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Abstract
Batch normalization (batch norm) is often used in
an attempt to stabilize and accelerate training in
deep neural networks. In many cases it indeed de-
creases the number of parameter updates required
to achieve low training error. However, it also
reduces robustness to small adversarial input per-
turbations and noise by double-digit percentages,
as we show on five standard datasets. Further-
more, substituting weight decay for batch norm
is sufficient to nullify the relationship between
adversarial vulnerability and the input dimension.
Our work is consistent with a mean-field analy-
sis that found that batch norm causes exploding
gradients.

1. Introduction
Batch norm is a standard component of modern deep neural
networks, and tends to make the training process less sensi-
tive to the choice of hyperparameters in many cases (Ioffe
& Szegedy, 2015). While ease of training is desirable for
model developers, an important concern among stakeholders
is that of model robustness to plausible, previously unseen
inputs during deployment.

The adversarial examples phenomenon has exposed unstable
predictions across state-of-the-art models (Szegedy et al.,
2014). This has led to a variety of methods that aim to
improve robustness, but doing so effectively remains a chal-
lenge (Athalye et al., 2018; Schott et al., 2019; Hendrycks
& Dietterich, 2019; Jacobsen et al., 2019). We believe that a
prerequisite to developing methods that increase robustness
is an understanding of factors that reduce it.

Approaches for improving robustness often begin with exist-
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Figure 1. Two mini-batches from the “Adversarial Spheres” dataset
(2D), and their representations in a deep linear network with batch
norm at initialization. Mini-batch membership is indicated by
marker fill and class membership by colour. Each layer is projected
to its two principal components. Classes are mixed by Layer 14.

ing neural network architectures—that use batch norm—and
patching them against specific attacks, e.g., through inclu-
sion of adversarial examples during training (Szegedy et al.,
2014; Goodfellow et al., 2015; Kurakin et al., 2017; Mądry
et al., 2018). An implicit assumption is that batch norm
itself does not reduce robustness – an assumption that we
tested empirically and found to be invalid. In the original
work that introduced batch norm, it was suggested that other
forms of regularization can be turned down or disabled when
using it without decreasing standard test accuracy. Robust-
ness, however, is less forgiving: it is strongly impacted by
the disparate mechanisms of various regularizers.

The frequently made observation that adversarial vulnera-
bility can scale with the input dimension (Goodfellow et al.,
2015; Gilmer et al., 2018; Simon-Gabriel et al., 2018) high-
lights the importance of identifying regularizers as more
than merely a way to improve test accuracy. In particular,
batch norm was a confounding factor in Simon-Gabriel et al.
(2018), making the results of their initialization-time anal-
ysis hold after training. By adding `2 regularization and
removing batch norm, we show that there is no inherent
relationship between adversarial vulnerability and the input
dimension.

2. Batch Normalization
We briefly review how batch norm modifies the hidden
layers’ pre-activations h of a neural network. We use the
notation of Yang et al. (2019), where α is the index for a
neuron, l for the layer, and i for a mini-batch of B samples
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from the dataset; Nl denotes the number of neurons in layer
l, W l is the matrix of weights and bl is the vector of biases
that parametrize layer l. The batch mean is defined as µα =
1
B

∑
i hαi, and the variance is σ2

α = 1
B

∑
i (hαi − µα)

2. In
the batch norm procedure, the mean µα is subtracted from
the pre-activation of each unit hlαi (consistent with Ioffe
& Szegedy (2015)), the result is divided by the standard
deviation σα plus a small constant c to prevent division by
zero, then scaled and shifted by the learned parameters γα
and βα, respectively. This is described in Eq. (1), where
a per-unit nonlinearity φ, e.g., ReLU, is applied after the
normalization.

hli =W lφ(h̃l−1i )+ bl, h̃lαi = γα
hαi − µα√
σ2
α + c

+βα (1)

Note that this procedure fixes the first and second moments
of all neurons α equally at initialization. This suppresses
the information contained in these moments. Because batch
norm induces a non-local batch-wise nonlinearity to each
unit α, this loss of information cannot be recovered by the
parameters γα and βα.

To understand how batch normalization is harmful, consider
two mini-batches that differ by only a single example: due
to the induced batch-wise nonlinearity, they will have dif-
ferent representations for each example (Yang et al., 2019).
This difference is further amplified by stacking batch norm
layers. Conversely, batch normalization of intermediate
representations for two different inputs impair the ability to
distinguish high-quality examples (as judged by an “oracle”)
that ought to be classified with a large prediction margin,
from low-quality, i.e., more ambiguous, instances.

We argue that this information loss and inability to maintain
relative distances in the input space reduces adversarial as
well as general robustness. Figure 1 shows a degradation
of class-relevant input distances in a batch-normalized lin-
ear network on a 2D variant of the “Adversarial Spheres”
dataset (Gilmer et al., 2018).1

3. Empirical Result
We first evaluate the robustness (quantified as the drop in
test accuracy under input perturbations) of convolutional
networks, with and without batch norm, that were trained
using standard procedures. The datasets – MNIST, SVHN,
CIFAR-10, and ImageNet – were normalized to zero mean
and unit variance.

As a white-box adversarial attack we use projected gradient
descent (PGD), `∞- and `2-norm variants, for its simplicity
and ability to degrade performance with little perceptible

1We add a ReLU nonlinearity when attempting to learn the
binary classification task posed by Gilmer et al. (2018) in Ap-
pendix D, but the activations in the linear case give us pause.

change to the input (Mądry et al., 2018). We run PGD for
20 iterations, with ε∞ = 0.03 and a step size of ε∞/10
for SVHN, CIFAR-10, and ε∞ = 0.01 for ImageNet. For
PGD-`2 we set ε2 = ε∞

√
d, where d is the input dimension.

