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Abstract

The geometry of the carotid siphon has a large variability between subjects, which has prompted its study as a poten-
tial geometric risk factor for the onset of vascular pathologies on and off the internal carotid artery (ICA). In this work,
we present a methodology for an objective and extensive geometric characterization of carotid siphon parameterized
by a set of anatomical landmarks. We introduce a complete and automated characterization pipeline. Starting from
the segmentation of vasculature from angiographic image and its centerline extraction, we first identify ICA by char-
acterizing vessel tree bifurcations and training a support vector machine classifier to detect ICA terminal bifurcation.
On ICA centerline curve, we detect anatomical landmarks of carotid siphon by modeling it as a sequence of four
bends and selecting their centers and interfaces between them. Bends are detected from the trajectory of the curvature
vector expressed in the parallel transport frame of the curve. Finally, using the detected landmarks, we characterize
the geometry in two complementary ways. First, with a set of local and global geometric features, known to affect
hemodynamics. Second, using large deformation diffeomorphic metric curve mapping (LDDMCM) to quantify pair-
wise shape similarity. We processed 96 images acquired with 3D rotational angiography. ICA identification had a
cross-validation success rate of 99%. Automated landmarking was validated by computing limits of agreement with
the reference taken to be the locations of the manually placed landmarks averaged across multiple observers. For all
but one landmark, either the bias was not statistically significant or the variability was within 50% of the inter-observer
one. The subsequently computed values of geometric features and LDDMCM were commensurate to the ones ob-
tained with manual landmarking. The characterization based on pair-wise LDDMCM proved better in classifying the
carotid siphon shape classes than the one based on geometric features. The proposed characterization provides a rich
description of geometry and is ready to be applied in the search for geometric risk factors of the carotid siphon.

Keywords: Cerebral angiography, Internal carotid artery, Segmentation, Geometric quantification, Computational
anatomy, LDDMM, Landmarks.

1. Introduction

The locations where vascular pathologies tend to oc-
cur more frequently are in general non-uniformly dis-
tributed across the vasculature. For example, cerebral
aneurysms (pathological bulging of arteries) have strong
preference for occurring at specific locations, and are
frequently found at or near the regions of high vascu-
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lar curvature in arteries of the Circle of Willis (Bris-
man et al., 2006). Similarly, atherosclerosis (thicken-
ing of the arterial wall) often occurs at carotid bifur-
cation (Thomas et al., 2005) or near the bifurcations
of coronary arteries (Halon et al., 1983; Frangos et al.,
1999).

Since geometry varies among different locations in
the vasculature, it is believed that this geometric varia-
tion contributes to a corresponding variation in predis-
posing hemodynamic forces (Lee et al., 2008b). These
forces, coming from blood motion, are speculated to
play an important role in the initiation and localization
of pathologies, which in turn could explain their nonuni-
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form distribution (Zhu et al., 2009). Taking this into
account, Friedman et al. (Friedman et al., 1983) intro-
duced the concept of “geometric risk factors” as the geo-
metric features that provoke high hemodynamic stresses
on the vessel wall.

An important condition for the geometric risk factor
concept is the presence of sufficient individual variabil-
ity in geometry to induce important variations in indi-
vidual hemodynamics (Friedman, 2002). One vessel of
clinical interest that satisfies this requirement is the in-
ternal carotid artery (ICA). Located on each side of the
neck, ICA is the main vessel that feeds blood to the ar-
teries forming the anterior circulation of the brain. The
geometry of ICA varies widely across the population, in
particular the part known as the carotid siphon (Krayen-
buehl et al., 1982). The carotid siphon (Fig. 1) is the tor-
tuous segment of the ICA that extends from the carotid
canal to the terminal bifurcation (ICA-TB) at which the
ICA bifurcates into the anterior cerebral artery (ACA)
and the middle cerebral artery (MCA).
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Figure 1: Carotid siphon with an aneurysm on the bifurcation with the
posterior communicating artery.

Geometry of ICA is of special interest as incidence
rate of aneurysms on it is high, as one third of all
intracranial aneurysms occur along the carotid siphon
or its terminal bifurcation (Brisman et al., 2006). A
couple of studies already identified effects linking ge-
ometry and aneurysmal pathology on ICA. Piccinelli
et al. (2011) concluded that ICA bends hosting rup-
tured aneurysms tend to be shorter, having smaller ra-
dius, lower maximum curvature, and the aneurysms are
located closer to the bend center. Kim and Kang (2007)
found that a relatively shorter length of the supraclinoid
ICA may be a risk factor for the development of an ICA-
posterior communicating artery aneurysm due to higher
hemodynamic stress. The geometry of ICA was also of
interest to evaluate endovascular accessibility of lesions
and for treatment planning, which involves choosing the
optimal path and selecting the appropriate type of mi-
crocatheters, guidewires and stents (Subramanian et al.,

2004; Jiang et al., 2004; Pakbaz and Kerber, 2007; Toy-
ota et al., 2009).

The aim of this work is to provide a methodology for
extensive geometric characterization of carotid siphon
in an objective, robust and automated way, starting from
an angiographic image. The characterization should al-
low the comparison of carotid siphons within and be-
tween subjects and measure their similarity. Such a
method would facilitate cataloguing the normal values
and the variability of carotid siphon geometry to guide
future exploration and identification of specific geomet-
ric risk factors.

The summary of the paper is the following. In sec-
tion 2, we overview the state-of-the-art in the geomet-
ric characterization of vasculatures. In section 3, we
start presenting the automated characterization pipeline
(Fig. 2), with a focus on identifying ICA and detect-
ing anatomical landmarks of carotid siphon. Based on
these landmarks of correspondence, we propose two
approaches for the geometric characterization (Fig. 2).
One is based on computing several geometrically intu-
itive features (section 4), while the other on measuring
the pair-wise similarity between carotid siphons taking
their entire shape into account (section 5). In section 7,
we validate the automated ICA identification and land-
mark detection and compare the two characterization
approaches in their ability to separate carotid siphons
having different shape classes, related to endovascu-
lar accessibility. Finally, section 8 discusses the bene-
fits and limitations of the proposed characterization and
presents our conclusions.

2. Related work

The geometric characterization of vasculature and in
particular of ICA, have already attracted a lot of atten-
tion. The state-of-the-art can be divided into two main
approaches. The most common one is to represent the
vessel shape with a set of geometric indices, which are
considered as candidates for being geometric risk fac-
tors. The other approach is to consider each point of a
centerline as a function of its arc length parameter and
then apply functional data analysis (FDA) to explore the
variability in a population.

