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ABSTRACT

The impressive performance of neural networks on natural language processing
tasks attributes to their ability to model complicated word and phrase composi-
tions. To explain how the model handles semantic compositions, we study hierar-
chical explanation of neural network predictions. We identify non-additivity and
context independent importance attributions within hierarchies as two desirable
properties for highlighting word and phrase compositions. We show some prior
efforts on hierarchical explanations, e.g. contextual decomposition, do not satisfy
the desired properties mathematically, leading to inconsistent explanation quality
in different models. In this paper, we start by proposing a formal and general way
to quantify the importance of each word and phrase. Following the formulation,
we propose Sampling and Contextual Decomposition (SCD) algorithm and Sam-
pling and Occlusion (SOC) algorithm. Human and metrics evaluation on both
LSTM models and BERT Transformer models on multiple datasets show that our
algorithms outperform prior hierarchical explanation algorithms. Our algorithms
help to visualize semantic composition captured by models, extract classification
rules and improve human trust of models1.

1 INTRODUCTION

Recent advances in deep neural networks have led to impressive results on a range of natural
language processing (NLP) tasks, by learning latent, compositional vector representations of text
data (Peters et al., 2018; Devlin et al., 2018; Liu et al., 2019b). However, interpretability of the pre-
dictions given by these complex, “black box” models has always been a limiting factor for use cases
that require explanations of the features involved in modeling (e.g., words and phrases) (Guidotti
et al., 2018; Ribeiro et al., 2016). Prior efforts on enhancing model interpretability have focused
on either constructing models with intrinsically interpretable structures (Bahdanau et al., 2015; Liu
et al., 2019a), or developing post-hoc explanation algorithms which can explain model predictions
without elucidating the mechanisms by which model works (Mohseni et al., 2018; Guidotti et al.,
2018). Among these work, post-hoc explanation has come to the fore as they can operate over a
variety of trained models while not affecting predictive performance of models. Towards post-hoc
explanation, a major line of work, additive feature attribution methods (Lundberg & Lee, 2017;
Ribeiro et al., 2016; Binder et al., 2016; Shrikumar et al., 2017), explain a model prediction by as-
signing importance scores to individual input variables. However, these methods are not ideal for
explaining phrase-level importance, as phrase importance is often a non-linear combination of the
importance of the words in the phrase. Contextual decomposition (CD) (Murdoch et al., 2018) and
its hierarchical extension (Singh et al., 2019) go beyond the additive assumption and compute the
contribution solely made by a word/phrase to the model prediction (i.e., individual contribution), by
decomposing the output variables of the neural network at each layer. Using the individual contribu-
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Figure 1: Different score attribution algorithms. (a) Input occlusion assigns a negative score for
the word “interesting”, as the sentiment of the phrase becomes less negative after removing “in-
teresting” from the original sentence. (b) Additive attributions assign importance scores for words
“not” and “interesting” by linearly distributing contribution score of “not interesting“, exemplified
with Shapley Values (Shapley, 1953). Intuitively, only (c) Hierarchical explanations highlight the
negative compositional effect between the words “not” and “interesting”.

tion scores so derived, these algorithms generate hierarchical explanation on how the model captures
compositional semantics (e.g., stress or negation) in making predictions (see Figure 1 for example).

However, despite contextual decomposition methods have achieved good results in practice, what
reveals extra importance that emerge from combining two phrases has not been well studied. As a
result, prior lines of work on contextual decomposition have focused on exploring model-specific
decompositions based on their performance on visualizations. We identify the extra importance
from combining two phrases can be quantified by studying how the importance of the combined
phrase differs from the sum of the importance of the two component phrases on its own. Similar
strategies have been studied in game theory for quantifying the surplus from combining two groups
of players (Fujimoto et al., 2006). Following the definition above, the key challenge is to formulate
the importance of a phrase on it own, i.e., context independent importance of a phrase. However, we
show contextual decomposition do not satisfy this context independence property mathematically.

To this end, we propose a formal way to quantify the importance of each individual word/phrase,
and develop effective algorithms for generating hierarchical explanations based on the new formu-
lation. To mathematically formalize and efficiently approximate context independent importance,
we formulate N -context independent importance of a phrase, defined as the difference of model
output after masking out the phrase, marginalized over all possible N words surrounding the phrase
in the sentence. We propose two explanation algorithms according to our formulation, namely the
Sampling and Contextual Decomposition algorithm (SCD), which overcomes the weakness of con-
textual decomposition algorithms, and the Sampling and OCclusion algorithm (SOC), which is sim-
ple, model-agnostic, and performs competitively against prior lines of algorithms. We experiment
with both LSTM and fine-tuned Transformer models to evaluate the proposed methods. Quantita-
tive studies involving automatic metrics and human evaluation on sentiment analysis and relation
extraction tasks show that our algorithms consistently outperform competitors in the quality of ex-
planations. Our algorithms manage to provide hierarchical visualization of compositional semantics
captured by models, extract classification rules from models, and help users to trust neural networks
predictions.

