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Abstract

The goal of compressed sensing is to learn a structured signal x from a limited
number of noisy linear measurements y ≈ Ax. In traditional compressed sensing,
“structure” is represented by sparsity in some known basis. Inspired by the success
of deep learning in modeling images, recent work starting with [BJPD17] has
instead considered structure to come from a generative model G : Rk → Rn.
We present two results establishing the difficulty of this latter task, showing that
existing bounds are tight.
First, we provide a lower bound matching the [BJPD17] upper bound for com-
pressed sensing from L-Lipschitz generative models G. In particular, there exists
such a function that requires roughly Ω(k logL) linear measurements for sparse
recovery to be possible. This holds even for the more relaxed goal of nonuniform
recovery.
Second, we show that generative models generalize sparsity as a representation of
structure. In particular, we construct a ReLU-based neural network G : R2k →
Rn with O(1) layers and O(kn) activations per layer, such that the range of G
contains all k-sparse vectors.

1 Introduction

In compressed sensing, one would like to learn a structured signal x ∈ Rn from a limited number
of linear measurements y ≈ Ax. This is motivated by two observations: first, there are many situa-
tions where linear measurements are easy, in settings as varied as streaming algorithms, single-pixel
cameras, genetic testing, and MRIs. Second, the unknown signals x being observed are structured
or “compressible”: although x lies in Rn, it would take far fewer than n words to describe x. In such
a situation, one can hope to estimate x well from a number of linear measurements that is closer to
the size of the compressed representation of x than to its ambient dimension n.

In order to do compressed sensing, you need a formal notion of how signals are expected to be
structured. The classic answer is to use sparsity. Given linear measurements1 y = Ax of an arbitrary
vector x ∈ Rn, one can hope to recover an estimate x∗ of x satisfying

‖x− x∗‖ ≤ C min
k-sparse x′

‖x− x′‖ (1)

for some constant C and norm ‖·‖. In this paper, we will focus on the `2 norm and achieving the
guarantee with 3/4 probability. Thus, if x is well-approximated by a k-sparse vector x′, it should be
accurately recovered. Classic results such as [CRT06] show that (1) is achievable when A consists

1The algorithms we discuss can also handle post-measurement noise, where y = Ax + η. We remove this
term for simplicity: this paper focuses on lower bounds, and handling this term could only make things harder.



of m = O(k log n
k ) independent Gaussian linear measurements. This bound is tight, and in fact no

distribution of matrices with fewer rows can achieve this guarantee in either `1 or `2 [DIPW10].

Although compressed sensing has had success, sparsity is a limited notion of structure. Can we learn
a richer model of signal structure from data, and use this to perform recovery? In recent years, deep
convolutional neural networks have had great success in producing rich models for representing
the manifold of images, notably with generative adversarial networks (GANs) [GPAM+14] and
variational autoencoders (VAEs) [KW14]. These methods produce generative modelsG : Rk → Rn
that allow approximate sampling from the distribution of images. So a natural question is whether
these generative models can be used for compressed sensing.

In [BJPD17] it was shown how to use generative models to achieve a guarantee analogous to (1):
for any L-Lipschitz G : Rk → Rn, one can achieve

‖x− x∗‖2 ≤ C min
z′∈Bk(r)

‖x−G(z′)‖2 + δ, (2)

where r, δ > 0 are parameters, Bk(r) denotes the radius-r `2 ball in Rk and Lipschitzness is defined
with respect to the `2-norms, using only m = O(k log Lr

δ ) measurements. Thus, the recovered
vector is almost as good as the nearest point in the range of the generative model, rather than in the
set of k-sparse vectors. We will refer to the problem of achieving the guarantee in (2) as “function-
sparse recovery”.

Our main theorem is that the [BJPD17] result is tight: for any setting of parameters n, k, L, r, δ,
there exists an L-Lipschitz function G : Rk → Rn such that any algorithm achieving (2) with 3/4
probability must have Ω(min(k log Lr

δ , n)) linear measurements. Notably, the additive error δ that
was unnecessary in sparse recovery is necessary for general Lipschitz generative model recovery.

A concurrent paper [LS19] proves a lower bound for a restricted version of (2). They show a lower
bound when the vector that x lies in the image of G and for a particular value of δ. Our results,
in comparison, apply to the most general version of the problem and are proven using a simpler
communication complexity technique.