Bullitt et al. (2003, 2005) focused on the measure of
tortuosity of the intracerebral vasculature. Three dif-
ferent tortuosity metrics were compared by their ef-
fectiveness in detecting several types of abnormalities.
In Chen et al. (2002), curvature, torsion and tortuosity
and their change along the heart cycle were computed
in a selected region of a coronary tree. In Gielecki et al.
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Figure 2: The image-based pipeline for geometric characterization of the carotid siphon.

(2008), tortuosity and deviation index as well as cur-
vature angle were computed for describing the terminal
part of the basilar artery. O’Flynn et al. (2007) described
the anatomy of normal human abdominal aorta and its
side renal arteries with tortuosity, non-planarity of bifur-
cations, branching angles, curvature and torsion. In the
works by Meng et al. (2008a,b), carotid siphon is char-
acterized by its spatial complexity defined as the sum of
the curvature and torsion energy. The above methods,
apart that they limit the characterization to a small set
of isolated geometric indices, require user-interaction.

A framework for geometric analysis of vasculature
is presented by Piccinelli et al. (2009). Vascular struc-
tures, are objectively characterized using computational
geometry. Using such framework, Piccinelli et al.
(2011) presented a geometric characterization of ICA
and searched for patterns that can be associated to the
presence and rupture status of aneurysms. Vessel cen-
terline is partitioned into a sequence of quasi-planar
bends. Each bend is then characterized with several
geometric indices: torsion peaks at proximal and dis-
tal endpoints, mean and maximum curvature, length,
radius, angular orientation of aneurysm, etc. How-
ever, their method does not guarantee the correspon-
dence of the bends, which is reflected by the discrep-
ancy in the number of bends obtained from different
subjects. Furthermore, the number of such obtained
bends strongly depends on the applied scale for vessel
centerline smoothing.

As opposed to computing geometric indices, Sangalli
et al. (2009) applied FDA to characterize a set of center-
line curves of ICA. An atlas of curves was created where
the reference curve and a set of affine transformations
of arc length parameter are simultaneously estimated
by Procrustes fitting. From the set of aligned curves,
functional principal components analysis (PCA) of their
local radius and curvature was performed. In Sangalli
et al. (2010), they extended their atlas to allow for mul-
tiple reference curves. A method called k-mean align-
ment is proposed for simultaneous alignment and clus-
tering of spatial curves. However, as the transforma-

tions are restricted to be affine, the alignment does not
assure correspondences between points and bends of
curves. These inter-subject anatomical correspondences
are essential for computing geometrical descriptors. Be-
sides, we consider them an important requirement for
the correct shape comparison between ICAs.

3. ICA segmentation

3.1. Segmentation of the vasculature
Segmentations of the vasculature are performed in

an automated way with a geometric deformable model
called Geodesic Active Regions (GAR) (Hernandez and
Frangi, 2007; Bogunovic et al., 2011). The method was
demonstrated to be accurate for 3D rotational angiog-
raphy (3DRA) and time-of-flight magnetic resonance
(TOF-MRA) images. The result of the segmentation is a
triangular mesh modeling the vascular lumen with sub-
voxel precision.

3.2. Vascular tree centerlines computation
The shape of tubular objects, like vessels, can be

approximated by the shape of their centerline (medial
axis), which is a 3D spatial curve. We obtain the set
of vessel centerlines in two steps. First, to obtain the
estimate of the topology of the vascular tree, fast topo-
logical thinning based on collapsing fronts followed by
a fast marching computation to assure centerline con-
nectivity (Cardenes et al., 2010) was applied to obtain
the skeleton of the segmentation (Fig. 3). The skele-
ton, due to imaging resolution and segmentation inac-
curacies producing touching vessels, might not have the
topology of a tree. However, its end-points do corre-
spond to the root and the terminal leaves of the under-
lying vascular tree. The root was taken to be the end-
point with the maximal associated radius at the lowest
axial plane, which corresponded to the ICA entering the
imaged field of view.

Second, the set of accurate centerlines is obtained by
backtracking along the minimal cost path from the end-
points toward the root using (Antiga et al., 2003), imple-
mented in the open-source library VMTK (Antiga and
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Figure 3: Segmented vascular mesh and its skeleton.

Steinman, 2011). Every point of such centerline, cor-
responds to the center of a maximally inscribed sphere
and the set of centerlines topologically form a rooted
tree with the edges directed away from the root in ac-
cordance with the blood flow.

3.3. ICA identification

To identify ICA in the extracted vascular tree, we ap-
plied the method for detecting ICA-TB, that we prelimi-
narily presented in (Bogunovic et al., 2010). A machine
learning based approach is applied, where a classifier is
trained on a set of labeled bifurcation feature vectors.
Then, a breadth-first traversal of tree bifurcations is per-
formed until the first positive detection. With this strat-
egy we only needed to differentiate ICA-TB from other
bifurcations along the ICA as the potential error would
appear either as a false positive along the ICA or a false
negative at its terminal bifurcation.

Origins of the bifurcations forming the vessel tree and
their bifurcation vectors (unit vectors denoting direc-
tions of parent vessel and the two daughter branches),
are defined using the objective and robust criteria
of Antiga and Steinman (2004); Piccinelli et al. (2009).
The two daughter branches are differentiated by their ra-
dius: the larger daughter branch and the smaller daugh-
ter branch. Then, each bifurcation is geometrically char-
acterized with the following 15 dimensional feature vec-
tor (Fig. 4(a)): ratios of mean vessel radii between each
pair of vessels forming the bifurcation (3); sagittal, axial
and coronal-components of the three bifurcation vectors
(9); angles between each pair of the bifurcation vectors
(3).

As a classifier, we employed C−Support vector ma-
chine (C−SVM) (Chang and Lin, 2011) with a radial ba-
sis function kernel. Optimal classifier parameter values
were obtained by a simple grid search through multiple
combinations. The ones giving the best cross-validation
(CV) score were chosen.

Finally, once the ICA-TB is detected, ICA is ex-
tracted as a sequence of 4D points (3 spatial center-
line coordinates plus the vessel radius) along a curvi-
linear abscissa starting from the ICA-TB and proceed-
ing toward the heart until it reaches the root of the tree
(Fig. 4(b)).
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Figure 4: (a) Bifurcation characterization: Origin (black cube) and
associated bifurcation vectors. (b) Example of identified ICA and its
centerline.