In summary, our work makes the following contributions: (1) we identify the key challenges in
generating post-hoc hierarchical explanations and propose a mathematically sound way to quantify
context independent importance of words and phrases for generating hierarchical explanations; (2)
we extend previous post-hoc explanation algorithm based on the new formulation of N -context in-
dependent importance and develop two effective hierarchical explanation algorithms; and (3) exper-
iments demonstrate that the proposed explanation algorithms consistently outperform the compared
methods (with both LSTM and Transformer as base models) over several datasets and models.

2 PRELIMINARIES

2.1 POST-HOC EXPLANATIONS OF NEURAL SEQUENCE MODELS

We consider a sequence of low-dimensional word embeddings x1:T := (x1,x2, ...,xT ), or denoted
as x for brevity, as the input to a neural sequence model, such as standard RNNs, LSTM (Hochreiter
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& Schmidhuber, 1997) and Transformers (Vaswani et al., 2017). These neural models extract hidden
representations h1:T from the input sequence x, and feed these hidden representations to a prediction
layer to generate prediction scores in the label space (e.g., sentiment polarity of a sentence). For
LSTM, we use the last hidden state hT to give unnormalized prediction scores s(x) ∈ Rdc over dc
label classes as follows.

s(x) =WlhT , (1)

whereWl ∈ Rdc×dh is a trainable weight matrix. For Transformers, the representation correspond-
ing to the [CLS] token at the final layer is fed to the prediction layer to generate scores s(x).

Towards post-hoc explanation of s(x), a notable line of work, additive feature attribution meth-
ods (Ribeiro et al., 2016; Shrikumar et al., 2017; Sundararajan et al., 2017; Lundberg & Lee, 2017),
measure word-level importance to the model prediction s(x) by attributing an importance score
φ(xi,x) to each word in the input sequence xi ∈ x. However, the additive assumption hinders these
methods from explaining the complex interactions between words and compositional semantics in a
sentence (e.g., modeling negation, transition, and emphasis in sentiment classification), as shown in
Figure 1.

2.2 HIERARCHICAL EXPLANATIONS VIA CONTEXTUAL DECOMPOSITION

To caputure non-linear compositional semantics, the line of work on contextual decomposi-
tion (CD) (Murdoch et al., 2018) designs non-additive measures of importance from individual
words/phrases to the model predictions, and further extend to agglomerative contextual decomposi-
tion (ACD) algorithm (Singh et al., 2019) for generating hierarchical explanations.

Given a phrase p = xi:j in the input sequence x, contextual decomposition (CD) attributes a score
φ(p,x) as the contribution solely from p to the model’s prediction s(x). Note that φ(p,x) does
not equal to the sum of the scores of each word in the phrase, i.e., φ(p,x) 6=

∑
xi∈p φ(xi,x).

Starting from the input layer, CD iteratively decomposes each hidden state h of the model into the
contribution solely made by p, denoted as β, and the contributions involving the words outside the
phrase p, denoted as γ, with the relation h = β+γ holds. The algorithm also keeps the contribution
from the bias term, denoted as ζ, temporally before element-wise multiplication.

For a linear layer h =Wixt+ bi with input xt, when xt lies in the given phrase p, the contribution
solely from xt to h is defined as β = Wixt when xt is part of the phrase (i.e., xt ∈ p), and the
contribution involving other words in the sentences (denoted as x\p) is defined as γ = 0. The
contribution of the bias term ζ is thus bi. When xt lies outside of the phrase, γ is quantified
as Wixt and β is 0. In the cases when CD encounters element-wise multiplication operations
h = ha � hb (e.g., in LSTMs), it eliminates the multiplicative interaction terms which involve the
information outside of the phrase p. Specifically, suppose that ha and hb have been decomposed
as ha = βa + γa + ζa and hb = βb + γb + ζb, CD computes the β term for ha � hb as
β = βa � βb + βa � ζb + ζa � βb.
When dealing with non-linear activation h′ = σ(h), CD computes the contribution solely from the
phrase p as the average activation differences caused β supposing γ is present or absent,

β′ =
1

2
[σ(β + γ + ζ)− σ(γ + ζ)] +

1

2
[σ(β + ζ)− σ(ζ)]. (2)

Following the strategies introduced above, CD decomposes all the intermediate outputs starting from
the input layer, until reaching the final output of the model hT = β + γ. The logit score Wlβ is
treated as the contribution of the given phrase p to the final prediction s(x).

