
CAQL: CONTINUOUS ACTION Q-LEARNING

Moonkyung Ryu*, Yinlam Chow*, Ross Anderson, Christian Tjandraatmadja, Craig Boutilier
Google Research
{mkryu,yinlamchow,rander,ctjandra,cboutilier}@google.com

ABSTRACT

Value-based reinforcement learning (RL) methods like Q-learning have shown
success in a variety of domains. One challenge in applying Q-learning to
continuous-action RL problems, however, is the continuous action maximization
(max-Q) required for optimal Bellman backup. In this work, we develop CAQL, a
(class of) algorithm(s) for continuous-action Q-learning that can use several plug-
and-play optimizers for the max-Q problem. Leveraging recent optimization re-
sults for deep neural networks, we show that max-Q can be solved optimally us-
ing mixed-integer programming (MIP). When the Q-function representation has
sufficient power, MIP-based optimization gives rise to better policies and is more
robust than approximate methods (e.g., gradient ascent, cross-entropy search). We
further develop several techniques to accelerate inference in CAQL, which despite
their approximate nature, perform well. We compare CAQL with state-of-the-art
RL algorithms on benchmark continuous-control problems that have different de-
grees of action constraints and show that CAQL outperforms policy-based meth-
ods in heavily constrained environments, often dramatically.

1 INTRODUCTION

Reinforcement learning (RL) has shown success in a variety of domains such as games (Mnih et al.,
2013) and recommender systems (RSs) (Gauci et al., 2018). When the action space is finite, value-
based algorithms such as Q-learning (Watkins & Dayan, 1992), which implicitly finds a policy by
learning the optimal value function, are often very efficient because action optimization can be done
by exhaustive enumeration. By contrast, in problems with a continuous action spaces (e.g., robotics
(Peters & Schaal, 2006)), policy-based algorithms, such as policy gradient (PG) (Sutton et al., 2000;
Silver et al., 2014) or cross-entropy policy search (CEPS) (Mannor et al., 2003; Kalashnikov et al.,
2018), which directly learn a return-maximizing policy, have proven more practical. Recently, meth-
ods such as ensemble critic (Fujimoto et al., 2018) and entropy regularization (Haarnoja et al., 2018)
have been developed to improve the performance of policy-based RL algorithms.

Policy-based approaches require a reasonable choice of policy parameterization. In some continu-
ous control problems, Gaussian distributions over actions conditioned on some state representation
is used. However, in applications such as RSs, where actions often take the form of high-dimensional
item-feature vectors, policies cannot typically be modeled by common action distributions. Further-
more, the admissible action set in RL is constrained in practice, for example, when actions must
lie within a specific range for safety (Chow et al., 2018). In RSs, the admissible actions are often
random functions of the state (Boutilier et al., 2018). In such cases, it is non-trivial to define policy
parameterizations that handle such factors. On the other hand, value-based algorithms are well-
suited to these settings, providing potential advantage over policy methods. Moreover, at least with
linear function approximation (Melo & Ribeiro, 2007), under reasonable assumptions, Q-learning
converges to optimality, while such optimality guarantees for non-convex policy-based methods are
generally limited (Fazel et al., 2018). Empirical results also suggest that value-based methods are
more data-efficient and less sensitive to hyper-parameters (Quillen et al., 2018). Of course, with
large action spaces, exhaustive action enumeration in value-based algorithms can be expensive—-
one solution is to represent actions with continuous features (Dulac-Arnold et al., 2015).

The main challenge in applying value-based algorithms to continuous-action domains is selecting
optimal actions (both at training and inference time). Previous work in this direction falls into three
broad categories. The first solves the inner maximization of the (optimal) Bellman residual loss
using global nonlinear optimizers, such as the cross-entropy method (CEM) for QT-Opt (Kalash-
nikov et al., 2018), gradient ascent (GA) for actor-expert (Lim et al., 2018), and action discretization
(Uther & Veloso, 1998; Smart & Kaelbling, 2000; Lazaric et al., 2008). However, these approaches
do not guarantee optimality. The second approach restricts the Q-function parameterization so that
the optimization problem is tractable. For instance, one can discretize the state and action spaces and
use a tabular Q-function representation. However, due to the curse of dimensionality, discretizations

1

must generally be coarse, often resulting in unstable control. Millán et al. (2002) circumvents this
issue by averaging discrete actions weighted by their Q-values. Wire-fitting (Gaskett et al., 1999;
III & Klopf, 1993) approximates Q-values piecewise-linearly over a discrete set of points, chosen to
ensure the maximum action is one of the extreme points. The normalized advantage function (NAF)
(Gu et al., 2016) constructs the state-action advantage function to be quadratic, hence analytically
solvable. Parameterizing the Q-function with an input-convex neural network (Amos et al., 2017)
ensures it is concave. These restricted functional forms, however, may degrade performance if the
domain does not conform to the imposed structure. The third category replaces optimal Q-values
with a “soft” counterpart (Haarnoja et al., 2018): an entropy regularizer ensures that both the opti-
mal Q-function and policy have closed-form solutions. However, the sub-optimality gap of this soft
policy scales with the interval and dimensionality of the action space (Neu et al., 2017).

Motivated by the shortcomings of prior approaches, we propose Continuous Action Q-learning
(CAQL), a Q-learning framework for continuous actions in which the Q-function is modeled by
a generic feed-forward neural network.1 Our contribution is three-fold. First, we develop the CAQL
framework, which minimizes the Bellman residual in Q-learning using one of several “plug-and-
play” action optimizers. We show that “max-Q” optimization, when the Q-function is approximated
by a deep ReLU network, can be formulated as a mixed-integer program (MIP) that solves max-Q
optimally. When the Q-function has sufficient representation power, MIP-based optimization in-
duces better policies and is more robust than methods (e.g., CEM, GA) that approximate the max-Q
solution. Second, to improve CAQL’s practicality for larger-scale applications, we develop three
speed-up techniques for computing max-Q values: (i) dynamic tolerance; (ii) dual filtering; and
(iii) clustering. Third, we compare CAQL with several state-of-the-art RL algorithms on several
benchmark problems with varying degrees of action constraints. Value-based CAQL is generally
competitive, and outperforms policy-based methods in heavily constrained environments, some-
times significantly. We also study the effects of our speed-ups through ablation analysis.

2 PRELIMINARIES

We consider an infinite-horizon, discounted Markov decision process (Puterman, 2014) with states
X , (continuous) action space A, reward function R, transition kernel P , initial state distribu-
tion β and discount factor γ ∈ [0, 1), all having the usual meaning. A (stationary, Marko-
vian) policy π specifies a distribution π(·|x) over actions to be taken at state x. Let ∆ be the
set of such policies. The expected cumulative return of π ∈ ∆ is J(π) := E[

∑∞
t=0 γ

trt |
P,R, x0 ∼ β, π]. An optimal policy π∗ satisfies π∗ ∈ arg maxπ∈∆ J(π). The Bellman op-
erator F [Q](x, a) = R(x, a) + γ

∑
x′∈X P (x′|x, a) maxa′∈AQ(x′, a′) over state-action value

function Q has unique fixed point Q∗(x, a) (Puterman, 2014), which is the optimal Q-function
Q∗(x, a) = E [

∑∞
t=0 γ

tR(xt, at) | x0 = x, a0 = a, π∗]. An optimal (deterministic) policy π∗ can
be extracted from Q∗: π∗(a|x) = 1{a = a∗(x)}, where a∗(x) ∈ arg maxaQ

∗(x, a).

For large or continuous state/action spaces, the optimal Q-function can be approximated, e.g., using
a deep neural network (DNN) as in DQN (Mnih et al., 2013). In DQN, the value function Qθ
is updated using the value label r + γmaxa′ Qθtarget(x′, a′), where Qθtarget is a target Q-function.
Instead of training these weights jointly, θtarget is updated in a separate iterative fashion using the
previous θ for a fixed number of training steps, or by averaging θtarget ← τθ + (1 − τ)θtarget for
some small momentum weight τ ∈ [0, 1] (Mnih et al., 2016). DQN is off-policy—the target is valid
no matter how the experience was generated (as long as it is sufficiently exploratory). Typically,
the loss is minimized over mini-batches B of past data (x, a, r, x′) sampled from a large experience
replay bufferR (Lin & Mitchell, 1992). One common loss function for trainingQθ∗ is mean squared
Bellman error: minθ

∑|B|
i=1 (Qθ(xi, ai)− ri − γmaxa′ Qθtarget(x′i, a

′))
2
. Under this loss, RL can be

viewed as `2-regression ofQθ(·, ·) w.r.t. target labels r+γmaxa′ Qθtarget(x′, a′). We augment DQN,
using double Q-learning for more stable training (Hasselt et al., 2016), whose loss is:

min
θ

|B|∑
i=1

(
ri + γQθtarget(x′i, arg max

a′
Qθ(x

′
i, a
′))−Qθ(xi, ai)

)2

. (1)

A hinge loss can also be used in Q-learning, and has connections to the linear programming (LP)
formulation of the MDP (Puterman (2014)). The optimal Q-network weights can be specified as:
minθ

1
|B|
∑|B|
i=1Qθ(xi, ai) + λ (ri + γmaxa′∈AQθ(x

′
i, a
′)−Qθ(xi, ai))+, where λ > 0 is a tun-

1Results can be extended to handle convolutional NNs, but are omitted for brevity.

2

able penalty w.r.t. constraint: r+γmaxa′∈AQθ(x
′, a′) ≤ Qθ(x, a), ∀(x, a, r, x′) ∈ B. To stabilize

training, we replace the Q-network of the inner maximization with the target Q-network and the
optimal Q-value with the double-Q label, giving (see Appendix A for details):

min
θ

1

|B|

|B|∑
i=1

Qθ(xi, ai) + λ
(
ri + γQθtarget(x′i, arg max

a′
Qθ(x

′
i, a
′))−Qθ(xi, ai)

)
+
. (2)

In this work, we assume the Q-function approximation Qθ to be a feed-forward network. Specif-
ically, let Qθ be a K-layer feed-forward NN with state-action input (x, a) (where a lies in a d-
dimensional real vector space) and hidden layers arranged according to the equations:

z1 = (x, a), ẑj = Wj−1zj−1 + bj−1, zj = h(ẑj), j = 2, . . . ,K, Qθ(x, a) := c>ẑK ,
2 (3)

where (Wj , bj) are the multiplicative and bias weights, c is the output weight of the Q-network,
θ =

(
c, {(Wj , bj)}K−1

j=1

)
are the weights of the Q-network, ẑj denotes pre-activation values at

layer j, and h(·) is the (component-wise) activation function. For simplicity, in the following
analysis, we restrict our attention to the case when the activation functions are ReLU’s. We also
assume that the action space A is a d-dimensional `∞-ball B∞(a,∆) with some radius ∆ > 0
and center a. Therefore, at any arbitrary state x ∈ X the max-Q problem can be re-written as
q∗x := maxa∈AQθ(x, a) = max{ẑj}Kj=2,{zj}

K−1
j=2

{
c>ẑK : z1 = (x, a), a ∈ B∞(a,∆), eqs. (3)

}
.

While the above formulation is intuitive, the nonlinear equality constraints in the neural network
formulation (3) makes this problem non-convex and NP-hard (Katz et al., 2017).