We report the test accuracy for additive Gaussian noise of
zero mean and variance 1/4, denoted as “Noise” (Ford et al.,
2019), as well as the full CIFAR-10-C common corruption
benchmark (Hendrycks & Dietterich, 2019) in Appendix C.

We found these methods were sufficient to demonstrate a
considerable disparity in robustness due to batch norm, but
this is not intended as a formal security evaluation. All
uncertainties are the standard error of the mean.2

For the SVHN dataset, models were trained by stochastic
gradient descent (SGD) with momentum 0.9 for 50 epochs,
with a batch size of 128 and initial learning rate of 0.01,
which was dropped by a factor of ten at epochs 25 and 40.
Trials were repeated over five random seeds. We show the
results of this experiment in Table 1, finding that despite
batch norm increasing clean test accuracy by 1.86± 0.05%,
it reduced test accuracy for additive noise by 5.5 ± 0.6%,
for PGD-`∞ by 17± 1%, and for PGD-`2 by 20± 1%.

Table 1. Test accuracies of VGG8 on SVHN.
BN Clean Noise PGD-`∞ PGD-`2
7 92.60± 0.04 83.6± 0.2 27.1± 0.3 22.0± 0.8
3 94.46± 0.02 78.1± 0.6 10± 1 1.6± 0.3

For the CIFAR-10 experiments we trained models with a
similar procedure as for SVHN, but with random 32× 32
crops using four-pixel padding, and horizontal flips.

In the first experiment, a basic comparison with and with-
out batch norm shown in Table 2, we evaluated the best
model in terms of test accuracy after training for 150 epochs
with a fixed learning rate of 0.01. In this case, inclusion of
batch norm reduces the clean generalization gap (difference
between training and test accuracy) by 1.1 ± 0.2%. For
additive noise, test accuracy drops by 6± 1%, and for PGD
perturbations by 17.3±0.7% and 5.9±0.4% for `∞ and `2
variants, respectively. Very similar results, presented in Ta-
ble 3, are obtained on a new test set, CIFAR-10.1 v6 (Recht
et al., 2018): batch norm slightly improves the clean test
accuracy (by 2.0± 0.3%), but leads to a considerable drop
in test accuracy for the cases with additive noise and the two

2Each experiment has a unique uncertainty, hence the number
of decimal places varies.

Table 2. Test accuracies of VGG8 on CIFAR-10.
BN Clean Noise PGD-`∞ PGD-`2
7 87.9± 0.1 78.9± 0.6 52.9± 0.6 65.6± 0.3
3 88.7± 0.1 73± 1 35.7± 0.3 59.7± 0.3
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Table 3. Test accuracies of VGG8 on CIFAR-10.1 (v6).
BN Clean Noise PGD-`∞ PGD-`2
7 75.3± 0.2 66± 1 36± 1 53.4± 0.5
3 77.3± 0.2 60± 2 21.1± 0.8 49.9± 0.2

Table 4. VGG models of increasing depth on CIFAR-10, with and
without batch norm (BN). See text for differences in hyperparame-
ters compared to Table 2.

Model Test Accuracy (%)
L BN Clean Noise PGD-`∞
8 7 89.29± 0.09 81.7± 0.3 55.6± 0.4
8 3 90.49± 0.01 77± 1 40.6± 0.6

11 7 90.4± 0.1 81.5± 0.5 53.7± 0.2
11 3 91.19± 0.06 79.3± 0.6 43.8± 0.5

13 7 91.74± 0.02 77.8± 0.7 40.3± 0.7
13 3 93.0± 0.1 67± 1 28.5± 0.4
16 3 92.8± 0.1 66± 2 28.9± 0.2
19 3 92.65± 0.09 68± 2 30.0± 0.1

PGD variants.

It has been suggested that one of the benefits of batch norm
is that it facilitates training with a larger learning rate (Ioffe
& Szegedy, 2015; Bjorck et al., 2018). We test this from
a robustness perspective in an experiment summarized in
Table 4, where the initial learning rate was increased to
0.1 when batch norm was used. We prolonged training
for up to 350 epochs, and dropped the learning rate by
a factor of ten at epoch 150 and 250 in both cases, which
increases clean test accuracy relative to Table 2. The deepest
model that was trainable using standard He et al. (2015)
initialization without batch norm was VGG13. 3 None of
the deeper models with batch norm recover the robustness
of the most shallow, or same-depth equivalents without
batch norm, nor does the higher learning rate in conjunction
with batch norm improve robustness compared to baselines
trained for the same number of epochs. Additional results
for deeper models on SVHN and CIFAR-10 can be found
in Appendix A.

We evaluated the robustness of pre-trained ImageNet models
from the torchvision.models repository.4 Results
are shown in Table 5, where batch norm improves top-5
accuracy on noise in some cases, but consistently reduces
it by 8.54% to 11.00% (absolute) for PGD. The trends are
the same for top-1 accuracy, only the absolute values were

3For which one of ten random seeds failed to achieve better
than chance accuracy on the training set, while others performed as
expected. We report the first three successful runs for consistency
with the other experiments.

4https://pytorch.org/docs/stable/
torchvision/models.html, v1.1.0.

Table 5. Models from torchvision.models pre-trained on
ImageNet, some with and some without batch norm (BN).