The second result in this paper is to directly relate the two notions of structure: sparsity and gener-
ative models. We produce a simple Lipschitz neural network Gsp : R2k → Rn, with ReLU acti-
vations, 2 hidden layers, and maximum width O(kn), so that the range of G contains all k-sparse
vectors.

A second result of [BJPD17] is that for ReLU-based neural networks, one can avoid the additive δ
term and achieve a different result from (2):

‖x− x∗‖2 ≤ C min
z′∈Rk

‖x−G(z′)‖2 (3)

using O(kd logW ) measurements, if d is the depth and W is the maximum number of activations
per layer. Applying this result to our sparsity-producing network Gsp implies, with O(k log n)
measurements, recovery achieving the standard sparsity guarantee (1). So the generative-model
representation of structure really is more powerful than sparsity.

2 Proof overview

As described above, this paper contains two results: an Ω(min(k log Lr
δ , n)) lower bound for com-

pressed sensing relative to a Lipschitz generative model, and an O(1)-layer generative model whose
range contains all sparse vectors. These results are orthogonal, and we outline each in turn.

2.1 Lower bound for Lipschitz generative recovery.

Over the last decade, lower bounds for sparse recovery have been studied extensively. The tech-
niques in this paper are most closely related to the techniques used in [DIPW10].

Similar to [DIPW10], our proof is based on communication complexity. We will exhibit an L-
Lipschitz function G and a large finite set Z ⊂ Im(G) ⊂ Bn(R) of points that are well-separated.
Then, given a point x that is picked uniformly at random from Z, we show how to identify it from
Ax using the function-sparse recovery algorithm. This impliesAx also contains a lot of information,
so m must be fairly large.
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Formally, we produce a generative model whose range includes a large, well-separated set:
Theorem 2.1. Given R > 0 satisfying R > 2Lr, there exists an O(L)−Lipschitz function G :
Rk → Rn, and X ⊆ Bk(r) such that

(1) for all x ∈ X , G(x) ∈ {± R√
n
}n

(2) for all x ∈ X , ‖G(x)‖2 ≤ R

(3) for all x, y ∈ X , ‖G(x)−G(y)‖2 ≥
R√
6

(4) log(|X|) = Ω
(
min(k log(LrR )), n

)
Now, suppose we have an algorithm that can perform function-sparse recovery with respect to G
from Theorem 2.1, with approximation factor C, and error δ < R/8 within the radius r ball in
k-dimensions. Set t = Θ(log n), and for any z1, z2, . . . , zt ∈ Z = G(X) take

z = εtz1 + εt−1z2 + εt−1z3 + . . .+ zt

for ε = 1
8(C+1) a small constant. The idea of the proof is the following: given y = Az, we can

recover ẑ such that

‖ẑ − z1‖2 ≤ ‖z − z1‖2 + ‖ẑ − z‖2 + δ ≤ (C + 1) ‖z − z1‖2 + δ < R/8 +R/8 = R/4

and so, because Z has minimum distance R/
√

6, we can exactly recover zt by rounding ẑ to the
nearest element of Z. But then we can repeat the process on (Az − Azt) to find zt−1, then zt−2,
up to z1, and learn t lg |Z| = Ω(tk log(Lr/R)) bits total. Thus Az must contain this many bits of
information; but if the entries of A are rational numbers with poly(n) bounded numerators and (the
same) poly(n) bounded denominator, then each entry of Az can be described in O(t + log n) bits,
so

m ·O(t+ log n) ≥ Ω(tk log(Lr/R))

or m ≥ Ω(k log(Lr/R)).

There are two issues that make the above outline not totally satisfactory, which we only briefly
address how to resolve here. First, the theorem statement makes no supposition on the entries
of A being polynomially bounded. To resolve this, we perturb z with a tiny (polynomially small)
amount of additive Gaussian noise, after which discretizingAz at an even tinier (but still polynomial)
precision has negligible effect on the failure probability. The second issue is that the above outline
requires the algorithm to recover all t vectors, so it only applies if the algorithm succeeds with
1 − 1/t probability rather than constant probability. This is resolved by using a reduction from
the augmented indexing problem, which is a one-way communication problem where Alice has
z1, z2, . . . , zt ∈ Z, Bob has i ∈ [Z] and zi+1, · · · , zn, and Alice must send Bob a message so that
Bob can output zi with 2/3 probability. This still requires Ω(t log |Z|) bits of communication, and
can be solved in O(m(t + log n)) bits of communication by sending Az as above. Formally, our
lower bound states:
Theorem 2.2. Consider any L, r, δ with δ ≤ Lr/4. There exists an L-Lipschitz functionG∗ : Rk →
Rn such that, if A is an algorithm which picks a matrix A ∈ Rm×n, and given Ax returns an x∗
satisfying (2) with probability ≥ 3/4, then m = Ω(min(k log(Lr/δ), n)).