3.4. Carotid siphon landmarks
To compare carotids within and between subjects, we

identify a set of sparse landmark points of anatomical
correspondence. They are essential as they will serve
as a base for geometric characterization. We model the
carotid siphon, the part of ICA from terminal bifurca-
tion to carotid canal, as a sequence of four bends named
(from ICA-TB towards the heart): superior, anterior,
posterior and inferior bend, following their anatomi-
cal position with respect to the siphon center (Fig. 5).
The inferior, posterior and anterior bends have been ob-
served to be highly planar.For the superior bend, the pla-
nar approximation is not found to be valid as its shape
resembles more a helix (non-zero torsion).

The landmarks we selected corresponded to: ICA-
TB, the centers of the bends and to the interfaces be-
tween the bends of the model. However, for the helical
superior bend, the location of its center turned out to be
highly ambiguous and that landmark has consequently
been omitted. The final set of chosen seven landmarks
is shown in Fig. 5.

As the landmarks are associated with the four-bend
model, we first identify the four bends on a centerline
spatial curve. For this, we will make use of two natu-
ral frames defined on a spatial curve: The Frenet-Serret
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Figure 5: Carotid siphon with the four bends (in color) and the seven
landmarks (in black). White area denotes: outside the region of inter-
est.

and the parallel transport one (Bishop, 1975; Hanson
and Ma, 1995). We start by giving an overview of the
two frames and then present the method for bends and
landmarks detection.

3.4.1. Frames on a spatial curve
Given a regular parameterized differentiable space

curve Γ with a normalized arc length parameter s,

Γ = {x⃗(s)|s ∈ [0, 1], x⃗ ∈ R3}, (1)

the Frenet-Serret frame is defined locally by a triad: tan-
gent T⃗ (s), normal N⃗(s) and binormal B⃗(s),

T⃗ (s) = x⃗ ′(s)

N⃗(s) =
T⃗ ′(s)

∥ T⃗ ′(s) ∥
=

x⃗ ′′(s)
∥ x⃗ ′′(s) ∥

B⃗(s) = N⃗(s) × T⃗ (s) =
x⃗ ′(s) × x⃗ ′′(s)
∥ x⃗ ′(s) × x⃗ ′′(s) ∥ . (2)

Thus, (T⃗ (s), N⃗(s), B⃗(s)) forms an orthonormal basis. N⃗
is a unit vector pointing towards the center of the lo-
cally osculating circle, i.e. in the direction the curve is
curved. The vector T⃗ ′(s) = κ(s)N⃗(s), with the magni-
tude being the scalar curvature κ(s) =∥ x⃗ ′′(s) ∥, is then
called the curvature vector. Example of Frenet-Serret
frame on a spatial curve is given in Fig. 6(a). Frenet-
Serret frame can change orientation abruptly and is not
defined when curve is locally straight (x⃗ ′′(s) = 0).

The parallel transport frame (Bishop, 1975), is the
frame obtained by parallel transport in the normal bun-
dle of the curve. It can be obtained from any orthonor-
mal basis {E⃗1(0), E⃗2(0)} spanning the plane orthogonal
to the tangent T⃗ (0) at the initial point x⃗(0), by parallel
transporting it along the curve. The following equation

defines such a frame:
T⃗ ′(s)
E⃗1
′
(s)

E⃗2
′
(s)

 =
 0 k1(s) k2(s)
−k1(s) 0 0
−k2(s) 0 0




T⃗ (s)
E⃗1(s)
E⃗2(s)

 .
(3)

E⃗1
′

and E⃗2
′

depend only on T⃗ and are parallel to it,
hence are well defined everywhere on a regular spa-
tial curve, regardless of curvature. Example is given
in Fig. 6(b). Such frame is smoothly varying and not
affected by the underlying torsion.

We are interested in representing the curvature vector
in the parallel transport frame:

T⃗ ′(s) = κ(s)N⃗(s) = k1(s)E⃗1(s) + k2(s)E⃗2(s). (4)

Thus, k1 and k2 are the components of the curvature
vector with respect to basis {E⃗1, E⃗2} and every spatial
curve is uniquely represented in the (k1, k2) space up
to a rotation. Indeed, this introduces a natural exten-
sion to 3D of the notion of the oriented or signed curva-
ture restricted to 2D plane curves. Such a representation
avoids the computation of torsion (which requires third-
order derivatives), hence we only require curves to be of
class C2, which makes it more stable and robust to the
level of noise on the extracted curve.

3.4.2. Bends and landmarks detection
Bends are curved parts of the centerline and are sepa-

rated by a local curvature minimum at their ends. How-
ever, the total number of the curvature extremums varies
across population and also depends on the scale and on
the extent of ICA visible in the image. To avoid false
positive detections due to consecutive curvature mini-
mums forming the same anatomical bend, we will make
use of curvature vector expressed in the parallel trans-
port frame. The main idea is to use the property that the
curvature vector changes orientation at the bend transi-
tions, while E⃗1 and E⃗2 of the parallel transport frame
remain stable along the curve (Fig. 6(c)). To detect the
bend transitions, we then use the curve representation
in the above defined (k1, k2) space. Thus, the change
of bends between two centerline points corresponding
to local curvature maximums is expected to produce a
wide angle (θ > 90◦) between their vectors. On the
other hand, if the angle between them is small (θ < 45◦),
the two curvature maximums are expected to belong to
the same bend (Fig. 8(a)).

We argue that this is a more robust approach to bend
subdivision than the one based on observing the tor-
sion and curvature peaks along the centerline, presented
by Piccinelli et al. (2011). The sensitivity of the torsion
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(a) (b)

(c)

Figure 6: Centerline spatial curve with: (a) Frenet-Serret frame with
normal N⃗ (green) and binormal B⃗ (purple) vectors. (b) Parallel trans-
port frame with E⃗1 and E⃗2 (red and blue). (c) Normal vector N⃗ in the
region of bend transition changes the orientation with respect to E⃗1
and E⃗2.

profile to the amount of noise on the centerline makes
it difficult to select the level of centerline smoothing, as
the level appropriate for one subject is not necessarily
appropriate for the others. The proposed representation
in (k1, k2) space is a more stable approach as the an-
gle between curvature vectors of two centerline points
corresponds to the amount (integral) of torsion between
them. Detecting bend transitions with a set of angle
thresholds was able to consistently identify the corre-
sponding bends across subjects. This is demonstrated
in Fig. 7, where the results of the two approaches are
compared.

The landmark that will serve as a reference point to
identify all four anatomical bends is the one in the mid-
dle, marking the interface between the anterior and the
posterior bend. It is identified by combining the cur-
vature information with the coronal coordinate of the
centerline (Fig. 8(b)). As the anterior bend is anatomi-
cally positioned at the front, starting from the position
of maximum of the coronal coordinate of the centerline
and moving against the blood flow we search for the
two neighboring curvature maximum points that have
θ > αant-post, where αant-post is a threshold parameter.

