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ABSTRACT

Modern generative models are usually designed to match target distributions di-
rectly in the data space, where the intrinsic dimensionality of data can be much
lower than the ambient dimensionality. We argue that this discrepancy may con-
tribute to the difficulties in training generative models. We therefore propose to
map both the generated and target distributions to the latent space using the en-
coder of a standard autoencoder, and train the generator (or decoder) to match the
target distribution in the latent space. The resulting method, perceptual generative
autoencoder (PGA), is then incorporated with a maximum likelihood or variational
autoencoder (VAE) objective to train the generative model. With maximum like-
lihood, PGAs generalize the idea of reversible generative models to unrestricted
neural network architectures and arbitrary latent dimensionalities. When combined
with VAEs, PGAs can generate sharper samples than vanilla VAEs. Compared
to other autoencoder-based generative models using simple priors, PGAs achieve
state-of-the-art FID scores on CIFAR-10 and CelebA.

1 INTRODUCTION

Recent years have witnessed great interest in generative models, mainly due to the success of
generative adversarial networks (GANs) (Goodfellow et al., 2014} Radford et al., 2016} |[Karras et al.,
2018}, Brock et al.,2019). Despite their prevalence, the adversarial nature of GANSs can lead to a
number of challenges, such as unstable training dynamics and mode collapse. Since the advent of
GANsS, substantial efforts have been devoted to addressing these challenges (Salimans et al.| 2016}
Arjovsky et al., 2017; Gulrajani et al.,|2017; |[Miyato et al., [2018]), while non-adversarial approaches
that are free of these issues have also gained attention. Examples include variational autoencoders
(VAEs) (Kingma & Welling, [2014), reversible generative models (Dinh et al., |2014; 2017} [Kingma &
Dhariwall, 2018])), and Wasserstein autoencoders (WAEs) (Tolstikhin et al.,[2018)).

However, non-adversarial approaches often have significant limitations. For instance, VAEs tend
to generate blurry samples, while reversible generative models require restricted neural network
architectures or solving neural differential equations (Grathwohl et al.,|2019). Furthermore, to use the
change of variable formula, the latent space of a reversible model must have the same dimensionality
as the data space, which is unreasonable considering that real-world, high-dimensional data (e.g.,
images) tends to lie on low-dimensional manifolds, and thus results in redundant latent dimensions
and variability. Intriguingly, recent research (Arjovsky et al.,|2017; [Da1 & Wipf] |2019) suggests that
the discrepancy between the intrinsic and ambient dimensionalities of data also contributes to the
difficulties in training GANs and VAEs.

In this work, we present a novel framework for training autoencoder-based generative models, with
non-adversarial losses and unrestricted neural network architectures. Given a standard autoencoder
and a target data distribution, instead of matching the target distribution in the data space, we map
both the generated and target distributions to the latent space using the encoder, and train the generator
(or decoder) to minimize the divergence between the mapped distributions. We prove, under mild
assumptions, that by minimizing a form of latent reconstruction error, matching the target distribution
in the latent space implies matching it in the data space. We call this framework perceptual generative
autoencoder (PGA). We show that PGAs enable training generative autoencoders with maximum
likelihood, without restrictions on architectures or latent dimensionalities. In addition, when combined
with VAEs, PGAs can generate sharper samples than vanilla VAES
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‘We summarize our main contributions as follows:

e A training framework, PGA, for generative autoencoders is developed to match the target
distribution in the latent space, which, we prove, ensures the matching in the data space.

e We combine the PGA framework with maximum likelihood, and remove the restrictions of
reversible generative models on neural network architectures and latent dimensionalities.

e We combine the PGA framework with VAE, which solves the problem of blurry samples,
without introducing any auxiliary models or sophisticated model architectures.