3 CONTINUOUS ACTION Q-LEARNING ALGORITHM

Policy-based methods (Silver et al., 2014; Fujimoto et al., 2018; Haarnoja et al., 2018) have been
widely-used to handle continuous actions in RL. However, they suffer from several well-known
difficulties, e.g., (i) modeling high-dimensional action distributions, (ii) handling action constraints,
and (iii) data-inefficiency. Motivated by earlier work on value-based RL methods, such as QT-
Opt (Kalashnikov et al., 2018) and actor-expert (Lim et al., 2018), we propose Continuous Action
Q-learning (CAQL), a general framework for continuous-action value-based RL, in which the Q-
function is parameterized by a NN (Eq. 3). One novelty of CAQL is the formulation of the “max-Q”
problem, i.e., the inner maximization in (1) and (2), as a mixed-integer programming (MIP).

The benefit of the MIP formulation is that it guarantees that we find the optimal action (and its true
bootstrapped Q-value) when computing target labels (and at inference time). We show empirically
that this can induce better performance, especially when the Q-network has sufficient representa-
tion power. Moreover, since MIP can readily model linear and combinatorial constraints, it offers
considerable flexibility when incorporating complex action constraints in RL. That said, finding the
optimal Q-label (e.g., with MIP) is computationally intensive. To alleviate this, we develop several
approximation methods to systematically reduce the computational demands of the inner maximiza-
tion. In Sec. 3.2, we introduce the action function to approximate the arg max-policy at inference
time, and in Sec. 4 we propose three techniques, dynamic tolerance, dual filtering, and clustering,
to speed up max-Q computation during training.

3.1 PLUG-N-PLAY MAX-Q OPTIMIZERS

In this section, we illustrate how the max-Q problem, with the Q-function represented by a ReLU
network, can be formulated as a MIP, which can be solved using off-the-shelf optimization packages
(e.g., SCIP (Gleixner et al., 2018), CPLEX (CPLEX, 2019), Gurobi (Gurobi, 2019)). In addition,
we detail how approximate optimizers, specifically, gradient ascent (GA) and the cross-entropy
method (CEM), can trade optimality for speed in max-Q computation within CAQL. For ease of
exposition, we focus on Q-functions parameterized by a feedforward ReLU network. Extending
our methodology (including the MIP formulation) to convolutional networks (with ReLU activation
and max pooling) is straightforward (see Anderson et al. (2019)). While GA and CEM can handle
generic activation functions beyond ReLU, our MIP requires additional approximations for those
that are not piecewise linear.

Mixed-Integer Programming (MIP) A trained feed-forward ReLU network can be modeled as a
MIP by formulating the nonlinear activation function at each neuron with binary constraints. Specif-
ically, for a ReLU with pre-activation function of form z = max{0, w>x+ b}, where x ∈ [`, u] is a

2Without loss of generality, we simplify the NN by omitting the output bias and output activation function.

3

d-dimensional bounded input, w ∈ Rd, b ∈ R, and `, u ∈ Rd are the weights, bias and lower-upper
bounds respectively, consider the following set with a binary variable ζ indicating whether the ReLU
is active or not:

R(w, b, `, u) =

{
(x, z, ζ)

∣∣∣ z ≥ w>x+ b, z ≥ 0, z ≤ w>x+ b−M−(1− ζ), z ≤M+ζ,

(x, z, ζ) ∈ [`, u]× R× {0, 1}

}
.

In this formulation, both M+ = maxx∈[`,u] w
>x + b and M− = minx∈[`,u] w

>x + b can be
computed in linear time in d. We assume M+ > 0 and M− < 0, otherwise the function can be
replaced by z = 0 or z = w>x + b. These constraints ensure that z is the output of the ReLU: If
ζ = 0, then they are reduced to z = 0 ≥ w>x+b, and if ζ = 1, then they become z = w>x+b ≥ 0.

This can be extended to the ReLU network in (3) by chaining copies of intermediate ReLU formu-
lations. More precisely, if the ReLU Q-network has mj neurons in layer j ∈ {2, . . . ,K}, for any
given state x ∈ X , the max-Q problem can be reformulated as the following MIP:

q∗x = max c>zK (4)
s.t. z1 := a ∈ B∞(a,∆),

(zj−1, zj,i, ζj,i) ∈ R(Wj,i, bj,i, `j−1, uj−1), j ∈ {2, . . . ,K}, i ∈ {1, . . . ,mj},

where `1 = a − ∆, u1 = a + ∆ are the (action) input-bound vectors. Since the output layer of
the ReLU NN is linear, the MIP objective is linear as well. Here, Wj,i ∈ Rmj and bj,i ∈ R are
the weights and bias of neuron i in layer j. Furthermore, `j , uj are interval bounds for the outputs
of the neurons in layer j for j ≥ 2, and computing them can be done via interval arithmetic or
other propagation methods (Weng et al., 2018) from the initial action space bounds (see Appendix
C for details). As detailed by Anderson et al. (2019), this can be further tightened with additional
constraints, and its implementation can be found in the tf.opt package described therein. As long as
these bounds are redundant, having these additional box constraints will not affect optimality. We
emphasize that the MIP returns provably global optima, unlike GA and CEM. Even when interrupted
with stopping conditions such as a time limit, MIP often produces high-quality solutions in practice.

In theory, this MIP formulation can be solved in time exponential on the number of ReLUs and
polynomial on the input size (e.g., by naively solving an LP for each binary variable assignment). In
practice however, a modern MIP solver combines many different techniques to significantly speed
up this process, such as branch-and-bound, cutting planes, preprocessing techniques, and primal
heuristics (Linderoth & Savelsbergh, 1999). Versions of this MIP model have been used in neural
network verification (Cheng et al., 2017; Lomuscio & Maganti, 2017; Bunel et al., 2018; Dutta et al.,
2018; Fischetti & Jo, 2018; Anderson et al., 2019; Tjeng et al., 2019) and analysis (Serra et al., 2018;
Kumar et al., 2019), but its application to RL is novel. While Say et al. (2017) also proposed a MIP
formulation to solve the planning problem with non-linear state transition dynamics model learned
with a NN, it is different than ours, which solves the max-Q problem.

Gradient Ascent GA (Nocedal & Wright, 2006) is a simple first-order optimization method for
finding the (local) optimum of a differentiable objective function, such as a neural network Q-
function. At any state x ∈ X , given a “seed” action a0, the optimal action arg maxaQθ (x, a)
is computed iteratively by at+1 ← at + η∇aQθ(x, a), where η > 0 is a step size (either a tun-
able parameter or computed using back-tracking line search (Nocedal & Yuan, 1998)). This process
repeats until convergence, |Qθ(x, at+1)−Qθ(x, at)| < ε, or a maximum iteration count is reached.

Cross-Entropy Method CEM (Rubinstein, 1999) is a derivative-free optimization algorithm. At
any given state x ∈ X , it samples a batch of N actions {ai}Ni=1 from A using a fixed distribution
(e.g., a Gaussian) and ranks the corresponding Q-values {Qθ(x, ai)}Ni=1. Using the top K < N
actions, it then updates the sampling distribution, e.g., using the sample mean and covariance to
update the Gaussian. This is repeated until convergence or a maximum iteration count is reached.

3.2 ACTION FUNCTION

In traditional Q-learning, the policy π∗ is “implemented” by acting greedily w.r.t. the learned Q-
function: π∗(x) = arg maxaQθ (x, a).3 However, computing the optimal action can be expensive
in the continuous case, which may be especially problematic at inference time (e.g., when compu-
tational power is limited in, say embedded systems, or real-time response is critical). To mitigate
the problem, we can use an action function πw : X → A—effectively a trainable actor network—to

3Some exploration strategy may be incorporated as well.

4

approximate the greedy-action mapping π∗. We train πw using training data B = {(xi, q∗i)}|B|i=1,
where q∗i is the max-Q label at state xi. Action function learning is then simply a supervised re-
gression problem: w∗ ∈ arg minw

∑|B|
i=1(q∗i − Qθ(xi, πw(xi)))

2. This is similar to the notion of
“distilling” an optimal policy from max-Q labels, as in actor-expert (Lim et al., 2018). Unlike actor-
expert—a separate stochastic policy network is jointly learned with the Q-function to maximize the
likelihood with the underlying optimal policy—our method learns a state-action mapping to approx-
imate arg maxaQθ (x, a)—this does not require distribution matching and is generally more stable.
The use of action function in CAQL is simply optional to accelerate data collection and inference.

4 ACCELERATING MAX-Q COMPUTATION

In this section, we propose three methods to speed up the computationally-expensive max-Q solution
during training: (i) dynamic tolerance, (ii) dual filtering, and (iii) clustering.

Dynamic Tolerance Tolerance plays a critical role in the stopping condition of nonlinear optimiz-
ers. Intuitively, in the early phase of CAQL, when the Q-function estimate has high Bellman error, it
may be wasteful to compute a highly accurate max-Q label when a crude estimate can already guide
the gradient of CAQL to minimize the Bellman residual. We can speed up the max-Q solver by
dynamically adjusting its tolerance τ > 0 based on (a) the TD-error, which measures the estimation
error of the optimal Q-function, and (b) the training step t > 0, which ensures the bias of the gradient
(induced by the sub-optimality of max-Q solver) vanishes asymptotically so that CAQL converges
to a stationary point. While relating tolerance with the Bellman residual is intuitive, it is impossible
to calculate that without knowing the max-Q label. To resolve this circular dependency, notice that
the action function πw approximates the optimal policy, i.e., πw(·|x) ≈ arg maxaQθ(x, ·). We
therefore replace the optimal policy with the action function in Bellman residual and propose the
dynamic tolerance: τt := 1

|B|
∑|B|
i=1 |ri+γQθtarget

t
(x′i, πwt(x

′
i))−Qθt(xi, ai)| ·k1 ·kt2, where k1 > 0

and k2 ∈ [0, 1) are tunable parameters. Under standard assumptions, CAQL with dynamic tolerance
{τt} converges a.s. to a stationary point (Thm. 1, (Carden, 2014)).