As a follow-up study, Singh et al. (2019) extends CD algorithm to other families of neural network
architectures, and proposes agglomerative contextual decomposition algorithm (ACD). The decom-
position of activation functions is modified as β′ = σ(β). For a linear layer h′ = Wh + b with
its decomposition h = β + γ, the bias term b is decomposed proportionally and merged into the β′
term of h′, based on β′ =Wβ + |Wβ|/(|Wβ|+ |Wγ|) · b.
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Figure 2: (Left) Illustration of the CD and SCD at calculating the decomposition for h = σ(β+γ),
following Eq. 2. Red lines indicate computation that make CD explanations dependent on the words
outside the give phrase. (Right) Illustration of the sampling step x̂δ ∼ p(x̂δ|x−δ) for calculating the
importance of the word very in SOC and SCD, with size of context N = 1. The padding operation
is for SOC.

3 METHODOLOGY

In this section, we start by identifying desired properties of phrase-level importance score attribution
for hierarchical explanations. We propose a measure of context-independent importance of a phrase
and introduce two explanation algorithms instantiated from the proposed formulation.

3.1 PROPERTIES OF IMPORTANCE ATTRIBUTION FOR HIERARCHICAL EXPLANATION

Despite the empirical success of CD and ACD, no prior works analyze what common properties a
score attribution mechanism should satisfy to generate hierarchical explanations that reveal com-
positional semantics formed between phrases. Here we identify two properties that an attribution
method should satisfy to generate informative hierarchical explanations.

Non-additivity. Importance of a phrase φ(p,x) should not be a sum over the importance scores
of all the component words xi ∈ p, i.e., φ(p,x) 6=

∑
xi∈p φ(xi,x), in contrast to the family of

additive feature attribution methods. The property is also suggested by Murdoch et al. (2018).

Context Independence. For deep neural networks, when two phrases combine, their importance to
predicting a class may greatly change. The surplus by combining two phrases can be quantified by
the difference between the importance of the combined phrase and the sum of the importance of two
phrases on its own. It follows the definition of marginal interactions (Fujimoto et al., 2006) in game
theory. According to the definition, the importance of two component phrases should be at least
evaluated independently to each other. Formally, if we are only interested in how combining two
phrases p1 and p2 contribute to a specific prediction for an input x, we expect for input sentences x̃
where only p2 is replaced to another phrase, the importance attribution for p1 remains the same, i.e.,
φ(p1,x) = φ(p1, x̃). In our bottom-up hierarchical explanation setting, we are interested in how
combining a phrase and any other contextual words or phrases in the input x contribute. Therefore,
we expect φ(p,x) = φ(p, x̃) given the phrase p in two different contexts x and x̃.

Limitations of CD and ACD. Unfortunately, while CD and ACD try to construct decomposition so
that β terms represent the contributions solely from a given a phrase, the assigned importance scores
by these algorithms do not satisfy the context independence property mathematically. For CD, we
see the computation of β involves the γ term of a specific input sentence in Eq. 2 (see Figure 2(a)
for visualization). Similarly, for ACD, the decomposition of the bias term involves the γ terms of a
specific input sentence. As a result, the β terms computed by both algorithms depend on the context
of the phrase p.

Given the limitation of prior works, we start by formulating a importance measure of phrases that
satisfies both non-additivity and context independence property.
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3.2 CONTEXT-INDEPENDENT IMPORTANCE

Given a phrase p := xi:j appearing in a specific input x1:T , we first relax our setting and define
the importance of a phrase independent of contexts of length N adjacent to it. The N-context inde-
pendent importance is defined as the output difference after masking out the phrase p, marginalized
over all the possible contexts of length N , denoted as x̂δ , around p in the input x. For an intuitive
example, to evaluate the context independent importance up to one word of very in the sentence
The film is very interesting in a sentiment analysis model, we sample some possible adjacent words
before and after the word very, and average the prediction difference after some practice of masking
the word very. Figure 2 illustrates an example for the sampling and masking steps. The N -context
independent importance is formally written as,

φ(p, x̂) = Exδ [s(x−δ; x̂δ)− s(x−δ\p; x̂δ)], (3)

where x−δ denotes the resulting sequence after masking out a context of length N surrounding
the phrase p from the input x. Here, x̂δ is a sequence of length N sampled from a distribution
p(x̂δ|x−δ), which is conditioned on the phrase p as well as other words in the sentence x. Accord-
ingly, we use s(x−δ; x̂δ) to denote the model prediction score after replacing the masked-out context
x−δ with a sampled context x̂δ . We use x\p to denote the operation of masking out the phrase p
from the input sentence x. The specific implementation of this masking out operation varies across
different explanation algorithms.

Following the notion of N -context independent importance, we define context-independent impor-
tance of a phrase p by increasing the size of the context N to sufficiently large (e.g., length of the
sentence). The context independent importance can be equivalently written as follows.