2 RELATED WORK

Autoencoder-based generative models are trained by minimizing an data reconstruction loss with
regularizations. As an early approach, denoising autoencoders (DAEs) (Vincent et al., | 2008)) are
trained to recover the original input from an intentionally corrupted input. Then a generative model
can be obtained by sampling from a Markov chain (Bengio et al.,2013). To sample from a decoder
directly, most recent approaches resort to mapping a simple prior distribution to a data distribution
using the decoder. For instance, adversarial autoencoders (AAEs) (Makhzani et al., 2016) and
Wasserstein autoencoders (WAEs) (Tolstikhin et al.| 2018) attempt to match the aggregated posterior
and the prior, either by adversarial training or by minimizing their Wasserstein distance. However,
due to the use of deterministic encoders, there can be “holes” in the latent space that are not covered
by the aggregated posterior, which would result in poor sample quality (Rubenstein et al.l 2018). By
using stochastic encoders and variational inference, variational autoencoders (VAEs) are likely to
suffer less from this problem, but are known to generate blurry samples (Rezende & Violal 2018 |Dai
& Wipf] 2019). Nevertheless, as we will show, the latter problem can be addressed by moving the
VAE reconstruction loss from the data space to the latent space.

In a different line of work, reversible generative models (Dinh et al., 2014;/2017; |Kingma & Dhariwal,
2018) are developed to enable exact inference. Consequently, by the change of variables theorem,
the likelihood of each data sample can be exactly computed and optimized. However, to avoid
expensive Jacobian determinant computations, reversible models can only be composed of restricted
transformations, rather than general neural network architectures. While this restriction can be
relaxed by utilizing recently developed neural ordinary differential equations (Chen et al.l 2018}
Grathwohl et al., [2019), they still rely on a shared dimensionality between latent and data spaces,
which remains an unnatural restriction. In this work, we use the proposed training framework to trade
exact inference for unrestricted neural network architectures and arbitrary latent dimensionalities,
generalizing maximum likelihood training to autoencoder-based models.

3 METHODS

3.1 PERCEPTUAL GENERATIVE MODEL

Let f, : RP — R be the encoder parameterized by ¢, and gy : R¥ — RP be the decoder
parameterized by 6. Our goal is to obtain a decoder-based generative model, which maps a simple
prior distribution to a target data distribution, D. A summary of notations is provided in Appendix [A]
Throughout this paper, we use N (0, 1) as the prior distribution.

For z € R the output of the decoder, gy (z), lies in a manifold that is at most H-dimensional.
Therefore, if we train the autoencoder to minimize
1 N 2

Ly = 5Exp |[%—x[3] . (M
where X = gy ( f¢ (x)), then X can be seen as a projection of the input data, X, onto the manifold
of gp (z). Let D denote the reconstructed data distribution, i.e., X ~ D. Given enough capacity of
the encoder, D is the best approximation to D (in terms of /5-distance), that we can obtain from the
decoder, and thus can serve as a surrogate target distribution for training the decoder-based generative
model.

Due to the dlfﬁculty in directly matching the generated distribution with the data- space target
distribution, D, we reuse the encoder to map Dtoa latent-space target distribution, #. We then
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Figure 1: Illustration of the training process of PGAs. The overall loss function consists of (a) the
basic PGA losses, and either (b) the LPGA-specific losses or (c) the VPGA-specific losses. Circles
indicate where the gradient is truncated, and dashed lines indicate where the gradient is ignored when
updating parameters.

transform the problem of matching D in the data space into matching # in the latent space. In other
words, we aim to ensure that for z ~ N (0, 1), if f; (9o (z)) ~ H, then gy (z) ~ D. In the following,
we define h = f4 o gy for notational convenience.

To this end, we minimize the following latent reconstruction loss w.r.t. ¢:

1

Lin = 5Bz n(0D) [||h(Z) - leg} : 2)

Let Z (x) be the set of all z’s that are mapped to the same x by gg, we have the following theorem:

Theorem 1. Assuming E [z | x] € Z (x) for all x generated by gp, and sufficient capacity of fy; for
z ~ N (0,1), if Eq. @) is minimized and h (z) ~ H, then gy (z) ~ D.

We defer the proof to Appendix Note that Theorem [I|requires that different x’s generated by gg
(from V (0, I) and H) are mapped to different z’s by f,. In theory, minimizing Eq. (Z) would suffice,
since N (0,1) is supported on the whole R¥. However, there can be z’s with low probabilities
in A/ (0, I), but with high probabilities in H that are not well covered by Eq. (Z). Therefore, it is
sometimes helpful to minimize another latent reconstruction loss on H:

1
Ly 30 = 3Ean [0 (2) — 23] 3)

In practice, we observe that Lﬁ ” is often small without explicit minimization, which we attribute to
its consistency with the minimization of L,..