Dual Filtering The main motivation of dual filtering is to reduce the number of max-Q problems
at each CAQL training step. For illustration, consider the formulation of hinge Q-learning in (2).
Denote by q∗x′,θtarget the max-Q label w.r.t. the target Q-network and next state x′. The structure of
the hinge penalty means the TD-error corresponding to sample (x, a, x′, r) is inactive whenever
q∗x′,θtarget ≤ (Qθ(x, a) − r)/γ—this data can be discarded. In dual filtering, we efficiently estimate
an upper bound on q∗x′,θtarget using some convex relaxation to determine which data can be discarded
before max-Q optimization. Specifically, recall that the main source of non-convexity in (3) comes
from the equality constraint of the ReLU activation function at each NN layer. Similar to MIP for-
mulation, assume we have component-wise bounds (lj , uj), j = 2, . . . ,K − 1 on the neurons, such
that lj ≤ ẑj ≤ uj . The ReLU equality constraint H(l, u) := {(h, k) ∈ R2 : h ∈ [l, u], k = [h]+}
can be relaxed using a convex outer-approximation (Wong & Kolter, 2017): H̃(l, u) := {(h, k) ∈
R2 : k ≥ h, k ≥ 0,−uh + (u − l)k ≤ −ul}. We use this approximation to define the re-
laxed NN equations, which replace the nonlinear equality constraints in (3) with the convex set
H̃(l, u). We denote the optimal Q-value w.r.t. the relaxed NN as q̃∗x′ , which is by definition an up-
per bound on q∗x′i . Hence, the condition: q̃∗x′,θtarget ≤ (Qθ(x, a) − r)/γ is a conservative certificate
for checking whether the data (x, a, x′, r) is inactive. For further speed up, we estimate q̃∗x′ with
its dual upper bound (see Appendix C for derivations) q̃x′ := −(ν̂1)>a −m · ‖ν̂1‖q − (ν̂1)>x′ +∑K−1
j=2

∑
s∈Ij lj(s)[νj(s)]+ −

∑K−1
j=1 ν>j+1bi, where ν is defined by the following recursion “dual”

network: νK := −c, ν̂j := W>j νj+1, j = 1, . . . ,K − 1, νj := Dj ν̂j , j = 2, . . . ,K − 1, and Ds

is a diagonal matrix with [Dj](s, s) = 1{s ∈ I+
j }+uj(s)/(uj(s)− lj(s)) ·1{s ∈ Ij}, and replace

the above certificate with an even more conservative one: q̃x′,θtarget ≤ (Qθ(x, a)− r)/γ.

Although dual filtering is derived for hinge Q-learning, it also applies to the `2-loss counterpart
by replacing the optimal value q∗x′,θtarget with its dual upper-bound estimate q̃x′,θtarget whenever the
verification condition holds (i.e., the TD error is negative). Since the dual estimate is greater than
the primal, the modified loss function will be a lower bound of the original in (1), i.e., (r+γq̃x′,θtarget−
Qθ(x, a))2 ≤ (r+γq∗x′,θtarget−Qθ(x, a))2 whenever r+γq̃x′,θtarget−Qθ(x, a) ≤ 0, which can stabilize
training by reducing over-estimation error.

5

One can utilize the inactive samples in the action function (πw) learning problem by replacing the
max-Q label q∗x′,θ with its dual approximation q̃x′,θ. Since q̃x′,θ ≥ q∗x′,θ, this replacement will not
affect optimality. 4

Clustering To reduce the number of max-Q solves further still, we apply online state aggre-
gation (Meyerson, 2001), which picks a number of centroids from the batch of next states B′
as the centers of p-metric balls with radius b > 0, such that the union of these balls form a
minimum covering of B′. Specifically, at training step t ∈ {0, 1, . . .}, denote by Ct(b) ⊆ B′

the set of next-state centroids. For each next state c′ ∈ Ct(b), we compute the max-Q value
q∗c′,θtarget = maxa′ Qθtarget(c′, a′), where a∗c′ is the corresponding optimal action. For all remaining
next states x′ ∈ B′ \ Ct(b), we approximate their max-Q values via first-order Taylor series ex-
pansion q̂x′,θtarget := q∗c′,θtarget + 〈∇x′Qθtarget(x′, a′)|x′=c′,a′=a∗

c′
, (x′ − c′)〉 in which c′ is the closest

centroid to x′, i.e., c′ ∈ arg minc′∈Ct(b) ‖x′−c′‖p. By the envelope theorem for arbitrary choice sets
(Milgrom & Segal, 2002), the gradient∇x′ maxa′ Qθtarget(x′, a′) is equal to∇x′Qθtarget(x′, a′)|a′=a∗

x′
.

In this approach the cluster radius r > 0 controls the number of max-Q computations, which trades
complexity for accuracy in Bellman residual estimation. This parameter can either be a tuned or
adjusted dynamically (similar to dynamic tolerance), e.g., rt = k3 ·kt4 with hyperparameters k3 > 0
and k4 ∈ [0, 1). Analogously, with this exponentially-decaying cluster radius schedule we can ar-
gue that the bias of CAQL gradient (induced by max-Q estimation error due to clustering) vanishes
asymptotically, and the corresponding Q-function converges to a stationary point. To combine clus-
tering with dual filtering, we define B′df as the batch of next states that are inconclusive after dual
filtering, i.e., B′df = {x′ ∈ B′ : q̃x′,θtarget > (Qθ(x, a)− r)/γ}. Then instead of applying clustering
to B′ we apply this method onto the refined batch B′df.

Dynamic tolerance not only speeds up training, but also improves CAQL’s performance (see Ta-
bles 4 and 5); thus, we recommend using it by default. Dual filtering and clustering both trade off
training speed with performance. These are practical options—with tunable parameters—that allow
practitioners to explore their utility in specific domains.

5 EXPERIMENTS ON MUJOCO BENCHMARKS

To illustrate the effectiveness of CAQL, we (i) compare several CAQL variants with several state-of-
the-art RL methods on multiple domains, and (ii) assess the trade-off between max-Q computation
speed and policy quality via ablation analysis.
Comparison with Baseline RL Algorithms We compare CAQL with four baseline methods,
DDPG (Silver et al., 2014), TD3 (Fujimoto et al., 2018), and SAC (Haarnoja et al., 2018)—three
popular policy-based deep RL algorithms—and NAF (Gu et al., 2016), a value-based method using
an action-quadratic Q-function. We train CAQL using three different max-Q optimizers, MIP, GA,
and CEM. Note that CAQL-CEM counterpart is similar to QT-Opt (Kalashnikov et al., 2018) and
CAQL-GA reflects some aspects actor-expert (Lim et al., 2018). These CAQL variants allow assess-
ment of the degree to which policy quality is impacted by Q-learning with optimal Bellman residual
(using MIP) rather than an approximation (using GA or CEM), at the cost of steeper computation.
To match the implementations of the baselines, we use `2 loss when training CAQL. Further ablation
analysis on CAQL with `2 loss vs. hinge loss is provided in Appendix E.

We evaluate CAQL on one classical control benchmark (Pendulum) and five MuJoCo benchmarks
(Hopper, Walker2D, HalfCheetah, Ant, Humanoid).5 Different than most previous work, we eval-
uate the RL algorithms on domains not just with default action ranges, but also using smaller, con-
strained action ranges (see Table 6 in Appendix D for action ranges used in our experiments).6 The
motivation for this is two-fold: (i) To simulate real-world problems (Dulac-Arnold et al., 2019),
where the restricted ranges represent the safe/constrained action sets; (ii) To validate the hypothe-
sis that action-distribution learning in policy-based methods cannot easily handle such constraints,
while CAQL does so, illustrating its flexibility. For problems with longer horizons, a larger neural
network is often required to learn a good policy, which in turn significantly increases the complexity

4One can also use the upper bound q̃x′,θ as the label for training the action function in Section 3.2. Empiri-
cally, this approach often leads to better policy performance.

5Since the objective of these experiments is largely to evaluate different RL algorithms, we do not exploit
problem structures, e.g., symmetry, when training policies.

6Smaller action ranges often induce easier MIP problems in max-Q computation. However, given the com-
plexity of MIP in more complex environments such as Walker2D, HalfCheetah, Ant, and Humanoid, we run
experiments only with action ranges smaller than the defaults.

6

Env. [Action range] CAQL-MIP CAQL-GA CAQL-CEM NAF DDPG TD3 SAC
Pendulum [-0.66, 0.66] -339.5 ± 158.3 -342.4 ± 151.6 -394.6 ± 246.5 -449.4 ± 280.5 -407.3 ± 180.3 -488.8 ± 232.3 -789.6 ± 299.5
Pendulum [-1, 1] -235.9 ± 122.7 -237.0 ± 135.5 -236.1 ± 116.3 -312.7 ± 242.5 -252.8 ± 163.0 -279.5 ± 186.8 -356.6 ± 288.7
Pendulum [-2, 2] -143.2 ± 161.0 -145.5 ± 136.1 -144.5 ± 208.8 -145.2 ± 168.9 -146.2 ± 257.6 -142.3 ± 195.9 -163.3 ± 190.1
Hopper [-0.25, 0.25] 343.2 ± 62.6 329.7 ± 59.4 276.9 ± 97.4 237.8 ± 100.0 252.2 ± 98.1 217.1 ± 73.7 309.3 ± 73.0
Hopper [-0.5, 0.5] 411.7 ± 115.2 341.7 ± 139.9 342.9 ± 142.1 248.2 ± 113.2 294.5 ± 108.7 280.1 ± 80.0 309.1 ± 95.8
Hopper [-1, 1] 459.8 ± 144.9 427.5 ± 151.2 417.2 ± 145.4 245.9 ± 140.7 368.2 ± 139.3 396.3 ± 132.8 372.3 ± 138.5
Walker2D [-0.25, 0.25] 276.3 ± 118.5 285.6 ± 97.6 283.7 ± 104.6 219.9 ± 120.8 270.4 ± 104.2 250.0 ± 78.3 284.0 ± 114.5
Walker2D [-0.5, 0.5] 288.9 ± 118.1 295.6 ± 113.9 304.7 ± 116.1 233.7 ± 99.4 259.0 ± 110.7 243.8 ± 116.4 287.0 ± 128.3
HalfCheetah [-0.25, 0.25] 394.8 ± 43.8 337.4 ± 60.0 339.1 ± 137.9 247.3 ± 96.0 330.7 ± 98.9 264.3 ± 142.2 325.9 ± 38.6
HalfCheetah [-0.5, 0.5] 718.6 ± 199.9 736.4 ± 122.8 686.7 ± 224.1 405.1 ± 243.2 456.3 ± 238.5 213.8 ± 214.6 614.8 ± 69.4
Ant [-0.1, 0.1] 402.3 ± 27.4 406.2 ± 32.6 378.2 ± 39.7 295.0 ± 44.2 374.0 ± 35.9 268.9 ± 73.2 281.4 ± 65.3
Ant [-0.25, 0.25] 413.1 ± 60.0 443.1 ± 65.6 451.4 ± 54.8 323.0 ± 60.8 444.2 ± 63.3 472.3 ± 61.9 399.3 ± 59.2
Humanoid [-0.1, 0.1] 405.7 ± 112.5 431.9 ± 244.8 397.0 ± 145.7 392.7 ± 169.9 494.4 ± 182.0 352.8 ± 150.3 456.3 ± 112.4
Humanoid [-0.25, 0.25] 460.2 ± 143.2 622.8 ± 158.1 529.8 ± 179.9 374.6 ± 126.5 582.1 ± 176.7 348.1 ± 106.3 446.9 ± 103.9

Table 1: The mean ± standard deviation of (95-percentile) final returns with the best hyper-
parameter configuration. CAQL significantly outperforms NAF on most benchmarks, as well as
DDPG, TD3, and SAC on 11/14 benchmarks.