Constructing the set. The above lower bound approach, relies on finding a large, well-separated
set Z as in Theorem 2.1.

We construct this aforementioned set Z within the n-dimensional `2 ball of radius R such that any
two points in the set are at least Ω(R) apart. Furthermore, since we wish to use a function-sparse
recovery algorithm, we describe a function G : Rk → Rn and set the radius R such that G is L-
Lipschitz. In order to get the desired lower bound, the image of G needs to contain a subset of at
least (Lr)Ω(k) points.

First, we construct a mapping as described above from R to Rn/k i.e we need to find (Lr)Ω(k)

points in Bn/k(R) that are mutually far apart. We show that certain binary linear codes over the al-
phabet {±R/

√
n} yield such points that are mutuallyR/

√
3k apart. We construct aO(L)-Lipschitz

mapping of O(
√
Lr) points in the interval [0, r/

√
k] to a subset of these points.
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In order to extend this construction to a mapping from Rk to Rn, we apply the above function in a
coordinate-wise manner. This would result in a mapping with the same Lipschitz parameter. The
points in Rn that are images of these points lie in a ball of radius R but could potentially be R/

√
3k

close. To get around this, we use an error correcting code over a large alphabet to choose a subset of
these points that is large enough and such that they are still mutually R/

√
6 far apart.

2.2 Sparsity-producing generative model.

To produce a generative model whose range consists of all k-sparse vectors, we start by mapping R2

to the set of positive 1-sparse vectors. For any pair of angles θ1, θ2, we can use a constant number of
unbiased ReLUs to produce a neuron that is only active at points whose representation (r, θ) in polar
coordinates has θ ∈ (θ1, θ2). Moreover, because unbiased ReLUs behave linearly, the activation can
be made an arbitrary positive real by scaling r appropriately. By applying this n times in parallel,
we can produce n neurons with disjoint activation ranges, making a network R2 → Rn whose range
contains all 1-sparse vectors with nonnegative coordinates.

By doing this k times and adding up the results, we produce a network R2k → Rn whose range
contains all k-sparse vectors with nonnegative coordinates. To support negative coordinates, we just
extend the k = 1 solution to have two ranges within which it is non-zero: for one range of θ the
output is positive, and for another the output is negative.

This results in the following theorem:

Theorem 2.3. There exists a 2 layer neural network Gsp : R2k → Rn with width O(nk) such that
{x | ‖x‖0 = k} ⊆ Im(G)

3 Lower bound proof

In this section, we prove a lower bound for the sample complexity of function-sparse recovery by
a reduction from a communication game. We show that the communication game can be won by
sending a vector Ax and then performing function-sparse recovery. A lower bound on the commu-
nication complexity of the game implies a lower bound on the number of bits used to represent Ax
if Ax is discretized. We can then use this to lower bound the number of measurements in A.

Since we are dealing in bits in the communication game and the entries of a sparse recovery matrix
can be arbitrary reals, we will need to discretize each measurement. We show first that discretizing
the measurement matrix by rounding does not change the resulting measurement too much and will
allow for our reduction to proceed.

Notation. We use Bk(r) = {x ∈ Rk | ‖x‖2 ≤ r} to denote the k-dimensional ball of radius
r. Given a function g : Ra → Rb, g⊗k : Rak → Rbk denotes a function that the maps a point
(x1, . . . , xak) to (g(x1, . . . , xa), g(xa+1, . . . , x2a), . . . , g(xa(k−1)+1, . . . , xak)). For any function
G : A→ B, we use Im(G) to denote {G(x) | x ∈ A}.

Matrix conditioning. We first show that, without loss of generality, we may assume that the mea-
surement matrix A is well-conditioned. In particular, we may assume that the rows of A are or-
thonormal.