Model Top 5 Test Accuracy (%)
Model BN Clean Noise PGD-`∞

VGG-11 7 88.63 49.16 37.12
VGG-11 3 89.81 49.95 26.12
VGG-13 7 89.25 52.55 29.16
VGG-13 3 90.37 52.12 20.63
VGG-16 7 90.38 60.67 32.81
VGG-16 3 91.52 65.36 21.96
VGG-19 7 90.88 64.86 34.19
VGG-19 3 91.84 68.79 24.49
AlexNet 7 79.07 41.41 39.12

DenseNet121 3 91.97 79.85 34.75
ResNet18 3 88.65 79.62 31.07

smaller; the degradation varies from 2.38% to 4.17%. Given
the discrepancy between noise and PGD for ImageNet, we
conduct a black-box transfer analysis in Appendix A.4.

We suspect that the robustness gap due to batch norm for Im-
ageNet is smaller than for other datasets because all models
are highly vulnerable by default. We believe this gap could
be made larger by training a baseline with greater `2 regular-
ization (Galloway et al., 2018). For computational reasons,
we opt to show this for a simpler dataset in Section 4.

Finally, we explore the role of batch size and depth in Fig-
ure 2. Batch norm limits the maximum trainable depth,
which increases with the batch size, but quickly plateaus as
predicted by Theorem 3.10 of Yang et al. (2019). Robust-
ness decreases with the batch size for depths that maintain a
reasonable test accuracy, at around 25 or fewer layers. This
tension between clean accuracy and robustness as a function
of the batch size is not observed in unnormalized networks.
We show the effect of increasing the number of epochs on
these trends in Appendix A.5.

4. Vulnerability and Input Dimension
A recent work (Simon-Gabriel et al., 2018) analyzes ad-
versarial vulnerability of batch-normalized networks at ini-
tialization time and conjectures based on a scaling analysis
that, under the commonly used He et al. (2015) initialization
scheme, adversarial vulnerability scales as ∼

√
d.

They also show in experiments that independence between
vulnerability and the input dimension can be approximately
recovered through adversarial training by projected gradient
descent (PGD) (Mądry et al., 2018), with a modest trade-
off of clean accuracy. We show that this can be achieved
by simpler means and with little to no trade-off through `2
weight decay, where the regularization constant λ corrects

https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html
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Figure 2. We repeat the experiment of Yang et al. (2019) by train-
ing fully-connected nets of depth L and constant-width ReLU
layers for ten epochs by SGD, and learning rate η = 10−5B for
batch size B on MNIST. The batch norm parameters γ and β
were left as default, momentum was disabled, and c = 10−3.
The dashed line is the theoretical maximum trainable depth as a
function of batch size. Trials averaged over three random seeds.

the loss scaling as the norm of the input increases with d.

We increase the MNIST image width
√
d from 28 to 56,

84, and 112 pixels. The loss L is predicted to grow like√
d for ε-sized attacks by Thm. 4 of Simon-Gabriel et al.

(2018). We confirm that without regularization the loss does
scale roughly as predicted: the predicted values lie between
loss ratios obtained for ε = 0.05 and ε = 0.1 attacks for
most image widths (see Table 4 of Appendix B). Training
with `2 weight decay, however, we obtain adversarial test
accuracy ratios of 0.98±0.01, 0.96±0.04, and 1.00±0.03
and clean accuracy ratios of 0.999± 0.002, 0.996± 0.003,
and 0.987± 0.004 for

√
d of 56, 84, and 112 respectively,

relative to the original
√
d = 28 dataset. A more detailed

explanation and results are provided in Appendix B.

Next, we repeat this experiment with a two-hidden-layer
ReLU MLP, with the number of hidden units equal to the
half the input dimension, and optionally use one hidden
layer with batch norm.5 To evaluate robustness, 100 itera-
tions of BIM-`∞ were used with a step size of 1e-3, and
ε∞ = 0.1. We also report test accuracy with additive Gaus-
sian noise of zero mean and unit variance, the same first two
moments as the clean images.6

5This choice of architecture is mostly arbitrary, the trends were
the same for constant width layers.

6We first apply the noise to the original 28×28 pixel images,
then resize them to preserve the appearance of the noise.

Table 6. Evaluating the robustness of a MLP with and without
batch norm. We observe a 61± 1% reduction in test accuracy due
to batch norm for

√
d = 84 compared to

√
d = 28.

Model Test Accuracy (%)
√
d BN Clean Noise ε = 0.1

28 7 97.95± 0.08 93.0± 0.4 66.7± 0.9
3 97.88± 0.09 76.6± 0.7 22.9± 0.7

56 7 98.19± 0.04 93.8± 0.1 53.2± 0.7
3 98.22± 0.02 79.3± 0.6 8.6± 0.8

84 7 98.27± 0.04 94.3± 0.1 47.6± 0.8
3 98.28± 0.05 80.5± 0.6 6.1± 0.5

Table 7. Evaluating the robustness of a MLP with `2 weight decay
(same λ as for linear model, see Table 11 of Appendix B). Adding
batch norm degrades all accuracies.

Model Test Accuracy (%)
√
d BN Clean Noise ε = 0.1

56 7 97.62± 0.06 95.93± 0.06 87.9± 0.2
3 96.23± 0.03 90.22± 0.18 66.2± 0.8

84 7 96.99± 0.05 95.69± 0.09 87.9± 0.1
3 93.30± 0.09 87.72± 0.11 65.1± 0.5

Despite a difference in clean accuracy of only 0.08±0.05%,
Table 6 shows that for the original image resolution, batch
norm reduced accuracy for noise by 16.4± 0.4%, and for
BIM-`∞ by 43.8± 0.5%. Robustness keeps decreasing as
the image size increases, with the batch-normalized network
having ∼ 40% less robustness to BIM and 13 − 16% less
to noise at all sizes.