0 50 100 150 200

1400

1200

1000

800

600

400

Pendulum [-0.66, 0.66]

0 50 100 150 200

1500

1250

1000

750

500

250
Pendulum [-1.0, 1.0]

0 50 100 150 200

1500

1250

1000

750

500

250

Pendulum [-2.0, 2.0]

MIP GA CEM NAF DDPG TD3 SAC

0 50 100 150 200

50

100

150

200

250

300

350
Hopper [-0.25, 0.25]

0 50 100 150 200

100

200

300

400

Hopper [-0.5, 0.5]

0 50 100 150 2000

100

200

300

400

500
Hopper [-1.0, 1.0]

0 50 100 150 200
0

50

100

150

200

250

300
Walker2D [-0.25, 0.25]

0 50 100 150 200
0

100

200

300

Walker2D [-0.5, 0.5]

0 100 200 300 400 500
0

100

200

300

400
HalfCheetah [-0.25, 0.25]

0 100 200 300 400 500
0

200

400

600

HalfCheetah [-0.5, 0.5]

0 100 200 300 400 500
Training Steps (×1e3)

200

250

300

350

400
Ant [-0.1, 0.1]

0 100 200 300 400 500
Training Steps (×1e3)

200

300

400

Ant [-0.25, 0.25]

0 100 200 300 400 500
Training Steps (×1e3)

200

300

400

500
Humanoid [-0.1, 0.1]

0 100 200 300 400 500
Training Steps (×1e3)

100

200

300

400

500

600

700 Humanoid [-0.25, 0.25]

Figure 1: Mean cumulative reward of the best hyper parameter configuration over 10 random seeds.
Data points are average over a sliding window of size 6. The length of an episode is limited to 200
steps. The training curves with standard deviation are given in Figure 4 in Appendix E.

of the MIP. To reduce this computational cost, we reduce episode length in each experiment from
1000 to 200 steps, and parameterize the Q-function with a relatively simple 32 × 16 feedforward
ReLU network. With shorter episodes and smaller networks, the returns of our experiments are
lower than those reported in state-of-the-art RL benchmarks (Duan et al., 2016). Details on network
architectures and hyperparameters are described in Appendix D.

For the more difficult MuJoCo environments (i.e., Ant, HalfCheetah, Humanoid), the number of
training steps is set to 500, 000, while for simpler ones (i.e., Pendulum, Hopper, Walker2D), it is
set to 200, 000. Policy performance is evaluated every 1000 training iterations, using a policy with
no exploration. Each measurement is an average return over 10 episodes, each generated using a
separate random seed. To smooth learning curves, data points are averaged over a sliding window
of size 6. Similar to the setting of Lim et al. (2018), CAQL measurements are based on trajectories
that are generated by the learned action function instead of the optimal action w.r.t. the Q-function.

Table 1 and Figure 1 show the average return of CAQL and the baselines under the best hyperparam-
eter configurations. CAQL significantly outperforms NAF on most benchmarks, as well as DDPG,
TD3, and SAC on 11 of 14 benchmarks. Of all the CAQL policies, those trained using MIP are
among the best performers in low-dimensional benchmarks (e.g., Pendulum and Hopper). This ver-
ifies our conjecture about CAQL: Q-learning with optimal Bellman residual (using MIP) performs
better than using approximation (using GA, CEM) when the Q-function has sufficient representa-
tion power (which is more likely in low-dimensional tasks). Moreover, CAQL-MIP policies have
slightly lower variance than those trained with GA and CEM on most benchmarks. Table 2 and Fig-
ure 2 show summary statistics of the returns of CAQL and the baselines on all 320 configurations

7

Env. [Action range] CAQL-MIP CAQL-GA CAQL-CEM NAF DDPG TD3 SAC
Pendulum [-0.66, 0.66] -780.5 ± 345.0 -766.6 ± 344.2 -784.7 ± 349.3 -775.3 ± 353.4 -855.2 ± 331.2 -942.1 ± 308.3 -1144.8 ± 195.3
Pendulum [-1, 1] -508.1 ± 383.2 -509.7 ± 383.5 -500.7 ± 382.5 -529.5 ± 377.4 -623.3 ± 395.2 -730.3 ± 389.4 -972.0 ± 345.5
Pendulum [-2, 2] -237.3 ± 487.2 -250.6 ± 508.1 -249.7 ± 488.5 -257.4 ± 370.3 -262.0 ± 452.6 -361.3 ± 473.2 -639.5 ± 472.7
Hopper [-0.25, 0.25] 292.7 ± 93.3 210.8 ± 125.3 196.9 ± 130.1 176.6 ± 109.1 178.8 ± 126.6 140.5 ± 106.5 225.0 ± 84.9
Hopper [-0.5, 0.5] 332.2 ± 119.7 222.2 ± 138.5 228.1 ± 135.7 192.8 ± 101.6 218.3 ± 129.6 200.2 ± 100.7 243.6 ± 81.6
Hopper [-1, 1] 352.2 ± 141.3 251.5 ± 153.6 242.3 ± 153.8 201.9 ± 126.2 248.0 ± 148.3 248.2 ± 124.4 263.6 ± 118.9
Walker2D [-0.25, 0.25] 247.6 ± 109.0 213.5 ± 111.3 206.7 ± 112.9 190.5 ± 117.5 209.9 ± 103.6 204.8 ± 113.3 224.5 ± 105.1
Walker2D [-0.5, 0.5] 213.1 ± 120.0 209.5 ± 112.5 209.3 ± 112.5 179.7 ± 100.9 210.8 ± 108.3 173.1 ± 101.1 220.9 ± 114.8
HalfCheetah [-0.25, 0.25] 340.9 ± 110.2 234.3 ± 136.5 240.4 ± 143.1 169.7 ± 123.7 228.9 ± 118.1 192.9 ± 136.8 260.7 ± 108.5
HalfCheetah [-0.5, 0.5] 395.1 ± 275.2 435.5 ± 273.7 377.5 ± 280.5 271.8 ± 226.9 273.8 ± 199.5 119.8 ± 139.6 378.3 ± 219.6
Ant [-0.1, 0.1] 319.4 ± 69.3 327.5 ± 67.5 295.5 ± 71.9 260.2 ± 53.1 298.4 ± 67.6 213.7 ± 40.8 205.9 ± 34.9
Ant [-0.25, 0.25] 362.3 ± 60.3 388.9 ± 63.9 392.9 ± 67.1 270.4 ± 72.5 381.9 ± 63.3 377.1 ± 93.5 314.3 ± 88.2
Humanoid [-0.1, 0.1] 326.6 ± 93.5 235.3 ± 165.4 227.7 ± 143.1 261.6 ± 154.1 259.0 ± 188.1 251.7 ± 127.5 377.5 ± 90.3
Humanoid [-0.25, 0.25] 267.0 ± 163.8 364.3 ± 215.9 309.4 ± 186.3 270.2 ± 124.6 347.3 ± 220.8 262.8 ± 109.2 381.0 ± 84.4

Table 2: The mean ± standard deviation of (95-percentile) final returns over all 320 configurations
(32 hyper parameter combinations × 10 random seeds). CAQL policies are less sensitive to hyper
parameters on 11/14 benchmarks.

0 50 100 150 200

1400

1200

1000

800

600 Pendulum [-0.66, 0.66]

0 50 100 150 200
1600

1400

1200

1000

800

600

Pendulum [-1.0, 1.0]

0 50 100 150 200

1500

1250

1000

750

500

250
Pendulum [-2.0, 2.0]

MIP GA CEM NAF DDPG TD3 SAC

0 50 100 150 200

50

100

150

200

250

300
Hopper [-0.25, 0.25]

0 50 100 150 200

50

100

150

200

250

300

350
Hopper [-0.5, 0.5]

0 50 100 150 200

100

200

300

Hopper [-1.0, 1.0]

0 50 100 150 200
0

50

100

150

200

250

Walker2D [-0.25, 0.25]

0 50 100 150 200
0

50

100

150

200

Walker2D [-0.5, 0.5]

0 100 200 300 400 500
0

100

200

300

HalfCheetah [-0.25, 0.25]

0 100 200 300 400 500

0

100

200

300

400

HalfCheetah [-0.5, 0.5]

0 100 200 300 400 500
Training Steps (×1e3)

200

225

250

275

300

325
Ant [-0.1, 0.1]

0 100 200 300 400 500
Training Steps (×1e3)

150

200

250

300

350

400
Ant [-0.25, 0.25]

0 100 200 300 400 500
Training Steps (×1e3)

150

200

250

300

350

Humanoid [-0.1, 0.1]

0 100 200 300 400 500
Training Steps (×1e3)

150

200

250

300

350

Humanoid [-0.25, 0.25]

Figure 2: Mean cumulative reward over all 320 configurations (32 hyper parameter combinations×
10 random seeds). Data points are average over a sliding window of size 6. The length of an episode
is limited to 200 steps. The training curves with standard deviation are in Figure 5 in Appendix E.

(32 hyperparameter combinations× 10 random seeds) and illustrates the sensitivity to hyperparam-
eters of each method. CAQL is least sensitive in 11 of 14 tasks, and policies trained using MIP
optimization, specifically, are best in 6 of 14 tasks. This corroborates the hypothesis that value-
based methods are generally more robust to hyperparameters than their policy-based counterparts.
Table 9 in Appendix E.1 compares the speed (in terms of average elapsed time) of various max-Q
solvers (MIP, GA, and CEM), with MIP clearly the most computationally intensive.

We note that CAQL-MIP suffers from performance degradation in several high-dimensional envi-
ronments with large action ranges (e.g., Ant [-0.25, 0.25] and Humanoid [-0.25, 0.25]). In these
experiments, its performance is even worse than that of CAQL-GA or CAQL-CEM. We speculate
that this is due to the fact that the small ReLU NN (32 × 16) doesn’t have enough representation
power to accurately model the Q-functions in more complex tasks, and therefore optimizing for the
true max-Q value using an inaccurate function approximation impedes learning.

We also test CAQL using the standard MuJoCo 1000-step episode length, using gradient ascent as
the optimizer, and a Q-function is parameterized with a 200 × 100 feedforward ReLU network for
Hopper and with 400× 300 for the rest benchmarks. CAQL-GA is trained using dynamic tolerance
and an action function but without dual filtering or clustering. Figure 6 in Appendix E shows that
CAQL-GA performs better than, or similar to, the best of the baseline methods, except on Hopper
[-0.25, 0.25]—SAC performed best in that setting, however, it suffers from very high performance
variance.

Ablation Analysis We now study the effects of using dynamic tolerance, dual filtering, and clus-
tering on CAQL via two ablation analyses. For simplicity, we experiment on standard benchmarks

8

Env. [Action range] GA GA + DF GA + DF + C(0.25) GA + DF + C(0.5) Dual

Pendulum [-2, 2] -144.6± 154.2 -146.1± 229.8 -146.7± 216.8 -149.9± 215.0 -175.1± 246.8
(R: 0.00%) (R: 26.5%) (R: 79.7%) (R: 81.2%) (R: 100%)

Hopper [-1, 1] 414.9± 181.9 424.8± 176.7 396.3± 138.8 371.2± 171.7 270.2± 147.6
(R: 0.00%) (R: 9.11%) (R: 38.2%) (R: 61.5%) (R: 100%)

Walker2D [-1, 1] 267.6± 107.3 236.1± 99.6 249.2± 125.1 235.6± 108.1 201.5± 136.0
(R: 0.00%) (R: 12.4%) (R: 33.6%) (R: 50.8%) (R: 100%)

HalfCheetah [-1, 1] 849.0± 108.9 737.3± 170.2 649.5± 146.7 445.4± 207.8 406.6± 206.4
(R: 0.00%) (R: 5.51%) (R: 15.4%) (R: 49.1%) (R: 100%)

Ant [-0.5, 0.5] 370.0± 106.5 275.1± 92.1 271.5± 94.3 214.0± 75.4 161.1± 54.7
(R: 0.00%) (R: 3.19%) (R: 14.3%) (R: 31.1%) (R: 100%)

Humanoid [-0.4, 0.4] 702.7± 162.9 513.9± 146.0 458.2± 120.4 387.7± 117.4 333.3± 117.9
(R: 0.00%) (R: 13.8%) (R: 52.1%) (R: 80.8%) (R: 100%)

Table 3: Ablation analysis on CAQL-GA with dual filtering and clustering, where both the mean ±
standard deviation of (95-percentile) final returns and the average %-max-Q-reduction (in parenthe-
sis) are based on the best configuration. See Figure 7 in Appendix E for training curves.