We can multiply A on the left by any invertible matrix to get another measurement matrix with the
same recovery characteristics. If we consider the singular value decomposition A = UΣV ∗, where
U and V are orthonormal and Σ is 0 off the diagonal, this means that we can eliminate U and make
the entries of Σ be either 0 or 1. The result is a matrix consisting of m orthonormal rows.

Discretization. For well-conditioned matricesA, we use the following lemma (similar to one from
[DIPW10]) to show that we can discretize the entries without changing the behavior by much:

Lemma 3.1. Let A ∈ Rm×n be a matrix with orthonormal rows. Let A′ be the result of rounding
A to b bits per entry. Then for any v ∈ Rn there exists an s ∈ Rn with A′v = A(v − s) and
‖s‖2 < n2−b ‖v‖2.
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Proof. Let A′′ = A−A′ be the error when discretizing A to b bits, so each entry of A′′ is less than
2−b. Then for any v and s = ATA′′v, we have As = A′′v and

‖s‖2 =
∥∥ATA′′v∥∥

2
≤ ‖A′′v‖2

≤ m2−b ‖v‖2 ≤ n2−b ‖v‖2 .

The Augmented Indexing problem. As in [DIPW10], we use the Augmented Indexing com-
munication game which is defined as follows: There are two parties, Alice and Bob. Alice is given a
string y ∈ {0, 1}d. Bob is given an index i ∈ [d], together with yi+1, yi+2, . . . , yd. The parties also
share an arbitrarily long common random string r. Alice sends a single message M(y, r) to Bob,
who must output yi with probability at least 2/3, where the probability is taken over r. We refer to
this problem as Augmented Indexing. The communication cost of Augmented Indexing is the
minimum, over all correct protocols, of length |M(y, r)| on the worst-case choice of r and y.

The following theorem is well-known and follows from Lemma 13 of [MNSW98] (see, for example,
an explicit proof in [DIPW10])

Theorem 3.2. The communication cost of Augmented Indexing is Ω(d).

A well-separated set of points. We would like to prove Theorem 2.1, getting a large set of well-
separated points in the image of a Lipschitz generative model. Before we do this, though, we prove
a k = 1 analog:

Lemma 3.3. There is a set of points P inBn(1) ⊂ Rn of size 2Ω(n) such that for each pair of points
x, y ∈ P

‖x− y‖ ∈

[√
1

3
,

√
2

3

]

Proof. Consider a τ -balanced linear code over the alphabet {± 1√
n
} with message length M . It is

known that such codes exist with block length O(M/τ2) [BATS09]. Setting the block length to be
n and τ = 1/6, we get that there is a set of 2Ω(n) points in Rn such that the pairwise hamming

distance is between
[
n
3 ,

2n
3

]
, i.e. the pairwise `2 distance is between

[√
1
3 ,
√

2
3

]
.

Now we wish to extend this result to arbitrary k while achieving the parameters in Theorem 2.1.

Proof of Theorem 2.1. We first define an O(L)-Lipschitz map g : R → Rn/k that goes through a
set of points that are pairwise Θ

(
R√
k

)
apart. Consider the set of points P from Lemma 3.3 scaled

to Bn/k( R√
k

). Observe that |P | ≥ exp (Ω (n/k)) ≥ min (exp (Ω (n/k)) , Lr/R). Choose subset

P ′ that such that it contains exactly min (Lr/R, exp(Ω(n/k))) points and let g1 : [0, r/
√
k] → P ′

be a piecewise linear function that goes through all the points in P ′ in order. Then, we define
g : R→ Rn/k as:

g(x) =


g1(0) if x < 0

g1(x) if 0 ≤ x ≤ r/
√
k

g1( R√
k

) if x ≥ r/
√
k

Let I = { r√
k|P ′| , . . . ,

r√
k
} be the points that are pre-images of elements of P ′. Observe that g is

O(L)-Lipschitz since within the interval [0, r/
√
k], since it maps each interval of length r√

k|P ′| ≥
rR√
kLr

= R
L
√
k

to an interval of length at most O(R/
√
k).
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Now, consider the function G := g⊗k : Rk → Rn. Observe that G is also O(L) Lipschitz,

‖G(x1, . . . , xk)−G(y1, . . . , yk)‖22 =
∑
i∈[k]

‖g(xi)− g(yi)‖22

≤
∑
i∈[k]

O(L2) ‖xi − yi‖22

= O(L2) ‖x− y‖22

Also, for every point (x1, . . . , xk) ∈ Ik, ‖G(x1, . . . , xk)‖2 =
√∑

i∈[k] ‖g(xi)‖22 ≤ R. However,

there still exist distinct points x, y ∈ Ik(for instance points that differ at exactly one coordinate)
such that ‖G(x)−G(y)‖2 ≤ O( R√

k
).