φg(p) = Ex[s(x)− s(x\p)|p ⊆ x]. (4)

While it is possible to compute the expectations in Eqs. 3 and 4 by sampling from the training set,
it is common that a phrase occurs sparsely in the corpus. Therefore, we approximate the N -context
independent importance by sampling from a language model pretrained on the training corpus. The
language model helps model a smoothed distribution of p(x̂δ|x−δ). In practice, all our explanation
algorithms make use of N -context independent importance following Eq. 3, where the size of the
neighborhood N is a parameter to be specified to approximate the context independent importance.

3.3 SAMPLING AND CONTEXTUAL DECOMPOSITION ALGORITHM

In CD, the desirable context independence property is compromised when computing decomposi-
tion of activation functions, as discussed in Section 3.1. Following the new formulation of context-
independent importance introduced in Section 3.2, we present a simple modification of the contex-
tual decomposition algorithm, and develop a new sampling and contextual decomposition (SCD)
algorithm for effective generation of hierarchical explanations.

SCD is a layer-wise application of our formulation. The algorithm only modifies the way to decom-
pose activation functions in CD. Specifically, given the output h = s(l)(x) at an intermediate layer l
with the decomposition h = β + γ, we decompose the activation value σ(h) into β′ + γ′, with the
following definition:

β′ = Eγ∼p(γ|x−δ)[σ(β + γ)− σ(γ)] = Eh∼p(h|x−δ)[σ(h)− σ(h− β)], (5)

i.e., β′ is defined as the expected difference between the activation values when the β term is present
or absent. h is computed for different input sequences x with the contexts of the phrase p sampled
from the distribution p(x̂δ|x−δ). Eq. 5 is a layer wise application of Eq. 4, where the masking
operation is implemented with calculating σ(h − β). Figure 2(b) provides a visualization for the
decomposition.

Algorithmic Details. To perform sampling, we first pretrain a LSTM language model from two
directions on the training data. During sampling, we mask the words that are not conditioned in
p(x̂δ|x−δ). Some other sampling options include performing Gibbs sampling from a masked lan-
guage model (Wang et al., 2019). The algorithm then obtain a set of samples S by sampled from the
language model. For each sample in S, the algorithm records the input of the i-th non-linear activa-
tion function to obtain a sample set S(i)h . During the explanation, the β term of the i-th non-linear
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activation function is calculated as,

β′ =
1

|S(i)h |

∑
h∈S(i)

h

[σ(h)− σ(h− β)]. (6)

Some neural models such as Transformers involve operations that normalize over different dimen-
sions of a vectors, e.g. layer normalization operations. We observe improved performance by not
decomposing the normalizer of these terms when the phrase p is shorter than a threshold, assuming
that the impact of p to the normalizer can be ignored. Besides, for element-wise multiplication in
LSTM models, we treat them in the same way as other non-linear operations and decompose them as
Eq. 5, where the decomposition of h1�h2 is written as β′ = Eγ1,γ2

[(β1+γ1)�(β2+γ2)−γ1�γ2].
We avoid decomposing softmax functions.

3.4 SAMPLING AND OCCLUSION ALGORITHM

We show it is possible to fit input occlusion (Li et al., 2016) algorithm into our formulation. Input
occlusion algorithm calculate the importance of p specific to an input sentence x by observing the
prediction difference caused by replacing the phrase p with padding tokens, noted as 0p,

φ(p,x) = s(x)− s(x−p;0p) (7)

It is obvious that the importance score obtained by the input occlusion algorithm is dependent on
the all the context words of p in x. To eliminate the dependence, we sample the context around
the phrase p. This leads to the Sampling and Occlusion (SOC) algorithm, where the importance of
phrases is defined as the expected prediction difference after masking the phrase for each replace-
ment of contexts.

Algorithmic Details. Similar to SCD, SOC samples neighboring words x̂δ from a trained lan-
guage model p(x̂δ|x−δ) and obtain a set of neighboring word replacement S . For each replacement
x̂δ ∈ S , the algorithm computes the model prediction differences after replacing the phrase p with
padding tokens. The importance φ(p,x) is then calculated as the average prediction differences.
Formally, the algorithm calculates,

φ(p,x) =
1

|S|
∑
x̂δ∈S

[s(x−δ; x̂δ)− s(x−{δ,p}; x̂δ;0p)]. (8)

Sampling and Occlusion is advantageous in that it is model-agnostic and easy to implement. The
input occlusion algorithm inside Eq. 8 can also be replaced with other measure of phrase importance,
such as Shapley values (Shapley, 1953), with the phrase p and other input words considered as
players. We expect it is helpful for longer sequences when there are multiple evidences outside the
context region saturating the prediction.