By Theorem the problem of training the generative model reduces to training h to map N (0, I) to

‘H, which we refer to as the perceptual generative model. In the subsequent subsections, we present a
maximum likelihood approach, a VAE-based approach, and a unified approach to train the perceptual
generative model. The basic loss function of PGAs is given by

Lpga = Ly + oszT’ e 5L7;’H, 4)

where « and 3 are hyperparameters to be tuned. Eq. (4) is also illustrated in Fig. [Ta]
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3.2 A MAXIMUM LIKELIHOOD APPROACH

We first assume the invertibility of h. For X ~ D, let z = f, (X) ~ H. We can train & directly with
maximum likelihood using the change of variables formula as
h
det (a (Z)>H' (5)
0z

Ideally, we would like to maximize Eq. (3) only w.r.t. the parameters of the generative model (i.e.,
6). However, directly optimizing the first term in Eq. (5) requires computing z = h~! (z), which is
usually unknown. Nevertheless, for z ~ #, we have h~' () = f, (x) and x ~ D, and thus we can
minimize the following loss function w.r.t. ¢ instead:

1
Loy = ~Ea logp ()] = 5Exep [I1fs ()]3] ©

E, 5 llogp(2)] = Epn {logp (z) — log

To avoid computing the Jacobian in the second term of Eq. (), which is slow for unrestricted
architectures, we approximate the Jacobian determinant and derive a loss function to be minimized
2
[h(z+0) — h(2)l,

w.r.t. 0:
oh (z)) H
det < , (D
[HE Oz

where S (€) can be either A (0, €2I), or a uniform distribution on a small (H —1)-sphere of radius
e centered at the origin. The latter choice is expected to introduce slightly less variance. We show
below that the approximation gives an upper bound when ¢ — 0. Egs. (6) and (7) are illustrated in

Fig.

Proposition 1. Fore — 0,

8h(z)>‘ H Ik (z + 6) — h (z)|
d < ZEsosio |1 ) 8
(57| = 5Bms |1 1613 v

The inequality is tight if h is a multiple of the identity function around z.

H
Lfnz = EEzmeS(e) llog ~ Epon [log

log

We defer the proof to Appendix [B.2] We note that the above discussion relies on the invertibility of
h, which, however, is not required by the resulting method. Indeed, when £ is invertible at some
point z, the latent reconstruction loss ensures that h is close to the identity function around z, and
hence the tightness of the upper bound in Eq. (8). Otherwise, when h is not invertible at some z,
the logarithm of the Jacobian determinant at z becomes infinite, in which case Eq. (3) cannot be
optimized. Nevertheless, since ||h (z + §) — h (z) ||§ is unlikely to be zero if the model is properly
initialized, the approximation in Eq. (/) remains finite, and thus can be optimized regardless.

To summarize, we train the autoencoder to obtain a generative model by minimizing the following
loss function:

Lipga = Lpga +7 (Lfblz + Lfﬂl) : 9)
We refer to this approach as maximum likelihood PGA (LPGA).

3.3 A VAE-BASED APPROACH

The original VAE is trained by maximizing the evidence lower bound on log p (x) as
logp (x) > logp (x) = KL(q (z' [ x) || p (2" | %))
=Eynga | x logp (x| 2)] = KL(q (2" | x) || p(2)),
where p (x | z') is modeled with the decoder, and ¢ (z’ | x) is modeled with the encoder. Note that
z’ denotes the stochastic version of z, whereas z remains deterministic for the basic PGA losses in

Egs. (2) and (3)). In our case, we would like to modify Eq. (I0) in a way that helps maximize log p (2).
Therefore, we replace p (x | z') on the r.h.s. of Eq. with p (2 | z’), and derive a lower bound on

logp (z) as

(10)

logp () >logp (2) — KL(q (2’ | x) || p (2" | 2))

A ! ! !/ 1])
— By | logp (2| 2)] - KL(q (' | %) || p()). (

4
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Similar to the original VAE, we make the assumption that ¢ (z’ | x) and p (z | z’) are Gaussian;
ie, q(z | x) = N(z ’ we (%), diag ((735 (x))),and p (2| 2') = N (2 ’ po,6 (2') ,0°T). Here,
te () = fo (), to,¢ (-) = h (-), and o > 0 is a tunable scalar. Note that if o is fixed, the first term
on the r.h.s. of Eq. @ has a trivial maximum, where z, Z, and j19 ¢ (z') are all close to zero. To
circumvent this, we set o proportional to the {5-norm of z.