We construct a large subset of the points in Ik such that any two points in this subset are far apart
using error correcting codes. Consider the A ⊂ P ′ s.t. |A| > |P ′| /2 is a prime. For any integer
z > 0, there is a prime between z and 2z, so such a set A exists. Consider a Reed-Solomon code
of block length k, message length k/2, distance k/2 and alphabet A. The existence of such a code
implies that there is a subset X ′ of (P ′)k of size at least (|P ′| /2)k/2 such that every pair of distinct
elements from this set disagree in k/2 coordinates.

This translates into a distance of R√
6

in 2-norm. So, if we set G = g⊗k and X ⊂ Ik to G−1(X ′),

we get have a set of (|P ′| /2)k/2 ≥ (min(exp(Ω(n/k)), Lr/R))k/2 points which are R√
6

apart in
2-norm, lie within the `2 ball of radius R.

Lower bound. We now prove the lower bound for function-sparse recovery.

Proof of Theorem 2.2. An application of Theorem 2.1 with R =
√
Lrδ gives us a set of points Z

and G such that Z = G(X) ⊆ Rn such that log(|Z|) = Ω(min(k log(Lrδ ), n)), and for all x ∈ Z,
‖x‖2 ≤

√
Lrδ and for all x, x′ ∈ Z, ‖x− x′‖2 ≥

√
Lrδ/

√
6. Let d = blog |X|c log n, and let

D = 16
√

3(C + 1).

We will show how to solve the Augmented Indexing problem on instances of size d = log(|Z|) ·
log(n) = Ω(k log(Lr) log n) with communication cost O(m log n). The theorem will then follow
by Theorem 3.2.

Alice is given a string y ∈ {0, 1}d, and Bob is given i ∈ [d] together with yi+1, yi+2, . . . , yd, as in
the setup for Augmented Indexing.

Alice splits her string y into log n contiguous chunks y1, y2, . . . , ylogn, each containing blog |X|c
bits. She uses yj as an index into the set X to choose xj . Alice defines

x = D1x1 +D2x2 + · · ·+Dlognxlogn.

Alice and Bob use the common randomness R to agree upon a random matrix A with orthonormal
rows. Both Alice and Bob round A to form A′ with b = Θ(log(n)) bits per entry. Alice computes
A′x and transmits it to Bob. Note that, since x ∈

{
± 1√

n

}
the x’s need not be discretized.

From Bob’s input i, he can compute the value j = j(i) for which the bit yi occurs in yj . Bob’s
input also contains yi+1, . . . , yn, from which he can reconstruct xj+1, . . . , xlogn, and in particular
can compute

z = Dj+1xj+1 +Dj+2xj+2 + · · ·+Dlognxlogn.

Set w = 1
Dj (x− z) = 1

Dj

∑j
i=1D

ixi. Bob then computes A′z, and using A′x and linearity, he can
compute 1

Dj ·A′(x− z) = A′w. Then

‖w‖2 ≤
1

Dj

j∑
i=1

R ·Di < R.

So from Lemma 3.1, there exists some s with A′w = A(w − s) and

‖s‖2 < n22−b ‖w‖2 <
R

Djn2
.
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Ideally, Bob would perform recovery on the vectorA(w−s) and show that the correct point xj is re-
covered. However, since s is correlated with A and w, Bob needs to use a slightly more complicated
technique.

Bob first chooses another vector u uniformly from Bn(R/Dj) and computes A(w − s − u) =
A′w−Au. He then runs the estimation algorithmA on A and A(w− s−u), obtaining ŵ. We have
that u is independent of w and s, and that ‖u‖2 ≤

R
Dj (1 − 1/n2) ≤ R

Dj − ‖s‖2 with probability
Vol(Bn( R

Dj (1−1/n2)))