4 EXPERIMENTS

We evaluate explanation algorithms on both shallow LSTM models and deep fine-tuned BERT
Transformer (Devlin et al., 2018) models. We use two sentiment analysis datasets, namely the
Stanford Sentiment Treebank-2 (SST-2) dataset (Socher et al., 2013) and the Yelp Sentiment Polar-
ity dataset (Zhang et al., 2015), as well as TACRED relation extraction dataset (Zhang et al., 2017)
for experiments. The two tasks are modeled as binary and multi-class classification tasks respec-
tively. For the SST-2 dataset, while it provides sentiment polarity scores for all the phrases on the
nodes of the constituency parsing trees, we do not train our model on these phrases, and use these
scores as the evaluation for the phrase level explanations. Our Transformer model is fine-tuned from
pretrained BERT (Devlin et al., 2018) model. See Appendix A for other implementation details.

Compared Methods. We compare our explanation algorithm with following baselines: Input oc-
clusion (Li et al., 2016) and Integrated Gradient+SHAP (GradSHAP) (Lundberg & Lee, 2017); two
algorithms applied for hierarchical explanations, namely Contextual Decomposition (CD) (Mur-
doch et al., 2018), and Agglomerative Contextual Decomposition (ACD) (Singh et al., 2019). We
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Dataset SST-2 Yelp Polarity TACRED
Model BERT LSTM BERT LSTM BERT LSTM
Metric word ρ phrase ρ word ρ phrase ρ word ρ word ρ word ρ word ρ

Input Occlusion 0.2229 0.4081 0.6489 0.4899 0.3781 0.6935 0.7646 0.5756
Direct Feed 0.2005 0.4889 0.6798 0.5588 0.3875 0.7905 0.1986 0.5771
GradSHAP 0.5073 0.5991 0.7024 0.5402 0.5791 0.7388 0.2965 0.6651

CD 0.2334 0.3068 0.6231 0.4727 0.2645 0.7451 0.0052 0.6508
ACD 0.3053 0.3698 0.2495 0.1856 0.3010 0.5024 0.2027 0.0291

Statistic 0.5223 0.4741 0.7271 0.4959 0.7294 0.9094 0.5324 0.7662
SCD 0.5481 0.6015 0.7151 0.5664 0.7180 0.7793 0.7980 0.6823
SOC 0.6265 0.6628 0.7226 0.5649 0.6971 0.7683 0.7982 0.7354

Table 1: Correlation between word & phrase importance attribution and linear model coefficients &
SST-2 human annotations, achieved by baselines and our explanation algorithms.

fresh
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Figure 3: Hierarchical Explanation of a prediction by the BERT Transformer model on SST-2. We
generate explanations for all the phrases on the truncated constituency parsing tree, with positive
sentiments shown in red and negative sentiments shown in blue. We see our method identify positive
segments in the overall negative sentence, such as “a breath of fresh air”

also compare with a naive however neglected baseline in prior literature, which directly feed the
given phrase to the model and take the prediction score as the importance of the phrase, noted as Di-
rect Feed. In BERT models, Direct Feed is implemented by turning off the attention mask of words
except the [CLS] token and the phrase to be explained. For our algorithms, we list the performance
of corpus statistic based approach (Statistic) for approximating context independent importance in
Eq. 3, Sampling and Contextual Decomposition (SCD), and Sampling and Occlusion (SOC) algo-
rithm. In section 4.4, we also consider padding instead of sampling the context words in SCD and
SOC.

4.1 HIERARCHICAL VISUALIZATION OF IMPORTANT WORDS AND PHRASES

We verify the performance of our algorithms in identifying important words and phrases captured
by models. We follow the quantitative evaluation protocol proposed in CD algorithm (Murdoch
et al., 2018) for evaluating word-level explanations, which computes Pearson correlation between
the coefficients learned by a linear bag-of-words model and the importance scores attributed by ex-
planation methods, also noted as the word ρ. When the linear model is accurate, its coefficients
could stand for general importance of words. For evaluating phrase level explanations, we notice
the SST-2 dataset provides human annotated real-valued sentiment polarity for each phrase on con-
stituency parsing trees. We generate explanations for each phrase on the parsing tree and evaluate the
Pearson correlation between the ground truth scores and the importance scores assigned for phrases,
also noted as the phrase ρ. We drawK = 20 samples forN = 10 words adjacent to the phrase to be
explained at the sampling step in our SOC and SCD algorithms. The parameter setting is trade-off
between the efficiency and performance. See Section 4.4 for detailed parameter analysis.