The VAE variant is trained by minimizing
Lyae = Lor + L = ~Exp [Eygi | ) logp (2| 2)] —KL(g (2 | x) || p(2)], (12)

where L,, and L¢ , are, respectively, the reconstruction and KL divergence losses of VAE, as
illustrated in Fig. Accordingly, the overall loss function is given by

vaga = Lpga + NLyge- (13)
We refer to this approach as variational PGA (VPGA).

3.4 A HIGH-LEVEL VIEW OF THE PGA FRAMEWORK

We summarize what each loss term achieves, and explain from a high-level how they work together.

Data reconstruction loss (Eq. (I))): For Theorem [I]to hold, we need to use the reconstructed data
distribution (25), instead of the original data distribution (D), as the target distribution. Therefore,
minimizing the data reconstruction loss ensures that the target distribution is close to the data
distribution.

Latent reconstruction loss (Eqgs. (2) and (3)): The encoder (f,) is reused to map data-space distri-
butions to the latent space. As shown by Theorem [I] minimizing the latent reconstruction loss (w.r.t.
the parameters of the encoder) ensures that if the generated distribution and the target distribution
can be mapped to the same distribution (H) in the latent space by the encoder, then the generated
distribution and the target distribution are the same.

Maximum likelihood loss (Egs. (6) and (7)) or VAE loss (Eq. (12)): The decoder (gy) and encoder
(f4) together can be considered as a perceptual generative model (f o gg), which is trained to map

N (0,1) to the latent-space target distribution (H) by minimizing either the maximum likelihood loss
or the VAE loss.

The first loss allows to use the reconstructed data distribution as the target distribution. The second
loss transforms the problem of matching the target distribution in the data space into matching it
in the latent space. The latter problem is then solved by the third loss. Therefore, the three losses
together ensure that the generated distribution is close to the data distribution.

3.5 A UNIFIED APPROACH

While the loss functions of maximum likelihood and VAE seem completely different in their original
forms, they share remarkable similarities when considered in the PGA framework (see Figs. [Ibland
[Ic). Intuitively, observe that

1
Lgkl = Lill + §]EX~D Z [035,1' (x) — log (Ui,i x))], (14)
i€[H]

which means both Li ; and Lfkl tend to attract the latent representations of data samples to the origin.

In addition, Lfﬂ ; €xpands the volume occupied by each sample in the latent space, which can be also
achieved by L, with the second term of Eq. (T4).

More concretely, we observe that both Lfll ; and L, are minimizing the difference between h (z) and
h(z+ ¢'), where ¢’ is some additive zero-mean noise. However, they differ in that the variance of ¢’
is fixed for LY, but is trainable for L,,,; and the distance between h (z) and h (z + J') are defined in
two different ways. In fact, L., is a squared ¢-distance derived from the Gaussian assumption on 2,
whereas LY, can be derived similarly by assuming that /¥ = ||z — h (z + 6) ||£{ follows a reciprocal
distribution as 1

PU%0:) = G log (5) —Tog (@) as
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where a < d < b, and @ > 0. The exact values of @ and b are irrelevant, as they only appear in an
additive constant when we take the logarithm of p (d*; a,b).

Since there is no obvious reason for assuming Gaussian z, we can instead assume z to follow the
distribution defined in Eq. (T3]), and multiply H by a tunable scalar, ', similar to . Furthermore,
we can replace 4 in Bq. (7) with &' ~ N'(0, diag (o7 (x) )), as it is defined for VPGA with a subtle

difference that here 035 (x) is constrained to be greater than €2. As a result, LPGA and VPGA are
unified into a single approach, which has a combined loss function as

Livpga = Lpga + ¥ Lur + 'VLZH + ankl' (16)
When 7/ = v and np = 0, Eq. (16) is equivalent to Eq. (9), considering that ai (x) will be optimized
to approach ¢2. Similarly, when v = 0, Eq. (T6) is equivalent to Eq. (T3)). Interestingly, it also

becomes possible to have a mix of LPGA and VPGA by setting all three hyperparameters to positive
values. We refer to this approach as LVPGA.

