-of-the-art methods on the Cityscapes testing set. The efficiency-
based methods are adopted for comparison. “†”: inference speed using Titan X GPU. “‡”: inference
speed using Titan XP GPU. “††”: inference speed using GTX 1080Ti GPU.

Method Training dataset Mean IoU (%) Speed (FPS) Params

ENet (Paszke et al., 2016) Fine 58.3 76.9† 0.37 M

ContextNet (Poudel et al., 2018) Fine 66.1 18.3† 0.85 M

EDANet (Lo et al., 2018) Fine 67.3 81.3† 0.68 M

Fast-SCNN (Poudel et al., 2019) Fine, Coarse 68.0 75.3† 1.11 M

BiSeNet (Yu et al., 2018) Fine 68.4 105.8‡ 5.8 M

DSNet-fast (Chen et al., 2019) Fine 69.1 52.9† 3.0 M

ICNet (Zhao et al., 2018) Fine 69.5 30.3† 6.68 M

ERFNet (Romera et al., 2017) Fine 69.7 41.7† 2.1 M

DF1-Seg-d8 (Li et al., 2019) Fine 71.4 136.9†† -

DF2-Seg2 (Li et al., 2019) Fine 75.3 56.3†† -

Ours Fine 73.9 55.8† , 73.2†† 2.11 M

initial learning rate is set to 0.0005. For the CamVid dataset, different from the former, the weight
decay for Adam optimization is set to 0.0005, and batch size is set to 8.

The training duration is 50 epochs for both datasets, and we use the proposed auxiliary loss function
in training the auxiliary network. The data augmentation strategies for training auxiliary network
are same as described in the above.

4.3 PERFORMANCE EVALUATION

Evaluation on Cityscapes dataset In order to evaluate the performance of the proposed segmen-
tation network, we test it on the Cityscapes testing set, and compare the results with the state-of-the-
art networks. It is worth noticing that we do not adopt any testing technology such as multi-scale
testing in the evaluation process. From Table 2, we find that our segmentation network can achieve
a good trade-off between speed and accuracy. It achieves 73.9% mean IoU with fewer parameters
and higher inference speed comparing to the other segmentation nets.

Moreover, to evaluate the proposed semi-supervised learning scheme, similar to that in work (Hung
et al., 2018), we randomly sample half of images from the training set and call them the labeled
data, and the other half are the unlabeled data. We conduct the experiments on the Cityscapes val-
idation set. First of all, we train the segmentation and auxiliary network using the labeled images
as described in Section 3.1, and then we measure the confidence map performance. In this process,
we feed the validation set images to the entire network, and then mask the error-prone pixels of the
segmentation map by the confidence map. Then, compare the masked segmentation map (generated
annotations) with its true ground truth to calculate the accuracy. We use three performance met-
rics for evaluation, and the experimental results are shown in Table 3, where Taux represents the
threshold set for the confidence map. The mean IoU metric is the mIoU calculated by the gener-
ated annotations and the true ground truth without considering the masked pixels (by the confidence
map). The average class semi ratio is the average value of the “class semi ratio” of all classes. To
compute the class semi ratio for class i, we only consider the region of pixels that belong to class
i on the ground truth label map. The denominator of class semi ratio for class i is the number of
all pixels; and the numerator is the number of pixels not masked by the confidence map, on the
estimated segmentation map. In calculating the selected pixels, we first count the pixels of the esti-
mated segmentation map that are selected by the confidence map and are used as ground truth (GT)
in training. Then, we compute its ratio with respect to the entire image. From Table 3, we can find
that with a higher threshold, the pixels selected as GT are more accurate, but the selected pixels are
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Table 3: The measuring results for generated annotations on the Cityscapes validation set using half
of training data.

Taux Mean IoU (%) Average class semi ratio (%) Selected pixels (%)
0 70.3 100 100

0.7 83.7 75.6 86.1
0.8 85.6 71.2 83.3
0.9 88.2 64.2 78.0

Table 4: The per-class IoU for generated annotations on the Cityscapes validation set using half of
training data.

Class IoU (%) / Class semi ratio (%)
Taux = 0.0 Taux = 0.7 Taux = 0.8 Taux = 0.9

Road 97.4 / 100 99.0 / 95.7 99.2 / 95.0 99.4 / 93.4
Sidewalk 80.5 / 100 91.0 / 83.0 92.1 / 79.9 93.5 / 75.0
Building 90.9 / 100 96.5 / 85.4 97.1 / 82.5 97.8 / 77.4

Wall 49.2 / 100 62.1 / 67.9 63.8 / 62.8 66.7 / 54.6
Fence 52.8 / 100 67.5 / 68.5 70.0 / 63.0 73.8 / 54.8
Pole 59.4 / 100 78.0 / 72.2 82.0 / 66.3 87.5 / 56.0

Traffic light 63.5 / 100 81.6 / 74.4 85.2 / 68.7 89.9 / 59.3
Traffic sign 71.9 / 100 88.0 / 79.5 90.3 / 75.1 93.2 / 67.8
Vegetation 91.3 / 100 97.4 / 86.1 97.9 / 83.4 98.6 / 78.7

Terrain 59.4 / 100 74.1 / 72.2 76.3 / 67.7 80.1 / 60.4
Sky 93.5 / 100 98.6 / 91.4 98.8 / 89.5 99.2 / 86.4