We then apply the `2 regularization constants tuned for the
respective input dimensions on the linear model to the ReLU
MLP with no further adjustments. Table 7 shows that by
adding sufficient `2 regularization (λ = 0.01) to recover the
original (

√
d = 28, no BN) accuracy for BIM of ≈ 66%

when using batch norm, we induce a test error increase of
1.69±0.01%, which is substantial on MNIST. Furthermore,
using the same regularization constant without batch norm
increases clean test accuracy by 1.39± 0.04%, and for the
BIM-`∞ perturbation by 21.7± 0.4%.

Following the guidance in the original work on batch
norm (Ioffe & Szegedy, 2015) to the extreme (λ = 0):
to reduce weight decay when using batch norm, accuracy
for the ε∞ = 0.1 perturbation is degraded by 79.3± 0.3%
for
√
d = 56, and 81.2 ± 0.2% for

√
d = 84. In all cases,

using batch norm greatly reduced test accuracy for noisy
and adversarially perturbed inputs, while weight decay in-
creased accuracy for such inputs.
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5. Conclusion
We found that there is no free lunch with batch norm: the ac-
celerated training properties and occasionally higher clean
test accuracy come at the cost of robustness, both to additive
noise and for adversarial perturbations. We have shown that
there is no inherent relationship between the input dimen-
sion and vulnerability. Our results highlight the importance
of identifying the disparate mechanisms of regularization
techniques, especially when concerned about robustness.
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A. Appendix to Empirical Results
This section contains supplementary explanations and results to those of Section 3.

A.1. Why the VGG Architecture?

For SVHN and CIFAR-10 experiments, we selected the VGG family of models as a simple yet contemporary convolutional
architecture whose development occurred independent of batch norm. This makes it suitable for a causal intervention, given
that we want to study the effect of batch norm itself, and not batch norm + other architectural innovations + hyperparameter
tuning. State-of-the-art architectures such as Inception, and ResNet whose development is more intimately linked with batch
norm may be less suitable for this kind of analysis. The superior standard test accuracy of these models is somewhat moot
given a trade-off between standard test accuracy and robustness, demonstrated in this work and elsewhere (Tanay & Griffin,
2016; Galloway et al., 2018; Su et al., 2018; Tsipras et al., 2019). Aside from these reasons, and provision of pre-trained
variants on ImageNet with and without batch norm in torchvision.models for ease of reproducibility, this choice of
architecture is arbitrary.

A.2. Comparison of PGD to BIM

We used the PGD implementation from Ding et al. (2019) with settings as below. The pixel range was set to {±1} for
SVHN, and {±2} for CIFAR-10 and ImageNet:

from advertorch.attacks import LinfPGDAttack
adversary = LinfPGDAttack(net, loss_fn=nn.CrossEntropyLoss(reduction="sum"),

eps=0.03, nb_iter=20, eps_iter=0.003,
rand_init=False, clip_min=-1.0, clip_max=1.0, targeted=False)

We compared PGD using a step size of ε/10 to our own BIM implemenation with a step size of ε/20, for the same number
(20) of iterations. This reduces test accuracy for ε∞ = 0.03 perturbations from 31.3± 0.2% for BIM to 27.1± 0.3% for
PGD for the unnormalized VGG8 network, and from 15± 1% to 10± 1% for the batch-normalized network. The difference
due to batch norm is identical in both cases: 17± 1%. Results were also consistent between PGD and BIM for ImageNet.
We also tried increasing the number of PGD iterations for deeper networks. For VGG16 on CIFAR-10, using 40 iterations of
PGD with a step size of ε∞/20, instead of 20 iterations with ε∞/10, reduced accuracy from 28.9± 0.2% to 28.5± 0.3%, a
difference of only 0.4± 0.5%.

A.3. Additional SVHN and CIFAR-10 Results for Deeper Models

Our first attempt to train VGG models on SVHN with more than 8 layers failed, therefore for a fair comparison we report
the robustness of the deeper models that were only trainable by using batch norm in Table 8. None of these models obtained
much better robustness in terms of PGD-`2, although they did better for PGD-`∞.

Table 8. VGG variants on SVHN with batch norm.
Test Accuracy (%)

L Clean Noise PGD-`∞ PGD-`2

11 95.31± 0.03 80.5± 1 20.2± 0.2 6.1± 0.2

13 95.88± 0.05 77.2± 7 21.7± 0.5 5.4± 0.2

16 94.59± 0.05 78.1± 4 19.2± 0.3 3.0± 0.2

19 95.1± 0.3 78± 1 24.2± 0.6 4.1± 0.4

Fixup initialization was recently proposed to reduce the use of normalization layers in deep residual networks (Zhang et al.,
2019b). As a natural test we compare a WideResNet (28 layers, width factor 10) with Fixup versus the default architecture
with batch norm. Note that the Fixup variant still contains one batch norm layer before the classification layer, but the
number of batch norm layers is still greatly reduced.7

7We used the implementation from https://github.com/valilenk/fixup, but stopped training at 150 epochs for consis-

https://github.com/valilenk/fixup
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Table 9. Accuracies of WideResNet–28–10 on CIFAR-10 and CIFAR-10.1 (v6).