Table 1 shows word ρ and phrase ρ achieved by our algorithms and competitors. Generally, explana-
tion algorithms that follow our formulations achieve highest word ρ and phrase ρ for all the datasets
and models. SOC and SCD perform robustly on the deep Transformer model, achieving higher word
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He is also survived by S-PERSON parents and a sister , O-PERSON , of Washington , and

S-PERSON parents sister , O-PERSON

survived by S-PERSON parents a sister , O-PERSON

survived by S-PERSON parents and a sister , O-PERSON ,

per:siblings

(a) SCD

He is also survived by S-PERSON parents and a sister , O-PERSON , of Washington , and

also survived by O-PERSON , of

also survived by S-PERSON parents O-PERSON , of Washington

per:siblings

(b) CD
Figure 4: Extracting phrase-level classification patterns from LSTM relation extraction model with
SCD. Red indicate evidence for predicting the class, and blue indicate distractor for predicting the
class. By applying the agglomerative clustering algorithm and defining a threshold score, we effe-
cively extract “a sister, O-Person” as a classification rule for the relation per:siblings. However, we
see CD fails in this example.

ρ and phrase ρ than input occlusion and contextual decomposition algorithms by a large margin. We
see the simple Direct Feed method provide promising results on shallow LSTM networks, but fail
in deeper Transformer models. The statistic based approximation of the context independent impor-
tance, which do not employ a trained sampler, yields competitive words ρ but low phrase ρ. Our
analysis show that it is common that a long phrase does not exist in previously seen examples. In
this case, phrase ρ achieved by statistic based approximation is pushed towards that of the input
occlusion algorithm.

Qualitative study also shows that our explanation visualize complicated compositional semantics
captured by models, such as positive segments in the negative example, and adversative conjunctions
connected with “but”. We present an example explanation provided by SOC algorithm in Figure 3
and Appendix.

4.2 EXPLANATION AS CLASSIFICATION PATTERN EXTRACTION FROM MODELS

We show our explanation algorithm is a nature fit for extracting phrase level classification rules from
neural classifiers. With the agglomerative clustering algorithm in Singh et al. (2019), our explana-
tion effectively identify phrase-level classification patterns without evaluating all possible phrases
in the sentence even when a predefined hierarchy does not exist. Figure 4 show an example of au-
tomatically constructed hierarchy and extracted classification rules in an example in the TACRED
dataset.

4.3 ENHANCING HUMAN TRUST OF MODELS

We follow the human evaluation protocol in Singh et al. (2019) and study whether our explanations
help subjects to better trust model predictions. We ask subjects to rank the provided visualizations
based on how they would like to trust the model. For the SST-2 dataset, we show subjects the
predictions of the fine-tuned BERT model, and the explanations generated by SOC, SCD, ACD
and GradSHAP algorithms for phrases. The phrase polarities are visualized in a hierarchy with the
provided parsing tree of each sentence in the dataset. For the TACRED dataset, we show the expla-
nations provided by SOC, SCD, CD and Direct Feed algorithms on the LSTM model. We binarilize
the importance of a phrase by calculating the difference between its importance to the predicted class
and the its top importance to other classes, and the hierarchies are constructed automatically with
agglomerative clustering (Singh et al., 2019). Figure 5 shows average ranking score of explanations,
where 4 for the best, and 1 for the worst. On the SST-2 dataset, SOC achieves significantly higher
ranking score than ACD and GradSHAP, showing a p-value less than 0.05 and 0.001 respectively.
On the TACRED dataset, SCD achieve the best ranking score, showing significantly better ranking
score than CD and Direct Feed with a p-value less than 10−6 .
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Figure 5: Results for human evaluation on the Transformer model trained on SST-2 sentiment anal-
ysis dataset (between SOC, SCD, ACD, GradSHAP) and the LSTM model trained on TACRED
relation extraction dataset (between SOC, SCD, CD, DirectFeed).
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Figure 6: Word ρ and phrase ρ curves as the size of the context region N and the number of samples
K change on the BERT model trained on the SST-2 dataset. Dash line notes for the performance of
padding the context words instead of sampling.

4.4 PARAMETER ANALYSIS

Both SOC and SCD algorithms require specifying the size of the context region N and the number
of samples K. In Figure 6 (also Figure 7 in Appendix) we show the impact of these parameters. We
also plot the performance curves when we pad the contexts instead of sampling. We see sampling the
context achieves much better performance than padding the context given a fixed size of the context
region N . We also see word ρ and phrase ρ increase as the number of samples K increases. The
overall performance also increases as the size of the context region N increases at the early stage,
and saturates when N grows large, which is consistent with our hypothesis that words or phrases
usually do not interact with the words that are far away them in the input.