Env. [Action range] GA + Tol(1e-6) GA + Tol(100) GA + DTol(100,1e-6) GA + DTol(1,1e-6) GA + DTol(0.1,1e-6)

Pendulum [-2, 2] -144.5± 195.6 -158.1± 165.0 -144.1± 159.2 -143.7± 229.5 -144.2± 157.6
(# GA Itr: 200) (# GA Itr: 1) (# GA Itr: 45.4) (# GA Itr: 58.1) (# GA Itr: 69.5)

Hopper [-1, 1] 371.4± 199.9 360.4± 158.9 441.4± 141.3 460.0± 127.8 452.5± 137.0
(# GA Itr: 200) (# GA Itr: 1) (# GA Itr: 46.0) (# GA Itr: 59.5) (# GA Itr: 78.4)

Walker2D [-1, 1] 273.6± 112.4 281.6± 121.2 282.0± 104.5 309.0± 118.8 292.7± 113.8
(# GA Itr: 200) (# GA Itr: 1) (# GA Itr: 47.4) (# GA Itr: 59.8) (# GA Itr: 71.2)

HalfCheetah [-1, 1] 837.5± 130.6 729.3± 313.8 896.6± 145.7 864.4± 123.1 894.0± 159.9
(# GA Itr: 200) (# GA Itr: 1) (# GA Itr: 91.2) (# GA Itr: 113.5) (# GA Itr: 140.7)

Ant [-0.5, 0.5] 373.1± 118.5 420.7± 148.8 (∗) 364.4± 111.324 388.2± 110.7 429.3± 139.3
(# GA Itr: 200) (# GA Itr: 1) (# GA Itr: 86.3) (# GA Itr: 109.5) (# GA Itr: 139.7)

Humanoid [-0.4, 0.4] 689.8± 193.9 500.2± 214.9 716.2± 191.4 689.5± 191.6 710.9± 188.4
(# GA Itr: 200) (# GA Itr: 1) (# GA Itr: 88.6) (# GA Itr: 115.9) (# GA Itr: 133.4)

Table 4: Ablation analysis on CAQL-GA with dynamic tolerance, where both the mean ± standard
deviation of (95-percentile) final returns and the average number of GA iterations (in parenthesis)
are based on the best configuration. See Figure 9 in Appendix E for training curves. NOTE: In (∗)
the performance significantly drops after hitting the peak, and learning curve does not converge.

(with full action ranges), and primarily test CAQL-GA using an `2 loss. Default values on tolerance
and maximum iteration are 1e-6 and 200, respectively.

Table 3 shows how reducing the number of max-Q problems using dual filtering and clustering af-
fects performance of CAQL. Dual filtering (DF) manages to reduce the number of max-Q problems
(from 3.2% to 26.5% across different benchmarks), while maintaining similar performance with the
unfiltered CAQL-GA. On top of dual filtering we apply clustering (C) to the set of inconclusive
next states B′df, in which the degree of approximation is controlled by the cluster radius. With a
small cluster radius (e.g., b = 0.1), clustering further reduces max-Q solves without significantly
impacting training performance (and in some cases it actually improves performance), though fur-
ther increasing the radius would significant degrade performance. To illustrate the full trade-off of
max-Q reduction versus policy quality, we also include the Dual method, which eliminates all max-
Q computation with the dual approximation. Table 4 shows how dynamic tolerance influences the
quality of CAQL policies. Compared with the standard algorithm, with a large tolerance (τ = 100)
GA achieves a notable speed up (with only 1 step per max-Q optimization) in training but incurs a
loss in performance. GA with dynamic tolerance atttains the best of both worlds—it significantly
reduces inner-maximization steps (from 29.5% to 77.3% across different problems and initial τ
settings), while achieving good performance.

Additionally, Table 5 shows the results of CAQL-MIP with dynamic tolerance (i.e., optimality gap).
This method significantly reduces both median and variance of the MIP elapsed time, while having
better performance. Dynamic tolerance eliminates the high latency in MIP observed in the early
phase of training (see Figure 3).

Env. [Action range] MIP + Tol(1e-4) MIP + DTol(1,1e-4)

HalfCheetah [-0.5, 0.5] 718.6± 199.9 (Med(κ): 263.5, SD(κ): 88.269) 764.5± 132.9 (Med(κ): 118.5, SD(κ): 75.616)
Ant [-0.1, 0.1] 402.3± 27.4 (Med(κ): 80.7, SD(κ): 100.945) 404.9± 27.7 (Med(κ): 40.3, SD(κ): 24.090)
Ant [-0.25, 0.25] 413.1± 60.0 (Med(κ): 87.6, SD(κ): 160.921) 424.9± 60.9 (Med(κ): 62.0, SD(κ): 27.646)
Humanoid [-0.1, 0.1] 405.7± 112.5 (Med(κ): 145.7, SD(κ): 27.381) 475.0± 173.4 (Med(κ): 29.1, SD(κ): 10.508)
Humanoid [-0.25, 0.25] 460.2± 143.2 (Med(κ): 71.2, SD(κ): 45.763) 410.1± 174.4 (Med(κ): 39.7, SD(κ): 11.088)

Table 5: Ablation analysis on CAQL-MIP with dynamic tolerance, where both the mean ± standard
deviation of (95-percentile) final returns and the (median, standard deviation) of the elapsed time κ
(in msec) are based on the best configuration. See Figure 11 in Appendix E for training curves.

9

6 CONCLUSIONS AND FUTURE WORK

We proposed Continuous Action Q-learning (CAQL), a general framework for handling continuous
actions in value-based RL, in which the Q-function is parameterized by a neural network. While
generic nonlinear optimizers can be naturally integrated with CAQL, we illustrated how the in-
ner maximization of Q-learning can be formulated as mixed-integer programming when the Q-
function is parameterized with a ReLU network. CAQL (with action function learning) is a general
Q-learning framework that includes many existing value-based methods such as QT-Opt and actor-
expert. Using several benchmarks with varying degrees of action constraint, we showed that the
policy learned by CAQL-MIP generally outperforms those learned by CAQL-GA and CAQL-CEM;
and CAQL is competitive with several state-of-the-art policy-based RL algorithms, and often out-
performs them (and is more robust) in heavily-constrained environments. Future work includes:
extending CAQL to the full batch learning setting, in which the optimal Q-function is trained using
only offline data; speeding up the MIP computation of the max-Q problem to make CAQL more
scalable; and applying CAQL to real-world RL problems.

REFERENCES

B. Amos, L. Xu, and Z. Kolter. Input convex neural networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70, pp. 146–155. PMLR, 2017.

R. Anderson, J. Huchette, W. Ma, C. Tjandraatmadja, and J. P. Vielma. Strong mixed-integer pro-
gramming formulations for trained neural networks. arXiv preprint arXiv:1811.01988, 2019.

C. Boutilier, A. Cohen, A. Hassidim, Y. Mansour, O. Meshi, M. Mladenov, and D. Schuurmans.
Planning and learning with stochastic action sets. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence, IJCAI’18, pp. 4674–4682. AAAI Press, 2018.

R. Bunel, I. Turkaslan, P. Torr, P. Kohli, and M. P. Kumar. A unified view of piecewise linear neural
network verification. In Advances in Neural Information Processing Systems 31, pp. 4790–4799.
2018.

S. Carden. Convergence of a Q-learning variant for continuous states and actions. Journal of
Artificial Intelligence Research, 49:705–731, 2014.

C.-H. Cheng, G. Nührenberg, and H. Ruess. Maximum resilience of artificial neural networks. In
International Symposium on Automated Technology for Verification and Analysis, pp. 251–268.
Springer, 2017.

Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh. A Lyapunov-based approach
to safe reinforcement learning. In Advances in Neural Information Processing Systems 31, pp.
8092–8101. Curran Associates, Inc., 2018.

IBM ILOG CPLEX. V12.1: Userâs manual for CPLEX. 2019. URL https://www.ibm.com/
products/ilog-cplex-optimization-studio.

Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep reinforcement
learning for continuous control. In International Conference on Machine Learning, pp. 1329–
1338, 2016.

G. Dulac-Arnold, R. Evans, H. van Hasselt, P. Sunehag, T. Lillicrap, J. Hunt, T. Mann, T. Weber,
T. Degris, and B. Coppin. Deep reinforcement learning in large discrete action spaces. arXiv
preprint arXiv:1512.07679, 2015.

G. Dulac-Arnold, D. Mankowitz, and T. Hester. Challenges of real-world reinforcement learning.
arXiv preprint arXiv:1904.12901, 2019.

S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari. Output range analysis for deep feedforward
neural networks. In NASA Formal Methods Symposium, pp. 121–138. Springer, 2018.

M. Fazel, R. Ge, S. Kakade, and M. Mesbahi. Global convergence of policy gradient methods for
the linear quadratic regulator. In Proceedings of the 35th International Conference on Machine
Learning, volume 80, pp. 1467–1476, Stockholm, Sweden, 2018. PMLR.

M. Fischetti and J. Jo. Deep neural networks and mixed integer linear optimization. Constraints,
2018.

10

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio

S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. In Proceedings of the 35th International Conference on Machine Learning, volume 80,
pp. 1587–1596, Stockholm, Sweden, 2018. PMLR.

C. Gaskett, D. Wettergreen, and A. Zelinsky. Q-learning in continuous state and action spaces.
In Proceedings of the 12th Australian Joint Conference on Artificial Intelligence, pp. 417–428.
Springer, 1999.

J. Gauci, E. Conti, Y. Liang, K. Virochsiri, Y. He, Z. Kaden, V. Narayanan, and X. Ye.
Horizon: Facebook’s open source applied reinforcement learning platform. arXiv preprint
arXiv:1811.00260, 2018.

A. Gleixner, M. Bastubbe, L. Eifler, T. Gally, G. Gamrath, R. L. Gottwald, G. Hendel, C. Hojny,
T. Koch, M. E. Lübbecke, S. J. Maher, M. Miltenberger, B. Müller, M. E. Pfetsch, C. Puchert,
D. Rehfeldt, F. Schlösser, C. Schubert, F. Serrano, Y. Shinano, J. M. Viernickel, M. Walter,
F. Wegscheider, J. T. Witt, and J. Witzig. The SCIP Optimization Suite 6.0. Technical report,
Optimization Online, July 2018. URL http://www.optimization-online.org/DB_
HTML/2018/07/6692.html.