CIFAR-10 CIFAR-10.1

Model Clean Noise PGD-`∞ PGD-`2 Clean Noise

Fixup 94.6± 0.1 69.1± 1.1 20.3± 0.3 9.4± 0.2 87.5± 0.3 67.8± 0.9

BN 95.9± 0.1 57.6± 1.5 14.9± 0.6 8.3± 0.3 89.6± 0.2 58.3± 1.2

We train WideResNets (WRN) with five unique seeds and show their test accuracies in Table 9. Consistent with Recht
et al. (2018), higher clean test accuracy on CIFAR-10, i.e. obtained by the WRN compared to VGG, translated to higher
clean accuracy on CIFAR-10.1. However, these gains were wiped out by moderate Gaussian noise. VGG8 dramatically
outperforms both WideResNet variants subject to noise, achieving 78.9± 0.6 vs. 69.1± 1.1. Unlike for VGG8, the WRN
showed little generalization gap between noisy CIFAR-10 and 10.1 variants: 69.1 ± 1.1 is reasonably compatible with
67.8 ± 0.9, and 57.6 ± 1.5 with 58.3 ± 1.2. The Fixup variant improves accuracy by 11.6 ± 1.9% for noisy CIFAR-10,
9.5± 1.5% for noisy CIFAR-10.1, 5.4± 0.6% for PGD-`∞, and 1.1± 0.4% for PGD-`2.

We believe our work serves as a compelling motivation for Fixup and other techniques that aim to reduce usage of batch
normalization. The role of skip-connections should be isolated in future work since absolute values were consistently lower
for residual networks.

A.4. ImageNet Black-box Transferability Analysis

Table 10. ImageNet validation accuracy for adversarial examples transfered between VGG variants of various depths, indicated by number,
with and without batch norm (“3”, “7”). All adversarial examples were crafted with BIM-`∞ using 10 steps and a step size of 5e-3,
which is higher than for the white-box analysis to improve transferability. The BIM objective was simply misclassification, i.e., it was not
a targeted attack. For efficiency reasons, we select 2048 samples from the validation set. Values along the diagonal in first two columns
for Source = Target indicate white-box accuracy.

Target

11 13 16 19

Acc. Type Source 7 3 7 3 7 3 7 3

Top 1 11 7 1.2 42.4 37.8 42.9 43.8 49.6 47.9 53.8

3 58.8 0.3 58.2 45.0 61.6 54.1 64.4 58.7

Top 5 11 7 11.9 80.4 75.9 80.9 80.3 83.3 81.6 85.1

3 87.9 6.8 86.7 83.7 89.0 85.7 90.4 88.1

The discrepancy between the results in additive noise and for white-box BIM perturbations for ImageNet in Section 3 raises
a natural question: Is gradient masking a factor influencing the success of the white-box results on ImageNet? No, consistent
with the white-box results, when the target is unnormalized but the source is, top 1 accuracy is 10.5%− 16.4% higher, while
top 5 accuracy is 5.3%− 7.5% higher, than vice versa. This can be observed in Table 10 by comparing the diagonals from
lower left to upper right. When targeting an unnormalized model, we reduce top 1 accuracy by 16.5% − 20.4% using a
source that is also unnormalized, compared to a difference of only 2.1%− 4.9% by matching batch normalized networks.
This suggests that the features used by unnormalized networks are more stable than those of batch normalized networks.

Unfortunately, the pre-trained ImageNet models provided by the PyTorch developers do not include hyperparameter settings
or other training details. However, we believe that this speaks to the generality of the results, i.e., that they are not sensitive
to hyperparameters.
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Figure 3. We repeat the experiment of Yang et al. (2019) by training fully-connected models of depth L and constant width (Nl=384) with
ReLU units by SGD, and learning rate η = 10−5B for batch size B on MNIST. We train for 10 and 40 epochs in (a) and (b) respectively.
The batch norm parameters γ and β were left as default, momentum disabled, and c = 1e-3. Each coordinate is first averaged over three
seeds. Diamond shaped artefacts for unnormalized case indicate one of three seeds failed to train – note that we show an equivalent
version of (a) with these outliers removed and additional batch sizes from 5–20 in Figure 2. Best viewed in colour.

A.5. Batch Norm Limits Maximum Trainable Depth and Robustness

In Figure 3 we show that batch norm not only limits the maximum trainable depth, but robustness decreases with the
batch size for depths that maintain test accuracy, at around 25 or fewer layers (in Figure 3(a)). Both clean accuracy and
robustness showed little to no relationship with depth nor batch size in unnormalized networks. A few outliers are observed
for unnormalized networks at large depths and batch size, which could be due to the reduced number of parameter update
steps that result from a higher batch size and fixed number of epochs (Hoffer et al., 2017).

Note that in Figure 3(a) the bottom row—without batch norm—appears lighter than the equivalent plot above, with batch
norm, indicating that unnormalized networks obtain less absolute peak accuracy than the batch normalized network. Given
that the unnormalized networks take longer to converge, we prolong training for 40 total epochs. When they do converge, we
see more configurations that achieve higher clean test accuracy than batch normalized networks in Figure 3(b). Furthermore,
good robustness can be experienced simultaneously with good clean test accuracy in unnormalized networks, whereas the
regimes of good clean accuracy and robustness are still mostly non-overlapping in Figure 3(b).

B. Weight Decay and Input Dimension
Consider a logistic regression model with input x ∈ Rd, labels y ∈ {±1}, parameterized by weights w, and bias b.
Predictions are defined by o = w>x + b and the model can be optimized by stochastic gradient descent (SGD) on the
sigmoid cross entropy loss, which reduces to SGD on (2), where ζ is the softplus loss ζ(z) = log(1 + e−z):

Ex,y∼pdata ζ(y(w
>x+ b)). (2)

We note that w>x+ b is a scaled, signed distance between x and the classification boundary defined by our model. If we
define d(x) as the signed Euclidean distance between x and the boundary, then we have: w>x+ b = ‖w‖2 d(x). Hence,

tency with the VGG8 experiment. Both models had already fit the training set by this point.