(a) (b) (c)

(d) (e) (f)

Figure 7: Subdivision of carotid siphon into bends. (a-c) Bend subdi-
vision using the method of Piccinelli et al. (2011) with the same level
of Laplacian smoothing of the centerlines. The scale appropriate for
case (a), is to small for case (b) and too large for case (c). (e-f) The
four bends detected on the same subjects using the proposed method,
with fixed, small level of centerline smoothing.

The point of curvature minimum between the two such
maximums is then the interface landmark.

From the anterior-posterior interface landmark, and
moving along the blood flow, we identify the anterior
and the superior bends by searching for their interface
landmark point as curvature minimum where the two
surrounding points of curvature maximums have θ >
αsup-ant. Similarly, moving opposite to the blood flow we
identify the posterior-inferior interface landmark with
αpost-inf. Subsequently, the end of the inferior bend and
ROI is found with αinf-end. The threshold parameters
were fixed to αant-post = 60◦, αsup-ant = αpost-inf = 45◦,
and αinf-end = 110◦ after observing θ values appearing
in a subset of our data.

Once the bends are detected, we estimate their central
landmarks. We model the central landmark to corre-
spond to the center of the curved segment of the bend at
a scale where its centerline has only one curvature max-
imum. Thus, if a bend is initially composed of multiple
curvature peaks we observe the bend at a larger scale.
This is achieved by convolving the centerline curve of
the bend with a Gaussian function, as the standard de-
viation of the Gaussian increases. Such curve evolu-
tion is repeated until only one curvature maximum re-
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Figure 8: Bends and landmarks detection: (a) (k1, k2) space of the centerline. Numbers denote the curvature peaks sequentially starting from
ICA-TB. Between points 3 and 4 (θ1 ≈ 120◦) there is a transition of bends. Points 4 and 5 (θ2 ≈ 20◦) belong to the same bend (posterior). (b)
Coronal coordinate and the curvature of the centerline. The global coronal coordinate maximum is denoted with vertical blue line. The interface
landmarks between the four bends are denoted with vertical black lines. (c) Estimation of central segment (bounded with two vertical magenta
lines) and central landmark (vertical black line) of the posterior bend, using scale space. (d) The four bends with their central segments (in more
saturated color: green, red, yellow) and central landmarks (black).

mains. Then, the central segment is defined as the re-
gion around the curvature maximum, delimited on both
sides by the mean of the curvature values at the maxi-
mum and at the corresponding end. The central land-
mark is taken as the midpoint of the central segment
(Fig. 8(c),(d)).

4. Geometric quantification

Having identified the bends and the landmarks of the
carotid siphon, we are now able to compute a set of lo-
cal and global features that quantify its geometry. As
the shape is defined by the object geometry that is in-
variant under similarity transformation (translation, ro-
tation, and uniform scaling) (Kendall et al., 1999), the
proposed set of features is accordingly made invariant
under this transformation. We compute the following
set of geometric features.

4.1. Bend lengths and average vessel radius

Lengths of each of the four bends are presented as
percentages of the region of interest occupied by each of
the bends, obtained from their normalized arc lengths.

Vessel cross-section area is more related to hemody-
namic properties than the radius of the maximally in-
scribed sphere (Boskamp et al., 2004). Thus, we de-
fine as local vessel radius, the radius of a circle hav-
ing the same cross-section area. Along the centerline
of the bend, perpendicular cutting planes are automati-
cally positioned to obtain the vessel cross-sections from
the segmented mesh, and the circle equivalent radius is

computed. However, if the aspect ratio of minimal over
maximal cross-section diameter is below certain thresh-
old (the value of 0.75 is chosen after visual observation),
the section is considered to cross an aneurysm or a ves-
sel bifurcation, the cross-section is ignored and its di-
ameter value is linearly interpolated from its neighbors.

4.2. Osculating planes

For the bends that are observed to be quasi-planar (in-
ferior, posterior, anterior), their osculating planes are fit-
ted to the points forming the central segment of each
bend using least squares fit. The plane normal vector
defined by its sagittal, axial and coronal-components is
then used as a feature.

4.3. Change of osculating planes

The bends forming the siphon are concatenated in a
non-planar way and the osculating planes change. In
general, it has been shown that non-planar connection of
double-bend geometries influences the hemodynamics,
especially the mixing and swirling of blood flow (Lee
et al., 2008a). Thus, we quantify this change of osculat-
ing planes of the siphon with the following values:

• Angles between all pairs of osculating plane nor-
mal vectors n⃗i computed directly as: arccos(n⃗i ·
n⃗ j), i , j.

• Directed angles between osculating plane normal
vectors of consecutive bends, computed after par-
allel transporting one to another on the normal bun-
dle of the curve.
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• Two directed angles describing the ouf-of-plane
rotation (OPR) of two consecutive bends (proxi-
mal and distal): inferior and posterior; posterior
and anterior. One (OPR1) corresponds to the rota-
tion around the axis lying in the plane of the prox-
imal bend while being orthogonal to the centerline
tangent at the transition landmark between the two
bends (Fig. 9(a)). The other (OPR2) corresponds
to the rotation around the axis defined by the cen-
terline tangent at the transition landmark between
the two bends (Fig. 9(b)).

(a) OPR1 (b) OPR2

Figure 9: Illustration of the measured change of osculating planes
between the posterior and the anterior bend. Each angle (between
blue and red vectors) measures the rotation around the corresponding
axis (magenta).

4.4. Bending radii
The points of the central segment of each planar bend

are fitted with a circle using Gauss-Newton method for
non-linear least squares optimization (Fig. 10). Radius
of the circle divided by the average vessel diameter of
the corresponding bend is then used.

Figure 10: Circles (in black) fitted to the central segments of the ante-
rior and the posterior bends.

4.5. Global features

Global features are computed from the region of in-
terest starting from the terminal bifurcation of ICA un-
til the most proximal landmark (center of the inferior
bend). We consider five global features:

Tortuosity Defined as the relative increment in the
length of a curve deviating from a rectilinear line,
tortuosity χ is computed as (Piccinelli et al., 2009)

χ =
L
d
− 1, (5)

where L is the total arc length of the centerline
under analysis and d is the Euclidean distance be-
tween its endpoints.