Vol(Bn( R

Dj ))
= (1− 1/n2)n > 1− 1/n. But {w− u | ‖u‖2 ≤

R
Dj −‖s‖2} ⊆ {w− s− u |

‖u‖2 ≤
R
Dj }, so as a distribution over u, the ranges of the random variables w − s − u and w − u

overlap in at least a 1−1/n fraction of their volumes. Therefore w−s−u and w−u have statistical
distance at most 1/n. The distribution of w − u is independent of A, so running the recovery
algorithm on A(w − u) would work with probability at least 3/4. Hence with probability at least
3/4− 1/n ≥ 2/3 (for n large enough), ŵ satisfies the recovery criterion for w − u, meaning

‖w − u− ŵ‖2 ≤ C min
w′∈Im(G)

‖w − u− w′‖2 + δ

Now,

‖xj − ŵ‖2 ≤ ‖w − u− xj‖2 + ‖w − u− ŵ‖2
≤ (1 + C) ‖w − u− xj‖2 + δ

≤ (1 + C)

(
‖u‖2 +

1

Dj
·
j−1∑
i=1

∥∥Dixi
∥∥

2

)
+ δ

≤ 2(1 + C)R/D + δ

< R · 2(1 + C)

D
+ δ

=
1

8
√

3
·R+ δ.

Since δ < Lr/4, this distance is strictly bounded by R/2
√

6. Since the minimum distance in X is
R/
√

6, this means
∥∥Djxj − ŵ

∥∥
2
<
∥∥Djx′ − ŵ

∥∥
2

for all x′ ∈ X,x′ 6= xj . So Bob can correctly
identify xj with probability at least 2/3. From xj he can recover yj , and hence the bit yi that occurs
in yj .

Hence, Bob solves Augmented Indexing with probability at least 2/3 given the message A′x.
Each entry of A′x takes O(log n) bits to describe because A′ is discretized to up to log(n) bits and
x ∈ {± 1√

n
}n. Hence, the communication cost of this protocol is O(m · log n). By Theorem 3.2,

m log n = Ω(min(k log(Lr/δ), n) · log n), or m = Ω(min(k log(Lr/δ), n)).

4 Reduction from k-sparse recovery

We show that the set of all k-sparse vectors in Rn is contained in the image of a 2 layer neural
network. This shows that function-sparse recovery is a generalization of sparse recovery.

Lemma 4.1. There exists a 2 layer neural network G : R2 → Rn with width O(n) such that
{x | ‖x‖0 = 1} ⊆ Im(G)

Our construction is intuitively very simple. We define two gadgets G+
i and G−i . G+

i ≥ 0 and
G+
i (x1, x2) 6= 0 iff arctan(x2/x1) ∈ [i · 2π

n , (i + 1) · 2π
n ]. Similarly G−i (x1, x2) ≤ 0 and

G−i (x1, x2) 6= 0 iff arctan(x2/x1) ∈ [π + i · 2π
n , π + (i + 1) · 2π

n ]. Then, we set the ith out-
put node (G(x1, x2))i = G+

i (x1, x2) + G−i (x1, x2). Varying the distance of (x1, x2) from the
origin will allow us to get the desired value at the output node i.

Proof. Let α = π
n+1 . Let [x]+ = x · I(x ≥ 0) denote the unbiased ReLU function that preserves

positive values and [x]− = x · I(x ≤ 0) denote the unbiased ReLU function that preserves negative
values. We define G+

i : R2 → R as follows:
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x1

x2

a+
(i),1

a+
(i),2

b+i

cos(iα)

cos(iα+ α
2
)

− sin(iα)

− sin(iα+ α
2
)

1/ sin(α)

−1/ sin(α/2)

G+
i is a 2 layer neural network gadget that produces positive values at output node i ofG. We define

each of the hidden nodes of the neural network G+
i as follows:

a+
(i),1 =

[
cos(iα)x1 − sin(iα)x2

]
+

a+
(i),2 =

[
cos
(
iα+

α

2

)
x1 − sin

(
iα+

α

2

)
x2

]
+

b+(i) =
[ a+

(i),1

sin(α)
−

a+
(i),2

sin(α/2)

]
+

In a similar manner, G−i which produces negative values at output node i of G with the internal
nodes defined as:

a−(i),1 =
[

cos(π + iα)x1 − sin(π + iα)x2

]
+

a−(i),2 =
[

cos
(
π + iα+

α

2

)
x1 − sin

(
π + iα+

α

2

)
x2

]
+

b−(i) =
[ a−(i),2

sin(α/2)
−

a−(i),1

sin(α)

]
−

The last ReLU activation preserves only negative values. Since G+
i and G−i are identical up to signs

in the second hidden layer, we only analyze G+
i ’s.