4 EXPERIMENTS

In this section, we evaluate the performance of LPGA and VPGA on three image datasets, MNIST
(LeCun et al., |1998)), CIFAR-10 (Krizhevsky & Hinton, 2009), and CelebA (Liu et al.,2015)). For
CelebA, we employ the discriminator and generator architecture of DCGAN (Radford et al., 2016)
for the encoder and decoder of PGA. We half the number of filters (i.e., 64 filters for the first
convolutional layer) for faster experiments, while more filters are observed to improve performance.
Due to smaller input sizes, we reduce the number of convolutional layers accordingly for MNIST
and CIFAR-10, and add a fully-connected layer of 1024 units for MNIST, as done in |Chen et al.
(2016). SGD with a momentum of 0.9 is used to train all models. Other hyperparameters are tuned
heuristically, and could be improved by a more extensive grid search. For fair comparison, o is tuned
for both VAE and VPGA. All experiments are performed on a single GPU.

Table 1: FID scores of autoencoder-based generative models. The first block shows the results
from [Ghosh et al.| (2019)), where CV-VAE stands for constant-variance VAE, and RAE stands for
regularized autoencoder. The second block shows our results of LPGA, VPGA, LVPGA, and VAE.

Model MNIST CIFAR-10 CelebA

VAE 19.21 106.37 48.12
CV-VAE 33.79 94.75 48.87

WAE 20.42 117.44 53.67
RAE-L2 22.22 80.80 51.13
RAE-SN  19.67 84.25 44.74

VAE 15.55 £0.18 115.74 £ 0.63  43.60 £ 0.33

LPGA 12.06 £0.12 55.87 £ 0.25 14.53 £ 0.52
VPGA 11.67 +£0.21 51.51+1.16 24.73+£1.25
LVPGA 11.45+0.25 52.94£0.89 13.80 +0.20

As shown in Fig. 2] the visual quality of the PGA-generated samples is significantly improved over
that of VAEs. In particular, PGAs generate much sharper samples on CIFAR-10 and CelebA compared
to vanilla VAEs. The results of LVPGA much resemble that of either LPGA or VPGA, depending on
the hyperparameter settings. In addition, we use the Fréchet Inception Distance (FID) (Heusel et al.,
2017) to evaluate the proposed methods, as well as VAE. For each model and each dataset, we take
5,000 generated samples to compute the FID score. The results (with standard errors of 3 or more
runs) are summarized in Table.[T] Compared to other autoencoder-based non-adversarial approaches
(Tolstikhin et al., 2018} | Kolouri et al., 2019} |Ghosh et al.;, 2019), where similar but larger architectures
are used, we obtain substantially better FID scores on CIFAR-10 and CelebA. Note that the results
from |Ghosh et al.| (2019) shown in Table. [T]are obtained using slightly different architectures and
evaluation protocols. Nevertheless, their results of VAE align well with ours, suggesting a good
comparability of the results. Interestingly, as a unified approach, LVPGA can indeed combine the
best performances of LPGA and VPGA on different datasets. For CelebA, we further show results on
140x140 crops in Fig.[5] and latent space interpolations in Fig. 6| (see Appendix [C).
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(a) MNIST by LPGA

Figure 2: Random samples generated by LPGA, VPGA, and VAE.

The training process of PGAs is stable in general, given the non-adversarial losses. As shown in
Fig. 4] the total losses change little after the initial rapid drops. This is due to the fact that the
encoder and decoder are optimized towards different objectives, as can be observed from Eqs. (@),
©). and (I2). In contrast, the corresponding FIDs, shown in Fig.[3b] tend to decrease monotonically
during training. However, when trained on CelebA, there is a significant performance gap between
LPGA and VPGA, and the FID of the latter starts to increase after a certain point of training. We
suspect this phenomenon is related to the limited expressiveness of the variational posterior, which is
not an issue for LPGA.

It is worth noting that stability issues can occur when batch normalization (loffe & Szegedy}, 2015)) is
introduced, since both the encoder and decoder are fed with multiple batches drawn from different
distributions. At convergence, different input distributions to the decoder (e.g., H and N (0,1))
are expected to result in similar distributions of the internal representations, which, intriguingly,
can be imposed to some degree by batch normalization. Therefore, it is observed that when batch
normalization does not cause stability issues, it can substantially accelerate convergence and lead to
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Figure 3: Training curves of LPGA and VPGA.

slightly better generative performance. Furthermore, we observe that LPGA tends to be more stable
than VPGA in the presence of batch normalization.