S. Gu, T. Lillicrap, I. Sutskever, and S. Levine. Continuous deep Q-learning with model-based accel-
eration. In Proceedings of The 33rd International Conference on Machine Learning, volume 48,
pp. 2829–2838, New York, NY, USA, 2016. PMLR.

Gurobi. Gurobi optimizer reference manual, 2019. URL http://www.gurobi.com.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In Proceedings of the 35th International
Conference on Machine Learning, volume 80, pp. 1861–1870, Stockholm, Sweden, 2018. PMLR.

H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double Q-learning. In
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, pp. 2094–
2100. AAAI Press, 2016.

L. Baird III and A. Klopf. Reinforcement learning with high-dimensional, continuous actions. Tech-
nical report, Wright Lab Wright-Patterson AFB OH, 1993.

D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly, M. Kalakrish-
nan, V. Vanhoucke, and S. Levine. QT-Opt: Scalable deep reinforcement learning for vision-based
robotic manipulation. In Proceedings of The 2nd Conference on Robot Learning, volume 87, pp.
651–673. PMLR, 2018.

G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. Reluplex: An efficient SMT solver
for verifying deep neural networks. In International Conference on Computer Aided Verification,
pp. 97–117. Springer, 2017.

A. Kumar, T. Serra, and S. Ramalingam. Equivalent and approximate transformations of deep neural
networks. arXiv preprint arXiv:1905.11428, 2019.

A. Lazaric, M. Restelli, and A. Bonarini. Reinforcement learning in continuous action spaces
through sequential Monte Carlo methods. In Advances in Neural Information Processing Sys-
tems, pp. 833–840, 2008.

S. Lim, A. Joseph, L. Le, Y. Pan, and M. White. Actor-Expert: A framework for using action-value
methods in continuous action spaces. arXiv preprint arXiv:1810.09103, 2018.

L. Lin and T. Mitchell. Memory approaches to reinforcement learning in non-Markovian domains.
Technical report, Pittsburgh, PA, USA, 1992.

J. Linderoth and M. Savelsbergh. A computational study of search strategies for mixed integer
programming. INFORMS Journal on Computing, 11(2):173–187, 1999.

A. Lomuscio and L. Maganti. An approach to reachability analysis for feed-forward ReLU neural
networks. arXiv preprint arXiv:1706.07351, 2017.

S. Mannor, R. Rubinstein, and Y. Gat. The cross entropy method for fast policy search. In Proceed-
ings of the 20th International Conference on Machine Learning, ICML’03, pp. 512–519. AAAI
Press, 2003.

11

http://www.optimization-online.org/DB_HTML/2018/07/6692.html
http://www.optimization-online.org/DB_HTML/2018/07/6692.html
http://www.gurobi.com

F. Melo and M. Ribeiro. Q-learning with linear function approximation. In International Conference
on Computational Learning Theory, pp. 308–322. Springer, 2007.

A. Meyerson. Online facility location. In Proceedings 42nd IEEE Symposium on Foundations of
Computer Science, pp. 426–431. IEEE, 2001.

P. Milgrom and I. Segal. Envelope theorems for arbitrary choice sets. Econometrica, 70(2):583–601,
2002.

J. Millán, D. Posenato, and E. Dedieu. Continuous-action Q-learning. Machine Learning, 49(2-3):
247–265, 2002.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

V. Mnih, A. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. In International conference on machine
learning, pp. 1928–1937, 2016.

G. Neu, A. Jonsson, and V. Gómez. A unified view of entropy-regularized Markov decision pro-
cesses. arXiv preprint arXiv:1705.07798, 2017.

J. Nocedal and S. Wright. Numerical optimization. Springer Science & Business Media, 2006.

J. Nocedal and Y. Yuan. Combining trust region and line search techniques. In Advances in nonlinear
programming, pp. 153–175. Springer, 1998.

J. Peters and S. Schaal. Policy gradient methods for robotics. In 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 2219–2225. IEEE, 2006.

M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley
& Sons, 2014.

D. Quillen, E. Jang, O. Nachum, C. Finn, J. Ibarz, and S. Levine. Deep reinforcement learning for
vision-based robotic grasping: A simulated comparative evaluation of off-policy methods. CoRR,
abs/1802.10264, 2018. URL http://arxiv.org/abs/1802.10264.

R. Rubinstein. The cross-entropy method for combinatorial and continuous optimization. Method-
ology And Computing In Applied Probability, 1(2):127–190, 1999.

B. Say, G. Wu, Y. Q. Zhou, and S. Sanner. Nonlinear hybrid planning with deep net learned transition
models and mixed-integer linear programming. In Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI’17, pp. 750–756, 2017.

T. Serra, C. Tjandraatmadja, and S. Ramalingam. Bounding and counting linear regions of deep
neural networks. In International Conference on Machine Learning, pp. 4565–4573, 2018.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic policy gradi-
ent algorithms. In Proceedings of the 31st International Conference on International Conference
on Machine Learning - Volume 32, ICML’14, pp. I–387–I–395. JMLR.org, 2014.

W. Smart and L. Kaelbling. Practical reinforcement learning in continuous spaces. In Proceedings
of the Seventeenth International Conference on Machine Learning, ICML ’00, pp. 903–910, San
Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

R. Sutton, D. McAllester, S. Singh P, and Y. Mansour. Policy gradient methods for reinforcement
learning with function approximation. In Advances in Neural Information Processing Systems,
pp. 1057–1063, 2000.

V. Tjeng, K. Xiao, and R. Tedrake. Evaluating robustness of neural networks with mixed integer
programming. In International Conference on Learning Representations, 2019.

W. Uther and M. Veloso. Tree based discretization for continuous state space reinforcement learning.
In Proceedings of AAAI ’98, pp. 769–774, 1998.

C. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

T. Weng, H. Zhang, H. Chen, Z. Song, C. Hsieh, D. Boning, I. Dhillon, and L. Daniel. Towards fast
computation of certified robustness for ReLU networks. arXiv preprint arXiv:1804.09699, 2018.

E. Wong and Z. Kolter. Provable defenses against adversarial examples via the convex outer adver-
sarial polytope. arXiv preprint arXiv:1711.00851, 2017.

12

http://arxiv.org/abs/1802.10264

A HINGE Q-LEARNING

Consider an MDP with states X , actions A, transition probability function P , discount factor γ ∈
[0, 1), reward function R, and initial state distribution β. We want to find an optimal Q-function by
solving the following optimization problem:

min
Q

∑
x∈X,a∈A

p(x, a)Q(x, a)

Q(x, a) ≥ R(x, a) + γ
∑
x′∈X

P (x′|x, a) max
a′∈A

Q(x′, a′), ∀x ∈ X, a ∈ A. (5)

The formulation is based on the LP formulation of MDP (see Puterman (2014) for more details).
Here the distribution p(x, a) is given by the data-generating distribution of the replay buffer B.
(We assume that the replay buffer is large enough such that it consists of experience from almost
all state-action pairs.) It is well-known that one can transform the above constrained optimization
problem into an unconstrained one by applying a penalty-based approach (to the constraints). For
simplicity, here we stick with a single constant penalty parameter λ ≥ 0 (instead of going for a
state-action Lagrange multiplier and maximizing that), and a hinge penalty function (·)+. With a
given penalty hyper-parameter λ ≥ 0 (that can be separately optimized), we propose finding the
optimal Q-function by solving the following optimization problem:

min
Q

∑
x∈X,a∈A

p(x, a)Q(x, a) + λ

(
R(x, a)+γ

∑
x′∈X

P (x′|x, a)max
a′∈A

Q(x′, a′)−Q(x, a)

)
+

. (6)

Furthermore, recall that in many off-policy and offline RL algorithms (such as DQN), samples in
form of {(xi, ai, ri, x′i)}

|B|
i=1 are independently drawn from the replay buffer, and instead of the op-

timizing the original objective function, one goes for its unbiased sample average approximation
(SAA). However, viewing from the objective function of problem (6), finding an unbiased SAA for
this problem might be challenging, due to the non-linearity of hinge penalty function (·)+. There-
fore, alternatively we turn to study the following unconstrained optimization problem:

min
Q

∑
x∈X,a∈A

p(x, a)Q(x, a) + λ
∑
x′∈X

P (x′|x, a)

(
R(x, a) + γmax

a′∈A
Q(x′, a′)−Q(x, a)

)
+

. (7)

Using the Jensen’s inequality for convex functions, one can see that the objective function in (7)
is an upper-bound of that in (6). Equality of the Jensen’s inequality will hold in the case when
transition function is deterministic. (This is similar to the argument of PCL algorithm.) Using
Jensen’s inequality one justifies that optimization problem (7) is indeed an eligible upper-bound
optimization to problem (6).

Recall that p(x, a) is the data-generation distribution of the replay buffer B. The unbiased SAA of
problem (7) is therefore given by

min
Q

1

N

N∑
s=1

Q(xi, ai) + λ

(
ri + γmax

a′∈A
Q(x′i, a

′)−Q(xi, ai)

)
+

, (8)

where {(xi, ai, ri, x′i)}Ns=1 are the N samples drawn independently from the replay buffer. In the
following, we will find the optimal Q function by solving this SAA problem. In general when the
state and action spaces are large/uncountable, instead of solving the Q-function exactly (as in the
tabular case), we turn to approximate the Q-function with its parametrized form Qθ, and optimize
the set of real weights θ (instead of Q) in problem (8).

13

B CONTINUOUS ACTION Q-LEARNING ALGORITHM

Algorithm 1 Continuous Action Q-learning (CAQL)

1: Define the maximum training epochs T , episode length L, and training steps (per epoch) S
2: Initialize the Q-function parameters θ, target Q-function parameters θtarget, and action function

parameters w
3: Choose a max-Q solver OPT ∈ {MIP,CEM,GA} (Section 3)
4: Select options for max-Q speed up (Section 4) using the following Boolean variables: (i) DTol:

Dynamic Tolerance, (ii) DF: Dual Filtering, (iii) C: Clustering; Denote by OPT(Dtol) the final
max-Q solver, constructed by the base solver and dynamic tolerance update rule (if used)

5: Initialize replay buffer R of states, actions, next states and rewards
6: for t← 1, . . . , T do
7: Sample an initial state x0 from the initial distribution
8: for `← 0, . . . , L− 1 do . Online Data Collection
9: Select action a` = clip(πw(x`) +N (0, σ), l, u)

10: Execute action a` and observe reward r` and new state x`+1

11: Store transition (x`, a`, r`, x`+1) in Replay Buffer R
12: for s← 1, . . . , S do . CAQL Training; S = 20 by default
13: Sample a random minibatch B of |B| transitions {(xi, ai, ri, x′i)}

|B|
i=1 from R

14: Initialize the refined batches B′df ← B and B′c ← B;

(i) IF DF is True: B′df ← {(x, a, r, x′) ∈ B : q̃x′,θtarget > (Qθ(x, a)− r)/γ}
(ii) IF C is True: B′c ← {(x, a, x′, r) ∈ B : x′ ∈ Ct(b)}

15: For each (xi, ai, ri, x
′
i) ∈ B′df ∩B′c, compute optimal action a′i using OPT(DTol):

a′i ∈ arg max
a′

Qθ(x
′
i, a
′)