Bending and twisting energy The energy required to
bend and twist a straight line into its curved shape.
It corresponds to the average value of the square
curvature κ and torsion τ, respectively, over the to-
tal arc length L of the centerline under analysis.
Bending energy (BE) and twisting energy (TE) are
defined as (Meng et al., 2008b):

BE = L2
∫ 1

0
κ2(w)dw; TE = L2

∫ 1

0
τ2(w)dw,

(6)
The L2 factor guarantees scale invariance.

Curvature ratio and torsion ratio Dimensionless ra-
tios of vessel radius with curvature and torsion
radii form part of the Dean and Germano numbers
that characterize flows in curved tubes (Formaggia
et al., 2009). Thus, we define mean squared cur-
vature ratio (CR) and mean squared torsion ratio
(TR) as:

CR =
∫ 1

0
R2(w)κ2(w)dw;

TR =
∫ 1

0
R2(w)τ2(w)dw, (7)

where, R, κ and τ are local vessel radius, curvature
and torsion, respectively.

5. Shape similarity metric

In addition to geometric quantification, we charac-
terize the variability of carotid siphon shapes using the
framework of computational anatomy (Grenander and
Miller, 1998). There, shape variations are modeled by
diffeomorphisms (differentiable transformations with
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differentiable inverse). One of the proposed paradigms
for diffeomorphic registration is the large deformation
diffeomorphic metric mapping (LDDMM) (Beg et al.,
2005), which apart from providing correspondences be-
tween shapes defines a metric in shape space.

To establish the shape similarity distance mea-
sure between carotid siphons, we use the large de-
formation diffeomorphic metric curve mapping (LD-
DMCM) (Glaunes et al., 2008), between each pair of
their centerline curves. The registration of two spatial
curves C and S is performed by searching for a diffeo-
morphism φ, which matches the given curves: φ(C) =
S , taken as the end point t = 1 of a flow of diffeomor-
phisms ϕt modeled by a time-dependent velocity vector
field vt : Rd → Rd as

∂ϕt

∂t
= vt(ϕt); ϕ0(x) = x. (8)

The distance between the two curves in the shape
space, D(C,S), is then defined by the length of the short-
est diffeomorphism flow matching them:

D(C, S ) = inf ρ(ϕt), when ϕ0(C) = C, ϕ1(C) = S .
(9)

The length is defined as the deformation cost function

ρ(ϕt) =
(∫ 1

0
||vt ||Vdt

) 1
2

, (10)

where the space V is a reproducing kernel Hilbert space
(RKHS) of the smooth velocity fields with reproducing
kernel being the Gaussian function with standard devia-
tion σV , which determines the smoothness of the defor-
mation.

The optimal transformation φ = ϕ1 is then computed
by minimizing the energy functional

JC,S (ϕt) = γρ(ϕt)2 + E(ϕ1(C), S ), (11)

where E is a curve matching term and γ is a parame-
ter of regularization weight. The matching term defined
in Glaunes et al. (2008) was

Ecr(ϕ1(C), S ) = ||µϕ1(C) − µS ||2W∗ , (12)

where µC is a linear functional that embeds the curve
C in a RKHS W∗ of currents, enabling comparison
of curves without assuming point correspondences be-
tween them. The reproducing kernel is defined by the
Gaussian function with standard deviation σW , repre-
senting a spatial scale of currents, and determines the
scale of geometric details of curves that are taken into

account. σW was set to a small value of 2 mm.
We extend the matching term by landmark matching

of our previously (subsection 3.4.2) extracted N = 7
landmarks (x⃗n, y⃗n), n = 1, . . . ,N. This assures anatom-
ically valid matching as the anatomical landmarks are
required to correspond. We apply inexact landmark
matching (Joshi and Miller, 2000) with normalized Eu-
clidean metric, assuming independency between the
landmarks

Elm(ϕ1(x⃗), y⃗) =
N∑

n=1

||y⃗n − ϕ1(x⃗n)||2
σ2

n
, (13)

where each landmark n has σn associated, which repre-
sents the expected inaccuracy in its localization.

Thus, the final energy term that we minimize is

JC,S ,x⃗,⃗y(ϕt) = γρ(ϕt)2 + γcrEcr(ϕ1(C), S )
+ γlmElm(ϕ1(x⃗), y⃗), (14)

where γ, γcr, and γlm are weights of the regularization,
curve matching and landmark matching terms, respec-
tively. As the Ecr and Elm matching terms are not sym-
metric to the choice of source and target curves, neither
is the resulting pair-wise distance. To symmetrize it, we
take the distance to be the mean value from minimizing
JC,S and JS ,C:

D(C, S ) =
1
2

(D(C, S ) + D(S ,C)). (15)

Before the start of the LDDMCM registration, the
two curves are registered under the similarity transfor-
mation as any variability described by this transforma-
tion is not considered as difference in shape. The impor-
tance of adding the landmark matching term is demon-
strated in Fig. 11. Although the transformed centerlines
are similar, the registration without using the landmarks
does not provide correct anatomical correspondences of
the bends and underestimates the geodesic distance in
shape space, compared to the one that does match the
landmarks.

6. Evaluation methodology

In this section, the methodology applied for eval-
uating the elements of the geometric characterization
pipeline is presented.

6.1. ICA classification performance

To evaluate the success of ICA-TB identification, 5-
fold cross-validation (CV) was repeated 10 times and
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(a) D = ρ(ϕt) = 5.7 (b) D = ρ(ϕt) = 6.8

Figure 11: Diffeomorphic registration of source centerline (blue) to
target centerline (red), with the registered centerline (green) and esti-
mated distance D in shape space: (a) without (E = Ecr) and (b) with
landmark matching term (E = Ecr + Elm).

the estimated accuracy of correct classification was
taken as the average CV success rate for all repetitions.
To provide a better understanding of which are the most
discriminating bifurcation features, we performed fea-
ture selection as a sequential forward selection (SFS).
Starting with an empty set, at each forward (inclusion)
step, the feature added to the feature subset is the one
that maximizes the cross-validation (CV) classification
rate.

6.2. Landmark detection

As the later geometric characterization is based on the
landmarks, their detection has been extensively evalu-
ated both qualitatively and quantitatively.

Qualitative evaluation. First, the carotid siphons were
visually inspected to check whether they have been been
partitioned into the four bends and that none of them
were merged or split. Second, to evaluate the stabil-
ity of the thresholds chosen for the four bends of the
model, we displayed the probability densities of angles
θ in (k1, k2) space (Fig. 8(a)) between curvature maxi-
mums that belonged to the true and false transitions.