Person 75.5 / 100 90.6 / 80.5 92.8 / 75.8 95.2 / 67.6
Rider 53.8 / 100 71.1 / 67.2 75.3 / 59.0 81.0 / 46.8
Car 92.7 / 100 98.6 / 89.4 98.9 / 87.4 99.3 / 83.9

Truck 68.7 / 100 86.7 / 70.8 88.0 / 67.4 89.9 / 62.3
Bus 70.9 / 100 89.1 / 70.6 90.8 / 67.3 93.1 / 62.2

Train 51.3 / 100 71.0 / 52.9 73.1 / 47.4 76.0 / 39.9
Motorcycle 42.7 / 100 62.3 / 52.4 65.1 / 44.5 68.3 / 33.3

Bicycle 70.1 / 100 86.7 / 76.8 89.9 / 70.7 93.6 / 60.6

fewer; this is a trade-off. In addition, as shown in Table 4, our confidence map can also produce
good results on the small objects with a higher threshold. Thus, the generated annotations used for
retraining segmentation network have good quality.

After generating the annotated labels for 1/2 unlabeled images, we retrain the segmentation network
using all images. The experimental results of selecting pixels based on different threshold values are
shown in Table 5. The proposed semi-supervised learning scheme can improve the performance for
about 1.0% to 1.2%. If Taux is set to 0, it means that all the pixels of the estimated segmentation
map are used as ground truth for unlabeled image, which is obviously unreasonable and it decreases

Table 5: The proposed semi-supervised learning segmentation results on the Cityscapes validation
set based on different threshold values on the confidence map.

Data amount
Labeled data Unlabeled data Taux Mean IoU (%)

1/2 1/2 0 69.9
1/2 1/2 0.7 71.3
1/2 1/2 0.8 71.4
1/2 1/2 0.9 71.5
1/2 1/2 1 70.3
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Table 6: Comparison with Hung et al. (2018) and Mittal et al. (2019) on the Cityscapes validation
set.

Data amount (labeled data + unlabeled data)
Method 1/8 + 7/8 1/4 + 3/4 1/2 + 1/2 1 + 0
(Hung et al., 2018) baseline 55.5 59.9 64.1 66.4
(Hung et al., 2018) + adversarial learn. 57.1 61.8 64.6 67.7
(Hung et al., 2018) + adversarial learn. + semi 58.8 62.3 65.7 -
(Mittal et al., 2019) baseline 56.2 60.2 - 66.0
(Mittal et al., 2019) + adversarial learn. + semi 59.3 61.9 - 65.8
Ours baseline 56.8 63.0 66.1 69.6
Ours + semi 60.7 65.5 67.7 -
Ours baseline (using proposed segment. net) 57.7 65.5 70.3 74.4
Ours + semi (using proposed segment. net) 60.2 68.4 71.5 -

Figure 4: Sample results on the Cityscapes validation set using half of training data. From left
to right: (a) image (b) ground truth (c) segmentation results without semi-supervised learning (d)
segmentation results with semi-supervised learning

the accuracy. Since Taux at 0.9 gives the best results, we use the same value in the following
experiments.

To verify the effectiveness of our approach, we conduct experiments with different amount of data,
and shows the comparison with Hung et al. (2018) and Mittal et al. (2019) in Table 6. For the fair
comparison, we also adopt the DeepLab-v2 framework as our backbone segmentation net model.
Under the same settings that using 1/2, 1/4, and 1/8 training images as labeled data and using the
rest of images as unlabeled data, our semi-supervised learning method can lead to higher perfor-
mance improvements. It can improve the mean IoU by 3.9%, 2.5%, and 1.6% for 1/8, 1/4, and
1/2 training datasets, respectively. Particularly, compared with Hung et al. (2018), if we focus on
the performance differences between the schemes with and without semi-supervised learning mech-
anism, our semi-supervised learning approach offers quite significant improvement. Furthermore,
when our proposed segmentation network is used as the backbone segmentation net, it increases the
mean IoU for another 1.2% to 2.9%. At the end, we show some sample visual results in Figure 4.

Evaluation on CamVid dataset We also evaluate our scheme on the CamVid dataset. As the
results shown in Table 7, our semi-supervised learning method can boost the performance of the
segmentation network, and it can achieve 1.3% improvement on mean IoU.
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Table 7: Comparisons on the CamVid testing set.

Data amount
Method Labeled data Unlabeled data Mean IoU (%)
Ours baseline (using proposed segment. net) 1 0 71.8
Ours baseline (using proposed segment. net) 1/2 1/2 69.3
Ours + semi (using proposed segment. net) 1/2 1/2 70.6

5 CONCLUSIONS

In this paper, we first propose a highly efficient segmentation network as our platform, and then
we design a semi-supervised learning scheme using an auxiliary network. The auxiliary network is
used to verify the estimated segmentation map and to generate annotations on the unlabeled images.
Equipped with the carefully designed auxiliary loss function in training, the auxiliary network per-
forms well not only on the large objects but also on the small objects. It shows that the unlabeled
images together with the generated annotations (labels) can be used to retrain the segmentation
network for better segmentation quality. Our experimental results on the Cityscapes and CamVid
datasets demonstrate the effectiveness of the proposed method.
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