Batch Normalization is a Cause of Adversarial Vulnerability

minimizing (2) is equivalent to minimizing

Ex,y∼pdata ζ(‖w‖2 × y d(x)). (3)

We define the scaled softplus loss as
ζ‖w‖2(z) := ζ(‖w‖2 × z) (4)

and note that adding a `2 regularization term in (3), resulting in (5), can be understood as a way of controlling the scaling of
the softplus function:

Ex,y∼pdata ζ‖w‖2(y d(x)) + λ‖w‖2 (5)

(a) w>x+ b (b) y(w>x+ b) (c) ζ(y(w>x+ b)) (d) ζ5(y d(x)) (e) ζ0.5(y d(x)) (f) ζ0.05(y d(x))

Figure 4. (a) For a given weight vector w and bias b, the values of w>x+ b over the training set typically follow a bimodal distribution
(corresponding to the two classes) centered on the classification boundary. (b) Multiplying by the label y allows us to distinguish the
correctly classified data in the positive region from misclassified data in the negative region. (c) We can then attribute a penalty to each
training point by applying the softplus loss to y(w>x+ b). (d) For a small regularization parameter (large ‖w‖2), the misclassified data is
penalized linearly while the correctly classified data is not penalized. (e) A medium regularization parameter (medium ‖w‖2) corresponds
to smoothly blending the margin. (f) For a large regularization parameter (small ‖w‖2), all data points are penalized almost linearly.

In Figures 4(a)-4(c), we develop intuition for the different quantities contained in (2) with respect to a typical binary
classification problem, while Figures 4(d)-4(f) depict the effect of the regularization parameter λ on the scaling of the loss
function.

To test this theory empirically we study a single linear layer on variants of MNIST of increasing input dimension, where the
“core idea” from (Simon-Gabriel et al., 2018) is exact. Clearly, this model is too simple to obtain competitive test accuracy,
but this is a helpful first step that will be subsequently extended to ReLU networks. The model was trained by SGD for 50
epochs with a constant learning rate of 1e-2 and a batch size of 128. In Table 11 we show that increasing the input dimension
by resizing MNIST from 28× 28 to various resolutions with PIL.Image.NEAREST interpolation increases adversarial
vulnerability in terms of accuracy and loss. Furthermore, the “adversarial damage”, which is predicted to grow like

√
d by

Theorem 4 of Simon-Gabriel et al. (2018), falls in between that obtained empirically for ε = 0.05 and ε = 0.1 for all image
widths except for 112, which experiences slightly more damage than anticipated.

Simon-Gabriel et al. (2018) note that independence between vulnerability and the input dimension can be recovered through
adversarial example augmented training by projected gradient descent (PGD), with a small trade-off in terms of standard
test accuracy. We find that the same can be achieved through a much simpler approach: `2 weight decay, with λ chosen
to correct for the loss scaling. This way we recover input dimension invariant vulnerability with little degradation of test
accuracy, e.g., see the ε = 0.1 accuracy ratio of 1.00± 0.03 with `2 for

√
d = 112 in Table 11 compared to 0.10± 0.09

without.

Compared to PGD training, weight decay regularization i) does not have an arbitrary ε hyperparameter that ignores inter-
sample distances, ii) does not prolong training by a multiplicative factor given by the number of steps in the inner loop,
and 3) is less attack-specific. Thus, we do not use adversarially augmented training because we wish to convey a notion of
robustness to unseen attacks and common corruptions. Furthermore, enforcing robustness to ε-perturbations may increase
vulnerability to invariance-based examples, where semantic changes are made to the input thus changing the Oracle label,
but not the classifier’s prediction (Jacobsen et al., 2019). Our models trained with weight decay obtained 12% higher
accuracy (86 vs. 74 correct) compared to batch norm on a small sample of 100 `∞ invariance-based MNIST examples.8 We
make primary use of traditional `p perturbations as they are well studied in the literature and straightforward to compute, but
solely defending against these is not the end goal.

8Invariance based adversarial examples downloaded from https://github.com/ftramer/Excessive-Invariance.

https://github.com/ftramer/Excessive-Invariance
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Table 11. Mitigating the effect of the input dimension on adversarial vulnerability by correcting the margin enforced by the loss function.
Regularization constant λ is for `2 weight decay. Consistent with Simon-Gabriel et al. (2018), we use ε-FGSM perturbations, the optimal
`∞ attack for a linear model. Values in rows with

√
d > 28 are ratios of entry (accuracy or loss) wrt the

√
d = 28 baseline. “Pred.” is the

predicted increase of the loss L due to a small ε-perturbation using Thm. 4 of Simon-Gabriel et al..

Model Relative Test Accuracy (%) Relative Loss
√
d λ Clean ε = 0.1 Clean ε = 0.05 ε = 0.1 Pred.

28 – 92.4± 0.1% 53.9± 0.3% 0.268± 0.001 0.646± 0.001 1.410± 0.004 -

56 – 1.001± 0.001 0.33± 0.03 1.011± 0.007 1.802± 0.006 2.449± 0.009 2

56 0.01 0.999± 0.002 0.98± 0.01 1.010± 0.007 1.010± 0.006 1.01± 0.01 -

84 – 0.998± 0.002 0.10± 0.09 1.06± 0.01 2.84± 0.02 4.15± 0.02 3

84 0.0225 0.996± 0.003 0.96± 0.04 1.05± 0.02 1.06± 0.03 1.06± 0.03 -

112 – 0.992± 0.004 0.1± 0.2 1.18± 0.03 4.15± 0.02 5.96± 0.02 4

112 0.05 0.987± 0.004 1.00± 0.03 1.14± 0.04 1.08± 0.03 1.04± 0.03 -

Table 12. Two-hidden-layer ReLU MLP, with and without batch norm (BN), trained for 50 epochs and repeated over five random seeds.
Values in rows with

√
d > 28 are ratios wrt the

√
d = 28 baseline (accuracy or loss). There is a considerable increase of the loss, or

similarly, a degradation of robustness in terms of accuracy, due to batch norm. The discrepancy for BIM-`∞ with ε = 0.1 for
√
d = 84

with batch norm represents a 61± 1% degradation in absolute accuracy compared to the baseline.