Quantitative evaluation. The landmarks from the four-
bend model attempt to reproduce the human intuition of
where are the corresponding points representing bend
transitions and their centers. As the model is just an
approximation of objects having much larger anatom-
ical variability, these points do not necessarily coin-
cide with the curvature properties like the maximum

and minimum. Thus, we considered expert observer
as the best reference for identifying these correspond-
ing points along the siphon. The reference landmark
positions were obtained as the average across multiple
observers of the manually placed ones. To evaluate the
accuracy of the automatically determined landmarks we
then computed:

• The limits of agreement of the automatically de-
termined landmarks with the reference, which rep-
resent the 95% confidence interval of the differ-
ences (Bland and Altman, 1986) and are expressed
as bias and standard deviation σloa.

• The standard deviation of the inter-observer vari-
ability σo, computed using one-way analysis of
variance (ANOVA) (Carstensen et al., 2008).

• The variability index I, defined as the ratio of the
above two standard deviations:

I =
σloa

σo
. (16)

If the value of this index I < 1, the landmarks from
the automated method deviate from the reference
less than the manually placed landmarks vary be-
tween observers.

6.3. Geometric quantification

The values of the computed geometric features (sec-
tion 4) depend on the estimated landmark positions.
Thus, we compared the values of features computed
from automatically determined landmarks to the ones
obtained with manually placed landmarks. Reference is
taken to be the average of the values obtained from in-
dividual landmarkings by each observer. We then com-
puted for each feature the variability index I (Eq. 16)
and the normalized mean error computed as absolute er-
ror divided by the population range of values.

6.4. Shape similarity metric

The pairwise shape similarities also depend on the
estimated landmark positions. We take the reference
to be the shape distances obtained using the reference
landmark positions and enforcing the exact landmark
matching during the registration process. Exact land-
mark matching is enforced by setting a high value to the
weight γlm in Eq. 14. The distances based on automated
landmarking were then computed with three different
options for the landmark matching terms: no landmark
matching, exact landmark matching, and the proposed
inexact landmark matching. The limits of agreement
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with the reference for these three variants are computed
and compared. In addition, we evaluated how different
choices of the parameter σV , which defines the smooth-
ness of the deformation field, affect the obtained dis-
tances and the matching residuals (Eq. 11).

6.5. Carotid siphon shape classes
To evaluate and compare the characterizations based

on the proposed geometric features and LDDMCM, two
clinicians labeled the class of siphon shape following
the classification proposed by Krayenbuehl et al. (1982).
Such classification has been used in evaluating the vas-
cular accessibility between the guide-catheter and the
lesion (Kim et al., 2008). Essentially, there are four
shape classes: U, C, V and S (Fig. 12), with variation
being mainly in the part of the anterior and the poste-
rior bend. We then expect that the siphons characterized
by the two proposed schemes will cluster by classes i.e.
the siphons belonging to the same class will have simi-
lar geometric features and small LDDMCM distance to
each other.

(a) U-type (b) C-type

(c) V-type (d) S-type

Figure 12: Examples of carotid siphon shape classes.

The following steps were then performed. First,
we applied dimensionality reduction to map all the
carotid siphons to an Euclidean submanifold. Princi-
pal Geodesic Analysis (PGA) (Fletcher et al., 2004) is
applied on the geometric features as they are composed
of a mixture of features in R+ (radii and lengths), SO(2)
(angles), and S2 (normal vectors). Each normal vector is
treated as a single feature, having two degrees of free-
dom. Similarly, for LDDMCM, classical multidimen-
sional scaling (CMDS) (Pekalska and Duin, 2005) is

applied. We performed two dimensionality reductions.
One to 2D, for the purpose of visualizing and qualita-
tively evaluating the achieved clustering. The other, to a
smallest dimension still preserving the 99% of the total
data variance, for the purpose of quantitative evaluation
as a classification success rate of a linear classifier. In
the obtained submanifold, we trained a classifier using
linear discriminant analysis (LDA) and leave-one-out
cross-validation classification rate is reported as a mea-
sure of how well separated the four classes are. Finally,
we looked at the LDDMCM classification performance
for different choices of σV while for the characteriza-
tion based on geometric features we performed SFS of
features to identify the most relevant ones.

7. Results

The geometric characterization pipeline was retro-
spectively applied to 96 images acquired with 3DRA,
from 86 patients (age range: 33 − 76, mean age: 53
years, 74% women). Contrast was injected to enhance
the vessels comprising anterior cerebral circulation of
either left (43) or right (53) hemisphere (10 patients
had both sides imaged). Acquisitions were performed
with an angiographic unit: Allura Xper FD20 (Philips
Healthcare, Best, The Netherlands). On a dedicated
workstation, 3D images were reconstructed with a 2563

matrix having a voxel size of 0.29 × 0.29 × 0.29 (mm).
All images were successfully segmented and had their
vascular tree centerlines and topology extracted.

7.1. ICA classification performance

From all 96 vascular trees, the feature vectors of 297
bifurcations along ICA were manually labeled as “ter-
minal” (96) or “non-terminal” (201), and supplied to
SVM classifier for training and cross-validation (CV)
(Fig. 13). Feature selection revealed that the two fea-
tures that contributed the most to the ICA-TB discrim-
ination were: ratio of mean radii between the smaller
and the larger daughter branches and axial component
of the smaller daughter branch vector. At peak CV
rate (6 selected features) ICA-TB was misclassified in
only one case (99% success) rate, producing one false
positive and zero false negatives (99.5% specificity and
100% sensitivity). The false positive sample was the
only example available of a bifurcation of ICA with a
tentorial marginal branch, hence during its testing none
were present in the training data. The results show that
the chosen features describe adequately the bifurcation.
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Figure 13: Identification of ICA-TB: Cross-validation (CV) classifi-
cation rates for sequential forward selection of features.

7.2. Landmark detection

Qualitative evaluation. Detection of landmarks for par-
titioning the carotid siphon into bends failed in three
cases (97% success rate) (Fig. 14). Failure occurred
mostly when the transition between the posterior and
the inferior bend was missed due to small angle between
vectors in (k1, k2) space (θ < αpost-inf = 45◦, Fig. 14(d)).

(a) (b)

(c) (d)

Figure 14: Automated landmarking:(a-c) Examples of successful
cases. (d) Example of a case where the posterior and the inferior bend
were incorrectly detected as one (θpost-inf = 40◦).