Finally, we conduct an ablation study. While the loss functions of LPGA and VPGA both consist
of multiple components, they are all theoretically motivated and indispensable. Specifically, the
data reconstruction loss minimizes the discrepancy between the input data and its reconstruction.
Since the reconstructed data distribution serves as the surrogate target distribution, removing the
data reconstruction loss will result in a random target. Moreover, removing the maximum likelihood
loss of LPGA or the VAE loss of VPGA will leave the perceptual generative model untrained. In
both cases, no valid generative model can be obtained. Nevertheless, it is interesting to see how the
latent reconstruction loss contributes to the generative performance. Therefore, we retrain the LPGAs
without the latent reconstruction loss and report the results in Fig.[d] Compared to Fig. 2a] 2d] 2g]
and the results in Table[I] the performance significantly degrades both visually and quantitatively,
confirming the importance of the latent reconstruction loss.
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5 CONCLUSION

We proposed a framework, PGA, for training autoencoder-based generative models, with non-
adversarial losses and unrestricted neural network architectures. By matching target distributions in
the latent space, PGAs trained with maximum likelihood generalize the idea of reversible generative
models to unrestricted neural network architectures and arbitrary latent dimensionalities. In addition,
it improves the performance of VAE when combined together. Under the PGA framework, we further
show that maximum likelihood and VAE can be unified into a single approach.

In principle, the PGA framework can be combined with any method that can train the perceptual
generative model. While we have only considered non-adversarial approaches, an interesting future
work would be to combine it with an adversarial discriminator trained on latent representations.
Moreover, the compatibility issue with batch normalization deserves further investigation.
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A NOTATIONS

Table 2: Notations and definitions

folge | encoder/decoder of an autoencoder
h T h=fsog
@/ | parameters of the encoder/decoder
D/H | dimensionality of the data/latent space
D distribution of data samples denoted by x
H distribution of f, (x) for x ~ D
D distribution of X = gp (f4 (x)) forx ~ D
H distribution of z = h (z) forz ~ H
L, standard reconstruction loss of the autoencoder
Lﬁ | latent reconstruction loss of PGA for z ~ N (0, I), minimized w.r.t. ¢

Lf; 4 | latent reconstruction loss of PGA for z ~ H, minimized w.r.t. ¢

Lf; ;| part of the negative log-likelihood loss of LPGA, minimized w.r.t. ¢
L%, | part of the negative log-likelihood loss of LPGA, minimized w.r.t.
Ly VAE reconstruction loss of VPGA

Lyi; | VAE KL-divergence loss of VPGA

Lyge | Lyae = Lyr + Lyki, VAE loss of VPGA
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B PROOFS

B.1 THEOREM[I]

Proof sketch. We first show that any different x’s generated by gy are mapped to different z’s by
fo- Letx1 = go (z1), X2 = gp (22), and X1 # x3. Since f,, has sufficient capacity and Eq. ) is
minimized, we have fy4 (x1) = E [z | x;1] and f4 (x2) = E [2z5 | x2]. By assumption, fy (x1) €
Z (x1) and fy (x2) € Z (x2). Therefore, since Z (x1) N Z (x2) = &, we have fy (x1) # fs (x2).

For z ~ N (0,1), denote the distributions of gy (z) and h (z), respectively, by D and H. We then
consider the case where D and D are discrete distributions. If gy (z) ~ D, then there exists an x
that is generated by g, such that pz (fs (X)) = pp (X) # pp (X) = py (fe (X)), contradicting that

h(z) ~ 7. The result still holds when D and D approach continuous distributions, in which case

D = D almost everywhere. O

B.2 PROPOSITION[I]