5 RELATED WORKS

Interpretability of neural networks has been studied with vairous techniques, including probing
learned features with auxiliary tasks (Tenney et al., 2019), or designing models with inherent in-
terpretability (Bahdanau et al., 2015; Lei et al., 2016). A major line of work, local explanation
algorithms, explains predictions by assigning importance scores for input features. This line of
work include input occlusion (Kádár et al., 2017), gradient based algorithms (Simonyan et al.,
2013; Hechtlinger, 2016; Ancona et al., 2017), additive feature attribution methods (Ribeiro et al.,
2016; Shrikumar et al., 2017; Sundararajan et al., 2017), among which Shapley value based ap-
proaches (Lundberg & Lee, 2017) have been studied intensively because of its good mathematical
properties. In the context of input occlusion explanations, researchers also study how to efficiently
marginalize over input features to be explained (Zintgraf et al., 2017; Chang et al., 2019), while our
research show extra focus could be placed on marginalizing over contexts. Regarding explanations
of models with structured inputs, Chen et al. (2019) propose L-Shapley and C-Shapley for efficient
approximation of Shapley values, with a similar hypothesis with us that the importance of a word
is usually only strongly dependent on its neighboring contexts. Chen et al. (2018) propose a feature
selection based approach for explanation in an information theoretic perspective.
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On the other hand, global explanation algorithms (Guidotti et al., 2018) have also been studied for
identifying generally important features, such as Feature Importance Ranking Measure (Zien et al.,
2009), Accumulated Local Effects (Apley, 2016), while usually restricted in the domain of tabular
data. We note that the context independence property in our proposed methods implies we study hi-
erarchical explanation as a global explanation problem (Guidotti et al., 2018). Compared with local
explanation algorithms, global explanation algorithms are less studied for explaining individual pre-
dictions (Poerner et al., 2018), because they reveal the average behavior of models. However, with
a hierarchical organization, we show global explanations are also powerful at explaining individual
predictions, achieving better human evaluation scores and could explain compositional semantics
where local explanation algorithms such as additive feature attribution algorithms totally fail. More-
over, we note that the use of explanation algorithms is not exclusive; we may apply explanation
algorithms of different categories to make a more holistic explanation of model predictions.

Another closely related field is statistical feature interaction detection (Hooker, 2004; Sorokina et al.,
2008; Tsang et al., 2017) from learned models, which usually focus on tabular data only. An excep-
tion is (Tsang et al., 2018), which also studies word interactions in neural sequence model predic-
tions, but does not study interactions in a phrase level.

6 CONCLUSION

In this work, we identify two desirable properties for informative hierarchical explanations of pre-
dictions, namely the non-additivity and context-independence. We propose a formulation to quantify
context independent importance of words and phrases that satisfies the properties above. We revisit
the prior line of works on contextual decomposition algorithms, and propose Sampling and Contex-
tual Decomposition (SCD) algorithm and Sampling and Occlusion algorithm (SOC). Experiments
on multiple datasets and models show that our explanation algorithms generate informative hierar-
chical explanations, help to extract classification rules from models, and enhance human trust of
models.
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Figure 7: Word ρ and phrase ρ curve as the size of the context region N and the number of samples
K change on LSTM trained on the SST-2 dataset. Dash line notes for the performance of padding
the context words instead of sampling.

A IMPLEMENTATION DETAILS

Our LSTM classifiers use 1 layer unidirectional LSTM and the number of hidden units is set to
128, 500, and 300 for SST-2, Yelp, and TACRED dataset respectively. For all models, we load the
pretrained 300-dimensional Glove word vectors (Pennington et al., 2014). The language model sam-
pler is also built on LSTM and have the same parameter settings as the classifiers. Our Transformer
models are fine-tuned from pretrained BERT models (Devlin et al., 2018), which have 12 layers and
768 hidden units of per representation. On three datasets, LSTM models achieve 82% accuracy,
95% accuracy, and 0.64 F1 score on average. The fine-tuned BERT models achieve 92% accuracy,
96% accuracy, and 0.68 F1 score on average. We use the same parameter settings between LSTM
classifiers and language models on three datasets. Following Murdoch et al. (2018), we randomly
sample a subset (set to 500 instances) of sentences of length at most 40 words for explanation on
Yelp dataset, and also for TACRED dataset. On TACRED dataset, we generate explanations only
for correctly predicted instances with a label other than no relation.

B PERFORMANCE ON ADVERSARIAL MODELS

For computing context independent importance of a phrase, an intuitive and simple alternative ap-
proach, which is nevertheless neglected in prior literature, is to only feed the input to the model and
treat the prediction score as the explanation. In Table 1, while the score of the Direct Feed is lower
than that of the best performing algorithms, the score is rather competitive.

The potential risk of this explanation is that it assumes model performs reasonably on incomplete
sentence fragments that are significantly out of the data distribution. As a result, the explanation
of short phrases can be misleading. To simulate the situation, we train a LSTM model on inversed
labels on isolate words, in addition to the original training instances. The model could achieve the
same accuracy as the original LSTM model. However, the word ρ and the phrase ρ of Direct Feed
drop by a large margin, showing a word ρ of -0.38 and 0.09. SOC and SCD are still robust on the
adverse LSTM model, both showing a word ρ and phrase ρ of more than 0.60 and 0.55.