Evaluation of threshold stability is shown in Fig. 15.
Of the four thresholds, the αant-post, αinf-end are the more
stable ones, as they separate two distributions tightly
grouped around their means. We can observe that any
choice of αant-post in the range of [40o − 80o] would pro-

duce the same results. Choice of αpost-inf and αant-sup
is more critical but given that they were evaluated on
a large number of cases, a good generalization is ex-
pected.
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Figure 15: Distribution of angles in (k1, k2) space that present bend
transition (BT) and non-bend transition (No-BT), in a form of a box-
plot and histogram. (a) anterior-superior, (b) anterior-posterior, (c)
posterior-inferior, (d) inferior-end.

Quantitative evaluation. Three observers manually
placed the landmarks on sequentially chosen subset of
50 cases. The results are shown in Fig. 16. The tran-
sition between the superior and the anterior bend (L1)
has the largest localization error in both bias and stan-
dard deviation. However, this is the location with the
largest inter-observer variability as well. For other land-
marks, either the bias is not statistically significant or
the variability is within 50% of the inter-observer one.
The central landmarks (L2, L4, L6) are particularly well
detected with no significant bias and the deviation from
the reference being below the inter-observer one for the
posterior and the inferior bends.
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Figure 16: (a) Limits of agreement between automated landmark-
ing and the reference. Bias is denoted with a marker and 95% con-
fidence interval, while the bars correspond to 95% limits of agree-
ment (±2σloa). Agreements are compared with inter-observer lim-
its of agreement for the manual measurements (b) Variability index
for each landmark. Landmarks are ordered from distal to proximal:
superior-anterior (L1), central anterior (L2), anterior-posterior (L3),
central posterior (L4), posterior-inferior (L5) and central inferior (L6).

7.3. Geometric quantification

The evaluation results for the total set of geometric
features is shown in Fig. 17. We can observe that all
the features have I < 1.8 and normalized mean abso-
lute error below 8% with more than half of them having
I < 1.3 and error less than 3%. Thus, we can assume
that landmark localization is sufficiently accurate not to
affect the computed geometric features.

7.4. Shape similarity metric

For the registrations using inexact landmark match-
ing, previously evaluated σloa (Fig. 16(a)) of each land-
mark’s limits of agreement are used to normalize cor-
responding Euclidean distances (σn = σ

loa
n ) in Eq. 13.

Thus, the larger the landmark’s discrepancy from the
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Figure 17: Boxplot for geometric features, showing the distribution
of: (a) variability index and (b) normalized mean error. Boxes span
the lower (higher) quartiles and whiskers extend up to 1.5 the inter-
quartile range.

reference, the smaller is its influence during the regis-
tration.

The parameters γcr and γ were experimentally set to
γcr = 1 and γ = 0.1, for all registrations. Observing the
effect of the parameter σV on the registration results,
for large σV (> 6 mm), due to strong smoothness con-
straint on the deformation, the final matching precision
deteriorates. At such scales, the deformation is not ac-
counting for the details that we consider to be part of
the difference in geometry as opposed to noise. Small
σV (< 1 mm), allows highly irregular speed fields and
nearby regions start to move independently. The ob-
tained distance is not representative of the one in the
shape space and the registration optimization is likely to
end in a local minimum. The analysis (Fig. 18) confirms
this observation. The values of σV from the range [1, 6]
produce small matching error and the optimal choice de-
pends on a priori assumptions and the final application.
We chose σV = 4.5 mm, which is the scale of the aver-
age vessel diameter. This choice is later reevaluated for
the application to siphon shape classification.

For the inexact landmark matching, to find γlm we
took a small sample of the first 10 cases and used it
as a training set. Then, the sweep search with γlm =

{2−3, . . . , 23} was performed and the value that pro-
duced the best agreement with the reference was used
(γlm = 1).

To compare the results with the three different land-
mark matching terms, the distances based on auto-
mated landmarking were then computed with: no land-
mark matching (γlm = 0), exact landmark matching
(γlm = 100), and the proposed inexact landmark match-
ing (γlm = 1). The limits of agreement with the ref-
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Figure 18: Sensitivity to the parameter σV of: The distance D,
the matching residual E after the registration with inexact landmark
matching (average curves across pair-wise registrations), and the
cross-validation (CV) siphon shape classification rate.

erence for these three variants are shown in Fig. 19.
We can observe: First, that using landmarks is impor-
tant as otherwise the obtained similarity distances are
underestimated. Second, using the proposed inexact
landmark matching showed improvements in terms of
smaller bias and standard deviation compared to enforc-
ing exact landmark matching, since any inaccuracies
in landmark localization influence less the registration
process. The distances obtained with inexact landmark
matching had the variability index I = 1.1, which is
close to the variability obtained with the manual land-
marking.
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Figure 19: Limits of agreements of distances based on automated
landmarking with the reference distances. Results for LDDMCM with
the three types of landmark matching terms are shown: None, exact
and inexact.

7.5. Carotid siphon shape classes
As many siphons had ambiguous shape, only the

ones where both clinicians agreed on the shape class
were used (43 cases). The first step in the evalua-
tion is the dimensionality reduction and we look at the
residual variances as a measure of the obtained statis-
tical fit (Fig. 20(a)). Residual variance is defined as

1−R2, where R is the correlation coefficient between the
pairwise point distances in a subspace and the original
space. We can observe that the items with characteriza-
tion based on the LDDMCM can be better represented
in a low dimension (< 5D) than the ones characterized
by the geometric features. For other dimensionality re-
ductions, both characterizations produce similar resid-
ual variances and the more dimensions used, the better
the statistical fit.

Observing, the items mapped to a 2D Euclidean sub-
manifold (Fig. 20(b)&(c)), LDDMCM appears to pro-
duce more discriminating clusters than the geometric
features. This is confirmed by the classification of la-
beled items mapped to a 12-dimensional submanifold
(where residual variance for both approaches is negli-
gible), as there CVLDDMCM = 84% while CVFeatures =

63%. To further evaluate the importance of using land-
mark matching in the registration process, we computed
the CV rate for the results obtained without the land-
mark matching term: CVLDDMCM no landmarks = 77%,
which produced worse class separability than the pro-
posed method.
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Figure 20: Dimensionality reduction to a submanifold. (a) Compar-
ison of residual variances after dimensionality reduction. (b,c) Items
mapped to a 2D Euclidean submanifold, with labels denoting siphon
shape classes.

LDDMCM classification for different choice of σV

parameter (Fig. 18), shows that the performance is very
stable in the range [3, 5] mm, and still quite stable (77%-
86%) in the entire evaluated range [0.5, 10] mm. The re-
sults of geometric feature selection are shown in Fig. 21.
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Using the feature selection improves the CV rate and the
peak CVFeatures = 77% is reached already with four fea-
tures. The four features in the order of importance were:
tortuosity, normal vector of the anterior bend’s osculat-
ing plane, length of the anterior bend and the bending
radius of the anterior bend. This is in good agreement
with the visually observed variability of shape types,
which is mostly due to the change in the geometry of
the anterior and the posterior bends.