Consider i ∈ [n]. Let β = iα and (x1, x2) = (t sin(θ), t cos(θ)). Then using the identity
sin(A) cos(B)− cos(A) sin(B) = sin(A−B),

cos(β)x1 − sin(β)x2 = t
(

cos(β) sin(θ)− sin(β) cos(θ)
)

= t sin(θ − β)

This is positive only when θ ∈ (β, π + β). Similarly, cos(β + α/2)x1 − sin(β + α/2)x2 =
t sin(θ− (β+α/2)) and is positive only when θ ∈ (β+α/2, π+β+α/2). So, a+

(i),1 and a+
(i),2 are

both non-zero when θ ∈ (β + α/2, π + β). Using some elementary trigonometry, we may see that:

a
(i)
1

sin(α)
− a

(i)
2

sin(α/2)
= t
( sin(θ − β)

sin(α)
−

sin(θ − (β + α
2 ))

sin(α/2)

)
=
t sin(β − θ + α)

sin(α/2)

In Fact A.1, we show a proof of the above identity. Observe that when θ > β + α, this term is
negative and hence bi = 0. So, we may conclude that G+

i ((x1, x2)) 6= 0 if and only if (x1, x2) =
(t sin(θ), t cos(θ)) with θ ∈ ((i−1)α, iα). Also, observe thatG+

i (t sin(β+α/2), t cos(β+α/2)) =
t. Similarly G−i is non-zero only if and only if θ ∈ [π + iα, π + (i + 1)α] and G−i (t sin(π + iα +
α/2), t cos(π + iα+ α/2)) = −t. Since α = π

n+1 , the intervals within which each of G+
1 , . . . , G

+
n

,G−1 , . . . , G
−
n are non-zero do not intersect.

So, given a vector z′ such that ‖z‖0 = 1 with zi′ 6= 0, if zi′ > 0, set

x1 = |zi′ | sin(i′α+ α/2)

x2 = |zi′ | cos(i′α+ α/2)
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and if zi′ < 0, set

x1 = |zi′ | sin(π + i′α+ α/2)

x2 = |zi′ | cos(π + i′α+ α/2)

Observe that:
G+
i′ ((x1, x2)) +G−i′ ((x1, x2)) = zi′

and for all j 6= i′

G+
j ((x1, x2)) +G−j ((x1, x2)) = 0

So, if G(x) = (G+
1 (x) + G−1 (x), . . . , G+

n (x) + G−n (x)), G is a 2-layer neural network with width
O(n) such that {x | ‖x‖0 = 1} ⊆ Im(G).

Proof of Theorem 2.3. Given a vector z that is non-zero at k coordinates, let i1 < i2 < · · · < ik be
the indices at which z is non-zero. We may use copies of G from Lemma 4.1 to generate 1-sparse
vectors v1, . . . , vk such that (vj)ij = zij . Then, we add these vectors to obtain z. It is clear that
we only used k copies of G to create Gsp. So, Gsp can be represented by a neural network with 2
layers.

Theorem 1 provides a reduction which uses only 2 layers. Then, using the algorithm from Theorem
3, we can recover the correct k-sparse vector using O(kd log(nk)) measurements. Since d = 4 and
≤ n, this requires only O(k log n) linear measurements to perform `2/`2 (k,C)-sparse recovery.
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A Trigonometric identity

Fact A.1.
sin(β + α

2 − θ)
sin(α/2)

− sin(β − θ)
sin(α)

=
sin(β − θ + α)

sin(α/2)

Proof.

sin(β + α
2 − θ)

sin(α/2)
− sin(β − θ)

sin(α)
=

sin(β + α
2 − θ) sin(α)− sin(β − θ) sin(α/2)

sin(α) sin(α/2)

=
1
2

(
cos(β − θ − α

2 )− cos(β − θ + 3α
2 )− cos(β − θ − α

2 ) + cos(β − θ + α
2 )
)

sin(α) sin(α/2)

=
cos(β − θ + α

2 )− cos(β − θ + 3α
2 )

2 sin(α) sin(α/2)

=
sin(β − θ + α) sin(α)

sin(α) sin(α/2)

=
sin(β − θ + α)

sin(α/2)

where we use the identity that sin(A) sin(B) = 1
2 [cos(A−B)− cos(A+B)]
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