The masking operation could also cause performance drop because the masked sentence can be out
of data distribution when explaining long phrases. For SOC, the risk can be resolved by implement-
ing the masking operation of the phrase p by another round of sampling from a language model
conditioned on its context x−p, but we do not find empirical evidence showing that it improves
performance.

C EXPLANATION HEATMAPS
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Model BERT LSTM
Metric word ρavg phrase ρavg word ρavg phrase ρavg

Input Occlusion 0.2947 0.4365 0.7150 0.4968
GradSHAP 0.5444 0.6078 0.7360 0.5449

CD 0.3642 0.3755 0.6962 0.4777
ACD 0.3023 0.3913 0.3210 0.2110
SCD 0.5601 0.6072 0.7348 0.5685
SOC 0.6282 0.6706 0.7430 0.5675

Table 2: Correlation between averaged word & phrase importance attribution and linear model
coefficients and human annotations over all 2210 test instances in SST-2 dataset. The relative per-
formance is similar to the case without score averaging as shown in Table 1.

S-PERSON , a O-NUMBER man from Canada , is accused of shooting Aquash in the head

a O-NUMBER man Aquash in head

, a O-NUMBER man

S-PERSON , a O-NUMBER man

per:age

On the other side , O-PERSON , chairman of the S-ORGANIZATION predicted passage .

O-PERSON , the S-ORGANIZATION

, O-PERSON , chairman the S-ORGANIZATION

side , O-PERSON , chairman the S-ORGANIZATION predicted

side , O-PERSON , chairman of the S-ORGANIZATION predicted

org:top_members/employees

The 19 under arrest , including S-PERSON 's brother O-PERSON , face charges of Mafia association

brother O-PERSON

S-PERSON 's brother O-PERSON ,

per:siblings

Figure 8: More examples about rule extraction from LSTM models trained on TACRED relation
extraction dataset with SOC. Red indicate evidence for predicting the class, and blue indicate dis-
tractor for predicting the class. By applying the agglomerative clustering algorithm and defining a
threshold score, we effectively extract classification rules from LSTM models. The ground truth
label noted on the top

Dataset Label Pattern

SST-2 Positive frighteningly evocative; insight and honesty
Negative neither funny nor provocative; kill the suspense

TACRED
person:age [PERSON], [NUMBER], was; a [NUMBER] man
organization:top-member chief engineer of the [ORGANIZATION]
person:origin [Nationality] citizen; tribal member from [COUNTRY]

Table 3: Phrase-level classification patterns extracted from models. We show the results of SCD and
SOC respectively for the SST-2 and the TACRED dataset.

14



Published as a conference paper at ICLR 2020

It delivers some chills and sustained unease , but flounders in its quest for Deeper Meaning .

chills and its quest Deeper Meaning

chills and sustained for Deeper Meaning

delivers some chills and sustained unease flounders in its quest for Deeper Meaning

delivers some chills and sustained unease , but

delivers some chills and sustained unease , but flounders in its quest for Deeper Meaning

It delivers some chills and sustained unease , but flounders in its quest for Deeper Meaning .

(a) SOC

It delivers some chills and sustained unease , but flounders in its quest for Deeper Meaning .

chills and its quest Deeper Meaning

chills and sustained for Deeper Meaning

delivers some chills and sustained unease flounders in its quest for Deeper Meaning

delivers some chills and sustained unease , but

delivers some chills and sustained unease , but flounders in its quest for Deeper Meaning

It delivers some chills and sustained unease , but flounders in its quest for Deeper Meaning .

(b) SCD

It delivers some chills and sustained unease , but flounders in its quest for Deeper Meaning .

chills and its quest Deeper Meaning

chills and sustained for Deeper Meaning

delivers some chills and sustained unease flounders in its quest for Deeper Meaning

delivers some chills and sustained unease , but

delivers some chills and sustained unease , but flounders in its quest for Deeper Meaning

It delivers some chills and sustained unease , but flounders in its quest for Deeper Meaning .

(c) CD

It delivers some chills and sustained unease , but flounders in its quest for Deeper Meaning .

chills and its quest Deeper Meaning

chills and sustained for Deeper Meaning

delivers some chills and sustained unease flounders in its quest for Deeper Meaning

delivers some chills and sustained unease , but

delivers some chills and sustained unease , but flounders in its quest for Deeper Meaning

It delivers some chills and sustained unease , but flounders in its quest for Deeper Meaning .

(d) GradSHAP

Figure 9: Explanation heatmaps generated by SOC, SCD, CD, and GradSHAP on a negatively
predicted sentence by BERT Transformer model in SST-2 dataset. Only SOC and SCD captures
adversarial conjunction connected by “but”.
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