1 3 5 7 9 11 13 15 17 19 21 23

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature subset size

C
V

 (
%

)

Figure 21: Siphon shape classification: Cross-validation (CV) classi-
fication rates for sequential forward selection of geometric features.

8. Discussion and conclusions

We presented a pipeline for extensive geometric char-
acterization of carotid siphon. Starting from angio-
graphic image the pipeline identifies and extracts the
centerline and radius of the ICA. On the extracted cen-
terline we automatically detect anatomical landmarks of
the region of interest corresponding to carotid siphon,
which are prerequisites for the proposed geometric char-
acterization. Landmarks as points of anatomical corre-
spondence are used for computing both: geometric fea-
tures and LDDMCM shape similarity.

The method to identify ICA from a vascular tree by
detecting ICA-TB had a high classification success rate
(99%). Looking at the two most discriminative fea-
tures: ratio of mean radii between the smaller and the
larger daughter branches and axial component of the
smaller branch vector, the classifier learned that ICA-
TB branches into two similarly big vessels as opposed
to a narrow side vessel and also that the smaller branch
vector (corresponding to ACA) is pointing towards the
top of the head.

One of the main elements of the paper was automated
landmark detection as it is essential for later character-
ization. Landmarks were associated to the four bend
model of the carotid siphon. Apart from the superior
bend, the other three bends were modeled as planar. An
alternative would be to split the superior bend into two
smaller quasi-planar bends, but we observed that those

two bends are not consistently present between subjects.
Direct application of the bend detection method by Pic-
cinelli et al. (2011), which uses curvature and torsion
centerline profiles, was not suitable as it does not assure
bend correspondences and the results are sensitive to the
applied centerline smoothing scale. Thus, a more robust
method, based on the curvature vector expressed in the
parallel transport frame is proposed.

Landmarks are essential for geometric features as
they define, in an automated and consistent manner, the
corresponding regions of interest for local and global
features. They are crucial for computing LDDMCM
as they assure anatomically correct registrations. The
validation study showed that the automatically obtained
landmarks are in agreement with the ones selected man-
ually and that they do not affect the obtained geomet-
ric quantities or LDDMCM distances with respect to
manual landmarking. Using automated approach avoids
observer variability and enables high reproducibility
among a set of individuals, which is imperative in per-
forming robust population studies.

The presented set of geometric features were selected
from typical geometric quantities used in the litera-
ture, known to affect hemodynamics. In general, they
should be defined and selected in accordance to the hy-
pothesis one is testing. Characterization based on ge-
ometric features and LDDMCM are two complemen-
tary approaches. The former has the advantage that
any observed associations or variabilities of features are
straightforward to interpret. The later quantifies shape
differences directly hence is more effective in capturing
subtle changes in geometry but its interpretation is more
abstract. Both approaches avoid the need for any point
correspondences, apart from the sparse set of anatomi-
cal landmarks.

The explanatory power of the characterization was
evaluated by observing the discrimination of siphon
shape classes in the submanifold coordinates, seen as
modes of anatomical variation of population. The char-
acterization based on LDDMCM proved better in clas-
sifying the carotid siphon shape classes than the one
based on geometric features. These shape classes al-
ready have direct clinical relevance in selecting the en-
dovascular treatment strategy, but they could be re-
placed by any other clinical condition of interest, e.g.
presence of aneurysm or its rupture status. Then, in-
sights about the relation of the geometry of carotid
siphon with its clinical condition could be obtained and
automatically quantified in a large population.

The proposed methodology has limitations. As we
assume all carotid siphons can be modeled with the
four bends, the landmarking fails when two neighbor-
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ing bends are perceived as one large bend. In our
database, this assumption was rarely violated (3%). In
general, the method could be extended to learn the ge-
ometric properties of the bends, to detect unrealistic
(unprobable) solutions. Regarding the computation of
LDDMCM similarities, the drawback of the registra-
tion metric is that it is not symmetric with respect to
the source and target curves. Thus, the resulting shape
distance was taken as the mean value from the two reg-
istrations. In addition, adding a new case requires reg-
istering it with all the cases from the database. For a
limited size database, like ours, this is not a problem, as
the registration of spatial curves is generally much faster
than the registration of volumetric images. In the case
of larger datasets, a low-dimensional manifold could be
first learned from a set of curves used as a training set.
Then, each new centerline curve would be projected di-
rectly on the manifold, as similarly presented for brain
images in Gerber et al. (2010).

8.1. Conclusions and Outlook
Geometry of carotid siphon has a large variability

across subjects, which makes it a good candidate to be
a potential risk factor for the onset of vascular patholo-
gies on and off the ICA. We have presented a complete
and automated pipeline for geometric characterization
of the carotid siphon. The proposed approach, based
on anatomical landmarks, enables the analysis through
a set of geometric features and LDDMCM shape simi-
larities.

Some elements of the proposed pipeline are new and
represent contributions in themselves. In this sense, the
main contributions of the paper are the following:

• Algorithm for the automated identification of ICA-
TB and its discriminating features.

• Algorithm for the automated detection of vessel
bends based on the curvature vector expressed in
the parallel transport frame and its application to
anatomical landmarking of carotid siphon.

• Definition and computation of geometric quantities
like angles of rotation between osculating planes
of consecutive bends, having a known influence on
hemodynamics.

• The use of LDDMCM similarity metric for ves-
sels and the importance of using the inexact land-
mark matching to obtain anatomically valid defor-
mations.

Although the methodology is tuned to carotid
siphons, it is applicable to other vessels. The classifier

used for the identification of ICA can be extended to
detect more bifurcations for the purpose of anatomical
labeling of the vascular tree and this is currently under
study. The bend identification algorithm and the geo-
metric quantities defined on them are generic and can be
applied to any vessel (e.g. aorta, coronaries or periph-
eral arteries) or tubular structure. However, the number
and the type of bends might not be as consistent along
the population as they are for the carotid siphon. In that
case, classical LDDMCM, without the landmarks, can
be used as a shape similarity metric and the number of
bends can then become a geometric feature in itself.

The presented characterization is the first step in the
pursuit of geometric risk factors of carotid siphon. Iden-
tifying these factors was not the aim of this paper, but
will form part of the future work. In addition, the tech-
niques used here will be extended to a more distal level,
in an effort to characterize the complete Circle of Willis.
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