Proof. LetJ (z) = Oh(z) /02, P =[01 62 -+ Opl,andP =T (2)P =[5, &y --- bul,
where A = {01,02,...,dp} is an orthogonal set of H-dimensional vectors. Since det (f’) =
det (J (z)) det (P), we have

log |det (J (2))| = log ‘det (fr)‘ ~ log |det (P)] . 17)
By the geometric interpretation of determinants, the volume of the parallelotope spanned by A is
Vol (A) = |det (P)| = [T Il (18)

i1€[H]
where [H] = {1,2,...,H}. While A= {51, by, SH} is not necessarily an orthogonal set, an
upper bound on Vol (A) can be derived in a similar fashion. Let Ak = {31, 52, e 5k }, and ay be
the included angle between 65 and the plane spanned by Ay_1. We have
Vol (Az) = | 4 H2 H52H2sma2,and Vol (&) = Vol (A1) || H2sinak. (19)
Given fixed Hgk H2 ,Vk € [H], Vol (Ag) is maximized when ay = 7/2, i.e., 51 and &, are
orthogonal; and Vol (Ak> is maximized when Vol (Ak_l) is maximized and ar = 7w/2. By

induction on k, we can conclude that Vol (A) is maximized when A = A # 1s an orthogonal set,
and therefore

1(A) = aet (P)] < 5l 2
() - o (5)] = 17 5],
Combining Eq. with Eqgs. (I8) and (20), we obtain
< il — il ) -
1og|det<J<z>>|_;] (1og [ 5], — 102 151, @1

1€

We proceed by randomizing A. Let Ay, = {41, b2, ..., 0% }. We inductively construct an orthogonal
set, A = Ap. Instep 1, §; is sampled from S (¢), a uniform distribution on a (H — 1)-sphere of
radius €, S (€), centered at the origin of an H-dimensional space. In step k, dy is sampled from
S (€; Ak—1), a uniform distribution on an (H—k)-sphere, S (¢; Ap_1), in the orthogonal complement
of the space spanned by Ay _1. Step k is repeated until H mutually orthogonal vectors are obtained.

Obviously, when k = H — 1, forall j > kand j < H, p(§; | Ax) = p(d; | Ag—1) =
S| eAr_1) = S(0j | & Ag). When1 < k < H, assuming for all j > kand j < H,
p(0; | Ax) =S (65 | & Ag), we get

p(5; | Apy) = / Pk | Der) p (55 | Ar) dbi, 22)
S(e;Ak—1U{d;})

11



Under review as a conference paper at ICLR 2020

where S (e; Ap_1 U {d;}) is in the orthogonal complement of the space spanned by Ay_q U {4;}.
Since p (i | Ag—1) is a constant on S (0x | €, A1), and S (; Ap—1 U{d;}) C S (€ A1),
P (0k | Ak—1) is also a constant on S (¢; Ag_1 U {d;}). In addition, o, € S (¢; Ap—1 U {J;}) im-
plies that §; € S (e;Ay), on which p (6, | Ay) is also a constant. Then it follows from Eq. (22)
that, for all §; € S (¢; Ax—1), p(; | Ax—1) is a constant. Therefore, forall j > k — 1 and j < H,
p(d; | Ag—1) = S(J; | €, Ag—1). By backward induction on k, we conclude that the marginal
probability density of dy, for all k € [H],is p (0) = S (0k | €).

Since Eq. (21)) holds for any randomly (as defined above) sampled A, we have

log |det (J (z)| <Ea | (log‘ o 2_10g||6i||2)
i€[H] (23)

= HEs.s(¢) {log H5”2 - log|\5||2] :

If h is a multiple of the identity function around z, then J (z) = C1T, where C' € R is a constant. In

this case, A becomes an orthogonal set as A, and therefore the inequalities in Eqs. (20), (1)), and
become tight. Furthermore, it is straightforward to extend the above result to the case § ~ N (0, 1),

considering that N (0, ¢*I) is a mixture of S (¢) with different €’s.
The Taylor expansion of h around z gives
h(z+6)=h(z)+JI(z)s+ 0 (5°). (24)

Therefore, for § — 0 or € — 0, we have 6 = J (z) § = h (z + 6) — h (z). The result follows. [

C MORE RESULTS ON CELEBA

In Fig. 5] we compare the generated samples and FID scores of LPGA and VAE on 140x140 crops.
In this experiment, we use the full DCGAN architecture (i.e., 128 filters for the first convolutional
layer) for both LPGA and VAE. Other hyperparameter settings remain the same as for 108x108 crops.
In Fig. |6l we show latent space interpolations of CelebA samples.

a e L 1@’

gv

[ 2l N

(a) LPGA, FID = 21.35

Figure 5: Random CelebA (140x140 crops) samples generated by LPGA and VAE.
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(c) Interpolatlons generated by VAE.

Figure 6: Latent space interpolations on CelebA.
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