Model Relative Test Accuracy (%) Relative Loss
√
d BN Clean Noise ε = 0.1 Clean ε = 0.05 ε = 0.1

28 7 97.95± 0.08 93.0± 0.4 66.7± 0.9 0.0669± 0.0008 0.285± 0.003 1.06± 0.02

28 3 0.9992± 0.0012 0.82± 0.01 0.34± 0.03 1.06± 0.04 2.20± 0.03 3.18± 0.03

56 7 1.0025± 0.0009 1.009± 0.004 0.80± 0.02 0.87± 0.02 1.27± 0.01 1.68± 0.03

56 3 1.0027± 0.0008 0.853± 0.008 0.13± 0.09 0.91± 0.03 3.48± 0.02 5.83± 0.03

84 7 1.0033± 0.0009 1.015± 0.004 0.71± 0.02 0.86± 0.02 1.48± 0.02 2.15± 0.03

84 3 1.0033± 0.0010 0.865± 0.009 0.09± 0.08 0.88± 0.02 4.34± 0.02 7.34± 0.02

A more detailed comparison between adversarial training and weight decay can be found in Galloway et al. (2018). The
scaling of the loss function mechanism of weight decay is complementary to other mechanisms identified in the literature
recently, for instance that it also increases the effective learning rate (van Laarhoven, 2017; Zhang et al., 2019a). Our results
are consistent with these works in that weight decay reduces the generalization gap, even in batch-normalized networks
where it is presumed to have no effect. Given that batch norm is not typically used on the last layer, the loss scaling
mechanism persists in this setting although to a lesser degree.

C. Common Corruption Robustness
We evaluated robustness on the common corruptions and perturbations benchmarks (Hendrycks & Dietterich, 2019).
Common corruptions are 19 types of real-world effects that can be grouped into four categories: “noise”, “blur”, “weather”,
and “digital”. Each corruption has five “severity” or intensity levels. These are applied to the test sets of CIFAR-10 and
ImageNet, denoted CIFAR-10-C and ImageNet-C respectively. When reporting the mean corruption error (mCE), we
average over intensity levels for each corruption, then over all corruptions. We outline the results for two VGG variants and
a WideResNet on CIFAR-10-C, trained from scratch independently over three and five random seeds, respectively. The most
important results are also summarized in Table 13.

For VGG8 batch norm increased the error rate for all noise variants, at every intensity level. The mean generalization gaps
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Table 13. Robustness of three modern convolutional neural network architectures with and without batch norm on the CIFAR-10-C
common corruptions benchmark (Hendrycks & Dietterich, 2019). We use “F” to denote Fixup (Zhang et al., 2019b), as this variant still
had one batch-norm layer. Values were averaged over five intensity levels for each corruption. We report the top five of 19 corruptions by
magnitude of the accuracy gap due to batch norm; see the text for more detail on the corruptions omitted here.

Model Test Accuracy (%)

Variant BN Clean Gaussian Impulse Shot Speckle Contrast

VGG8 7 87.9± 0.1 65.6± 1.2 58.8± 0.8 71.0± 1.2 70.8± 1.2 59.3± 0.8
3 88.7± 0.1 56.4± 1.5 51.2± 0.1 65.4± 1.1 66.3± 1.1 54.9± 1.0

VGG13 7 91.74± 0.02 64.5± 0.8 63.3± 0.3 70.9± 0.4 71.5± 0.5 65.3± 0.6
3 93.0± 0.1 43.6± 1.2 49.7± 0.5 56.8± 0.9 60.4± 0.7 67.7± 0.5

WRN–28–10 F 94.6± 0.1 63.3± 0.9 66.7± 0.9 71.7± 0.7 73.5± 0.6 81.2± 0.7
3 95.9± 0.1 51.2± 2.7 56.0± 2.7 63.0± 2.5 66.6± 2.5 86.0± 0.9

for noise were: Gaussian—9.2± 1.9%, Impulse—7.5±0.8%, Shot—5.6±1.6%, and Speckle—4.5± 1.6%. The next most
impactful corruptions were: Contrast—4.4± 1.3%, Spatter—2.4± 0.7%, JPEG—2.0± 0.4%, and Pixelate—1.3± 0.5%.
Results for the remaining corruptions were a coin toss as to whether batch norm improved or degraded robustness, as
the random error was in the same ballpark as the difference being measured. These were: Weather—Brightness, Frost,
Snow, and Saturate; Blur—Defocus, Gaussian, Glass, Zoom and Motion; and Elastic transformation. Averaging over all
corruptions we get an mCE gap of 1.9± 0.9% due to batch norm, or a loss of accuracy from 72.9± 0.7% to 71.0± 0.6%.