16: and the corresponding TD targets:

qi = ri + γQθtarget(x′i, a
′
i)

17: For each (xi, ai, ri, x
′
i) ∈ B \ (B′c ∩B′df), compute the approximate TD target:

(i) IF C is True: ∀(xi, ai, ri, x′i) ∈ B′df \B′c, qi ← ri + γq̂x′i,θtarget

where q̂x′i,θtarget = q∗c′i,θtarget + 〈∇x′Qθtarget(x′, a′)|x′=c′,a′=a∗
c′
i

, (x′i − c′i)〉,

and c′i ∈ Ct(b) is the closest centroid to x′i
(ii) IF DF is True: ∀(xi, ai, ri, x′i) ∈ B \B′df, qi ← ri + γq̃x′i,θtarget

18: Update the Q-function parameters:

θ ← arg min
θ

1

|B|

|B|∑
i=1

(Qθ(xi, ai)− qi)2

19: Update the action function parameters:

w ← arg min
w

1

|B|

|B|∑
i=1

(Qθ(x
′
i, a
′
i)−Qθ(x′i, πw(x′i)))

2

20: Update the target Q-function parameters:

θtarget ← τθ + (1− τ)θtarget

21: Decay the Gaussian noise:

σ ← λσ, λ ∈ [0, 1]

14

C DETAILS OF DUAL FILTERING

Recall that the Q-function NN has a nonlinear activation function, which can be viewed as a non-
linear equality constraint, according to the formulation in (3). To tackle this constraint, Wong &
Kolter (2017) proposed a convex relaxation of the ReLU non-linearity. Specifically, first, they as-
sume that for given x′ ∈ X and a′ ∈ B∞(a) such that z1 = (x′, a′), there exists a collection of
component-wise bounds (lj , uj), j = 2, . . . ,K − 1 such that lj ≤ ẑj ≤ uj . As long as the bounds
are redundant, adding these constraints into primal problem q∗x′ does not affect the optimal value.
Second, the ReLU non-linear equality constraint is relaxed using a convex outer-approximation. In
particular, for a scalar input a within the real interval [l, u], the exact ReLU non-linearity acting on
a is captured by the set

H(l, u) := {(h, k) ∈ R2 : h ∈ [l, u], k = [h]+}.
Its convex outer-approximation is given by:

H̃(l, u) := {(h, k) ∈ R2 : k ≥ h, k ≥ 0,−uh+ (u− l)k ≤ −ul}. (9)
Analogously to (3), define the relaxed NN equations as:

z1 = (x′, a′), a′ ∈ B∞(a,∆) (10a)
ẑj = Wj−1zj−1 + bj−1, j = 2, . . . ,K (10b)

(ẑj , zj) ∈ H̃(lj , uj), j = 2, . . . ,K − 1, (10c)
where the third equation above is understood to be component-wise across layer j for each j ∈
{2, . . . ,K − 1}, i.e.,

(ẑj(s), zj(s)) ∈ H̃(lj(s), uj(s)), s = 1, . . . , nj ,

where nj is the dimension of hidden layer j. Using the relaxed NN equations, we now propose the
following relaxed (convex) verification problem:

q̃∗x′ := max
ẑ,z

c>ẑK + δB∞(ā)(a
′) +

K−1∑
j=2

δH̃(lj ,uj)(ẑj , zj) (11a)

s.t. ẑj = Wj−1zj−1 + bj−1, j = 2, . . . ,K, (11b)

where δΛ(·) is the indicator function for set Λ (i.e., δΛ(x) = 0 if x ∈ Λ and∞ otherwise). Note that
the indicator for the vector-ReLU in cost function above is understood to be component-wise, i.e.,

δH̃(lj ,uj)(ẑj , zj) =

nj∑
s=1

δH̃(lj(s),uj(s))(ẑj(s), zj(s)), j = 2, . . . ,K − 1.

The optimal value of the relaxed problem, i.e., q̃∗x′ is an upper bound on the optimal value for original
problem q∗x′i

. Thus, the certification one can obtain is the following: if q̃∗x′ ≤ (Qθ(x, a)− r)/γ, then
the sample (x, a, x′) is discarded for inner maximization. However, if q̃∗x′ > (Qθ(x, a)− r)/γ, the
sample (x, a, x′) may or may not have any contribution to the TD-error in the hinge loss function.

To further speed up the computation of the verification problem, by looking into the dual variables
of problem (11), in the next section we propose a numerically efficient technique to estimate a sub-
optimal, upper-bound estimate to q̃∗x′ , namely q̃x′ . Therefore, one verification criterion on whether a
sample drawn from replay buffer should be discarded for inner-maximization is check whether the
following inequality holds:

q̃x′ ≤
Qθ(x, a)− r

γ
. (12)

C.1 SUB-OPTIMAL SOLUTION TO THE RELAXED PROBLEM

In this section, we detail the sub-optimal lower bound solution to the relaxed problem in (11) as
proposed in Wong & Kolter (2017). Let νj , j = 2, . . . ,K denote the dual variables for the linear
equality constraints in problem (11). The Lagrangian for the relaxed problem in (11) is given by:

L(ẑ, z, ν) =
(
c>ẑK + ν>K ẑK

)
+
(
δB∞(ā)(a

′)− ν>2 W1z1

)
+

K−1∑
j=2

(
δH̃(lj ,uj)(ẑj , zj) + ν>j ẑj − ν>j+1Wjzj

)
−
K−1∑
j=1

ν>j+1bj .

15

Define ν̂j := W>j νj+1 for j = 1, . . . ,K− 1, and define ν̂x
′

1 = (W x′

1)>ν2, ν̂a
′

1 = (W a′

1)>ν2. Then,
given the decoupled structure of L in (ẑj , zj), minimizing L w.r.t. (ẑ, z) yields the following dual
function:

g(ν) =

−δ?B∞(a)(ν̂
a′

1)− (ν̂x
′

1)>x′ −
∑K−1
j=2 δ?H̃(lj ,uj)

([
−νj
ν̂j

])
−
∑K−1
j=1 ν>i+1bi if νK = −c

−∞ else.
(13)

Recall that for a real vector space X ⊆ Rn, let X∗ denote the dual space of X with the standard
pairing 〈·, ·〉 : X × X∗ → R. For a real-valued function f : X → R ∪ {∞,−∞}, let f∗ :
X∗ → R ∪ {∞,−∞} be its convex conjugate, defined as: f∗(y) = − infx∈X (f(x)− 〈y, x〉) =
supx∈X (〈y, x〉 − f(x)), ∀y ∈ X∗. Therefore, the conjugate for the vector-ReLU indicator above
takes the following component-wise structure:

δ?H̃(lj ,uj)

([
−νj
ν̂j

])
=

nj∑
s=1

δ?H̃(lj(s),uj(s))
(−νj(s), ν̂j(s)), j = 2, . . . ,K − 1. (14)

Now, the convex conjugate of the set indicator function is given by the set support function. Thus,

δ?B∞(a)(ν̂
a′

1) = a>ν̂a
′

1 + ∆‖ν̂a
′

1 ‖q,

where ‖ · ‖q is the lp-dual norm defined by the identity 1/p + 1/q = 1. To compute the convex
conjugate for the ReLU relaxation, we analyze the scalar definition as provided in (9). Specifically,
we characterize δ?H̃(l,u)

(p, q) defined by the scalar bounds (l, u), for the dual vector (p, q) ∈ R2.
There exist 3 possible cases:

Case I: l < u ≤ 0:

δ?H̃(l,u)
(p, q) =


p · u if p > 0
p · l if p < 0
0 if p = 0.

(15)

Case II: 0 ≤ l < u:

δ?H̃(l,u)
(p, q) =


(p+ q) · u if p+ q > 0
(p+ q) · l if p+ q < 0
0 if p = −q.

(16)

Case III: l < 0 < u: For this case, the sup will occur either on the line −ux + (u − l)y = −ul or
at the origin. Thus,

δ?H̃(l,u)
(p, q) =

[
sup
h∈[l,u]

p · h+
u

u− l
· (h− l) · q

]
+

=

[
sup
h∈[l,u]

(
p+ q · u

u− l

)
· h− q · l · u

u− l

]
+

=



[(p+ q) · u]+ if
(
p+ q · u

u− l

)
> 0

[p · l]+ if
(
p+ q · u

u− l

)
< 0[

−q · l · u

u− l

]
+

= [p · l]+ if
(
p+ q · u

u− l

)
= 0.

(17)

Applying these in context of equation (14), we calculate the Lagrange multipliers by considering the
following cases.

Case I: lj(s) < uj(s) ≤ 0: In this case, since zj(s) = 0 regardless of the value of ẑj(s), one can
simply remove these variables from problems (10) and (11) by eliminating the jth row of Wj−1 and
bj−1 and the jth column of Wi. Equivalently, from (15), one can remove their contribution in (13)
by setting νj(s) = 0.

16

Case II: 0 ≤ lj(s) < uj(s): In this case, the ReLU non-linearity for (ẑj(s), zj(s)) in problems (10)
and (11) may be replaced with the convex linear equality constraint zj(s) = ẑj(s) with associated
dual variable µ. Within the Lagrangian, this would result in a modification of the term

δH̃(lj(s),uj(s))(ẑj(s), zj(s)) + νj(s)ẑj(s)− ν̂j(s)zj(s)

to
µ(zj(s)− ẑj(s)) + νj(s)ẑj(s)− ν̂j(s)zj(s).

Minimizing this over (ẑj(s), zj(s)), a non-trivial lower bound (i.e., 0) is obtained only if νj(s) =
ν̂j(s) = µ. Equivalently, from (16), we set νj(s) = ν̂j(s).

Case III: For the non-trivial third case, where lj(s) < 0 < uj(s), notice that due to ν̂, the dual
function g(ν) is not decoupled across the layers. In order to get a sub-optimal, but analytical solution
to the dual optimization, we will optimize each term within the first sum in (13) independently. To
do this, notice that the quantity in sub-case I in (17) is strictly greater than the other two sub-cases.
Thus, the best bound is obtained by using the third sub-case, which corresponds to setting:

νj(s) = ν̂j(s)
uj(s)

uj(s)− lj(s)
.

Combining all the previous analysis, we now calculate the dual of the solution to problem (11). Let
I−j := {s ∈ Nnj : uj(s) ≤ 0}, I+

j := {s ∈ Nnj : lj(s) ≥ 0}, and Ij := Nnj \ (I−j ∪ I
+
j).

Using the above case studies, a sub-optimal (upper-bound) dual solution to the primal solution J̃x′
in problem (11) is given by

q̃x′ := −(ν̂a
′

1)>a−∆‖ν̂a
′

1 ‖q − (ν̂x1)>x+

K−1∑
j=2

∑
s∈Ij

lj(s)[νj(s)]+ −
K−1∑
j=1

ν>j+1bi, (18)

where ν is defined by the following recursion, termed the “dual” network:

νK := −c, ν̂j := W>j νj+1, j = 1, . . . ,K − 1, νj := Dj ν̂j , j = 2, . . . ,K − 1, (19)

and Dj is a diagonal matrix with

[Dj](s, s) =


0 if s ∈ I−j
1 if s ∈ I+

j

uj(s)

uj(s)− lj(s)
if s ∈ Ij .