VGG13 results were mostly consistent with VGG8: batch norm increased the error rate for all noise variants, at every
intensity level. Particularly notable, the generalization gap enlarged to 26− 28% for Gaussian noise at severity levels 3,
4, and 5; and 17%+ for Impulse noise at levels 4 and 5. Averaging over all levels, we have gaps for noise variants of:
Gaussian—20.9± 1.4%, Impulse—13.6± 0.6%, Shot—14.1± 1.0%, and Speckle—11.1± 0.8%. Robustness to the other
corruptions seemed to benefit from the slightly higher clean test accuracy of 1.3± 0.1% due to batch norm for VGG13. The
remaining generalization gaps varied from (negative) 0.2± 1.3% for Zoom blur, to 2.9± 0.6% for Pixelate. Overall mCE
was reduced by 2.0± 0.3% for the unnormalized network.

For a WideResNet 28–10 (WRN) using “Fixup” initialization (Zhang et al., 2019b) to reduce the use of batch norm, the mCE
was similarly reduced by 1.6± 0.4%. Unpacking each category, the mean generalization gaps for noise were: Gaussian—
12.1 ± 2.8%, Impulse—10.7 ± 2.9%, Shot—8.7 ± 2.6%, and Speckle—6.9 ± 2.6%. Note that the large uncertainty for
these measurements is due to high variance for the model with batch norm, on average 2.3% versus 0.7% for Fixup. JPEG
compression was next at 4.6± 0.3%.

Interestingly, some corruptions that led to a positive gap for VGG8 showed a negative gap for the WRN, i.e., batch norm
improved accuracy to: Contrast—4.9± 1.1%, Snow—2.8± 0.4%, Spatter—2.3± 0.8%. These were the same corruptions
for which VGG13 lost, or did not improve its robustness when batch norm was removed, hence why we believe these
correlate with standard test accuracy (highest for WRN). Visually, these corruptions appear to preserve texture information.
Conversely, noise is applied in a spatially global way that disproportionately degrades these textures, emphasizing shapes
and edges. It is now well known that modern CNNs trained on standard datasets have a propensity to rely excessively on
texture rather than shape cues (Geirhos et al., 2019; Brendel & Bethge, 2019). The WRN obtains ≈ 0 training error and is in
our view over-fitted; CIFAR-10 is known to be difficult to learn robustly given few samples (Schmidt et al., 2018).

D. Adversarial Spheres
The “Adversarial Spheres” dataset contains points sampled uniformly from the surfaces of two concentric n-dimensional
spheres with radii R = 1 and R = 1.3 respectively, and the classification task is to attribute a given point to the inner or
outer sphere. We consider the case n = 2, that is, datapoints from two concentric circles. This simple problem poses a
challenge to the conventional wisdom regarding batch norm: not only does batch norm harm robustness, it makes training
less stable. In Figure 6 we show that, using the same architecture as in Gilmer et al. (2018), the batch-normalized network is
highly sensitive to the learning rate η. We use SGD instead of Adam to avoid introducing unnecessary complexity, and
especially since SGD has been shown to converge to the maximum-margin solution for linearly separable data (Soudry et al.,
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Figure 5. Two mini-batches from the “Adversarial Spheres” dataset (2D variant), and their representations in a deep linear network
at initialization time (a) with batch norm and (b) without batch norm. Mini-batch membership is indicated by marker fill and class
membership by colour. Each layer is projected to its two principal components. In (b) we scale both components by a factor of 100, as the
dynamic range decreases with depth under default initialization. We observe in (a) that some samples are already overlapping at Layer 2,
and classes are mixed at Layer 14.

(a) (b)

Figure 6. We train the same two-hidden-layer fully connected network of width 1000 units using ReLU activations and a mini-batch size
of 50 on a 2D variant of the “Adversarial Spheres” binary classification problem (Gilmer et al., 2018). Dashed lines denote the model
with batch norm. The batch-normalized model fails to train for a learning rate of η = 0.01, which otherwise converges quickly for the
unnormalized equivalent. We repeat the experiment over five random seeds, shaded regions indicate a 95% confidence interval.

2018). We use a finite dataset of 500 samples from N (0, I) projected onto the circles. The unormalized network achieves
zero training error for η up to 0.1 (not shown), whereas the batch-normalized network is already untrainable at η = 0.01. To
evaluate robustness, we sample 10,000 test points from the same distribution for each class (20k total), and apply noise
drawn from N (0, 0.005× I). We evaluate only the models that could be trained to 100% training accuracy with the smaller
learning rate of η = 0.001. The model with batch norm classifies 94.83% of these points correctly, while the unnormalized
net obtains 96.06%.

E. Qualitative Effect of Batch Normalization
We show a qualitative aspect of batch norm by visualizing the activations of the penultimate hidden layer in a fully-connected
network (a) without and (b) with batch norm over the course of 500 epochs. In the unnormalized network 7(a), all data
points are overlapping at initialization. Over the first ≈ 20 epochs, the points spread further apart (middle plot) and begin to
form clusters. In the final stage (epochs ≈ 300− 500), the clusters become tighter. When we introduce two batch-norm
layers in the network, placing them before the visualized layer, the activation patterns display notable differences, as shown
in Figure 7(b): i) at initialization, all data points are spread out, allowing easier partitioning into clusters and thus facilitating
faster training; ii) the clusters are more stationary, and the stages of cluster formation and tightening are not as strictly
separated; iii) the inter-cluster distance and the clusters themselves are larger, indicating that the decision boundary is more
sensitive to small input variations.
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(a)

(b)

Figure 7. Visualization of activations in a two-unit layer over 500 epochs. Architecture is a fully-connected MLP [(a) (784–392–196–2–
49–10) and (b) (784–392–BN–196–BN–2–49–10)] with ReLU units, mini-batch size 128, constant learning rate 1e-2, and weight decay
λ=1e-3. The plots have a fixed x- and y-axis range of ±10. Plotted are all samples from the MNIST training set, colour-coded by label.
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