(20)

C.2 COMPUTING PRE-ACTIVATION BOUNDS

For k ∈ {3, . . . ,K − 1}, define the k−partial NN as the set of equations:

z1 =(x′, a′), ẑj=Wj−1zj−1 + bj−1, j = 2, . . . , k, zj=h(ẑj), j = 2, . . . , k − 1. (21)

Finding the lower bound lk for ẑk involves solving the following problem:

min
ẑ,z

e>s ẑk (22)

s.t. z1 = (x′, a′), a′ ∈ B∞(a,∆), eq. (21), (23)

where es is a one-hot vector with the non-zero element in the s-th entry, for s ∈ {1, . . . , nk}. Simi-
larly, we obtain uk by maximizing the objective above. Assuming we are given bounds {lj , uj}k−1

j=2 ,
we can employ the same convex relaxation technique and approximate dual solution as for the verifi-
cation problem (since we are simply optimizing a linear function of the output of the first k layers of
the NN). Doing this recursively allows us to compute the bounds {lj , uj} for j = 3, . . . ,K−1. The
recursion is given in Algorithm 1 in Wong & Kolter (2017) and is based on the matrix form of the
recursion in (19), i.e., with c replaced with I and −I , so that the quantity in (18) is vector-valued.

17

D EXPERIMENTAL DETAILS

Environment State dimension Action dimension Action ranges
Pendulum 3 1 [-2, 2], [-1, 1], [-0.66, 0.66]
Hopper 11 3 [-1, 1], [-0.5, 0.5], [-0.25, 0.25]
Walker2D 17 6 [-1, 1], [-0.5, 0.5], [-0.25, 0.25]
HalfCheetah 17 6 [-1, 1], [-0.5, 0.5], [-0.25, 0.25]
Ant 111 8 [-1.0, 1.0], [-0.5, 0.5], [-0.25, 0.25], [-0.1, 0.1]
Humanoid 376 17 [-0.4, 0.4], [-0.25, 0.25], [-0.1, 0.1]

Table 6: Benchmark Environments. Various action bounds are tested from the default one to smaller
ones. The action range in bold is the default one. For high-dimensional environments such as
Walker2D, HalfCheetah, Ant, and Humanoid, we only test on action ranges that are smaller than the
default (in bold) due to the long computation time for MIP. A smaller action bound results in a MIP
that solves faster.

Hyper Parameters for CAQL and NAF Value(s)
Discount factor 0.99
Exploration policy N (0, σ = 1)
Exploration noise (σ) decay 0.9995, 0.9999
Exploration noise (σ) minimum 0.01
Soft target update rate (τ) 0.001
Replay memory size 105

Mini-batch size 64
Q-function learning rates 0.001, 0.0005, 0.0002, 0.0001
Action function learning rates (for CAQL only) 0.001, 0.0005, 0.0002, 0.0001
Tolerance decay (for dynamic tolerance) 0.995, 0.999, 0.9995
Lambda penalty (for CAQL with Hinge loss) 0.1, 1.0, 10.0
Neural network optimizer Adam

Table 7: Hyper parameters settings for CAQL(+ MIP, GA, CEM) and NAF. We sweep over the
Q-function learning rates, action function learning rates, and exploration noise decays.

Hyper Parameters for DDPG, TD3, SAC Value(s)
Discount factor 0.99
Exploration policy (for DDPG and TD3) N (0, σ = 1)
Exploration noise (σ) decay (for DDPG and TD3) 0.9995
Exploration noise (σ) minimum (for DDPG and TD3) 0.01
Temperature (for SAC) 0.99995, 0.99999
Soft target update rate (τ) 0.001
Replay memory size 105

Mini-batch size 64
Critic learning rates 0.001, 0.0005, 0.0002, 0.0001
Actor learning rates 0.001, 0.0005, 0.0002, 0.0001
Neural network optimizer Adam

Table 8: Hyper parameters settings for DDPG, TD3, and SAC. We sweep over the critic learning
rates, actor learning rates, temperature,and exploration noise decays.

We use a two hidden layer neural network with ReLU activation (32 units in the first layer and 16
units in the second layer) for both the Q-function and the action function. The input layer for the
Q-function is a concatenated vector of state representation and action variables. The Q-function
has a single output unit (without ReLU). The input layer for the action function is only the state
representation. The output layer for the action function has d units (without ReLU), where d is
the action dimension of a benchmark environment. We use SCIP 6.0.0 (Gleixner et al., 2018) for
the MIP solver. A time limit of 60 seconds and a optimality gap limit of 10−4 are used for all
experiments. For GA and CEM, a maximum iterations of 20 and a convergence threshold of 10−6

are used for all experiments if not stated otherwise.

18

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 OPTIMIZER SCALABILITY

Table 9 shows the average elapsed time of various optimizers computing max-Q in the experiment
setup described in Appendix D. MIP is more robust to action dimensions than GA and CEM. MIP
latency depends on the state of neural network weights. It takes longer time with highly dense NN
weights, but on the other hand, it can be substantially quicker with sparse NN weights. Figure 3
shows the average elapsed time of MIP over training steps for various benchmarks. We have ob-
served that MIP is very slow in the beginning of the training phase but it quickly becomes faster.
This trend is observed for most benchmarks except Humanoid. We speculate that the NN weights
for the Q-function are dense in the beginning of the training phase, but it is gradually structurized
(e.g, sparser weights) so that it becomes an easier problem for MIP.

Env. [Action range] GA CEM MIP

Hopper [-1.0, 1.0] Med(κ): 0.093, SD(κ): 0.015 Med(κ): 0.375, SD(κ): 0.059 Med(κ): 83.515, SD(κ): 209.172
Walker2D [-0.5, 0.5] Med(κ): 0.093, SD(κ): 0.015 Med(κ): 0.406, SD(κ): 0.075 Med(κ): 104.968, SD(κ): 178.797
HalfCheetah [-0.5, 0.5] Med(κ): 0.093, SD(κ): 0.015 Med(κ): 0.296, SD(κ): 0.072 Med(κ): 263.453, SD(κ): 88.269
Ant [-0.25, 0.25] Med(κ): 0.109, SD(κ): 0.018 Med(κ): 0.343, SD(κ): 0.054 Med(κ): 87.640, SD(κ): 160.921
Humanoid [-0.25, 0.25] Med(κ): 0.140, SD(κ): 0.022 Med(κ): 0.640, SD(κ): 0.113 Med(κ): 71.171, SD(κ): 45.763

Table 9: The (median, standard deviation) for the average elapsed time κ (in msec) of various solvers
computing max-Q problem.

0 100 200 300 400 500
Training Steps (×1e3)

0

200

400

600

800

1000

1200

El
ap

se
d

tim
e

fo
r M

ax
Q

co
m

pu
ta

tio
n

(m
se

c) HalfCheetah [-0.5, 0.5]

0 100 200 300 400 500
Training Steps (×1e3)

0

500

1000

1500

2000

2500
Ant [-0.25, 0.25]

Constant Dynamic

0 100 200 300 400 500
Training Steps (×1e3)

0

50

100

150

200

250

300
Humanoid [-0.25, 0.25]

Figure 3: Average elapsed time (in msec) for MIP computing max-Q with constant and dynamic
optimality gap.

19

E.2 ADDITIONAL RESULTS

0 50 100 150 200

1500

1250

1000

750

500

250
Pendulum [-0.66, 0.66]

0 50 100 150 200
1750

1500

1250

1000

750

500

250

Pendulum [-1.0, 1.0]

0 50 100 150 200

1500

1000

500

Pendulum [-2.0, 2.0]

MIP GA CEM NAF DDPG TD3 SAC

0 50 100 150 200
0

100

200

300

400
Hopper [-0.25, 0.25]

0 50 100 150 200
0

100

200

300

400

500

Hopper [-0.5, 0.5]

0 50 100 150 200
0

100

200

300

400

500

600
Hopper [-1.0, 1.0]

0 50 100 150 200

0

100

200

300

Walker2D [-0.25, 0.25]

0 50 100 150 200

0

100

200

300

400

Walker2D [-0.5, 0.5]

0 100 200 300 400 500
0

100

200

300

400
HalfCheetah [-0.25, 0.25]

0 100 200 300 400 500

0

200

400

600

800

HalfCheetah [-0.5, 0.5]

0 100 200 300 400 500
Training Steps (×1e3)

200

250

300

350

400

450
Ant [-0.1, 0.1]

0 100 200 300 400 500
Training Steps (×1e3)

200

300

400

500

Ant [-0.25, 0.25]

0 100 200 300 400 500
Training Steps (×1e3)

100

200

300

400

500

600

700
Humanoid [-0.1, 0.1]

0 100 200 300 400 500
Training Steps (×1e3)

200

400

600

800
Humanoid [-0.25, 0.25]

(a) Mean cumulative reward with full standard deviation.

0 50 100 150 200

1500

1250

1000

750

500

250
Pendulum [-0.66, 0.66]

0 50 100 150 200

1500

1250

1000

750

500

250
Pendulum [-1.0, 1.0]

0 50 100 150 200
1750

1500

1250

1000

750

500

250

Pendulum [-2.0, 2.0]

MIP GA CEM NAF DDPG TD3 SAC

0 50 100 150 200

100

200

300

Hopper [-0.25, 0.25]

0 50 100 150 200
0

100

200

300

400

500 Hopper [-0.5, 0.5]

0 50 100 150 200
0

100

200

300

400

500

Hopper [-1.0, 1.0]

0 50 100 150 200

0

100

200

300

Walker2D [-0.25, 0.25]

0 50 100 150 200

0

100

200

300

Walker2D [-0.5, 0.5]

0 100 200 300 400 500
0

100

200

300

400
HalfCheetah [-0.25, 0.25]

0 100 200 300 400 500

0

200

400

600

800
HalfCheetah [-0.5, 0.5]

0 100 200 300 400 500
Training Steps (×1e3)

200

250

300

350

400

Ant [-0.1, 0.1]

0 100 200 300 400 500
Training Steps (×1e3)

200

300

400

500
Ant [-0.25, 0.25]

0 100 200 300 400 500
Training Steps (×1e3)

100

200

300

400

500

600
Humanoid [-0.1, 0.1]

0 100 200 300 400 500
Training Steps (×1e3)

200

400

600

Humanoid [-0.25, 0.25]

(b) Mean cumulative reward with half standard deviation.

Figure 4: Mean cumulative reward of the best hyper parameter configuration over 10 random seeds.
Shaded area is ± full or half standard deviation. Data points are average over a sliding window of
size 6. The length of an episode is limited to 200 steps.

20

0 50 100 150 200

1500

1250

1000

750

500

Pendulum [-0.66, 0.66]

0 50 100 150 200
1750

1500

1250

1000

750

500

250

Pendulum [-1.0, 1.0]

0 50 100 150 200

1500

1000

500

0
Pendulum [-2.0, 2.0]

MIP GA CEM NAF DDPG TD3 SAC

0 50 100 150 200
0

100

200

300

400
Hopper [-0.25, 0.25]

0 50 100 150 200
0

100

200

300

400

Hopper [-0.5, 0.5]

0 50 100 150 200
0

100

200

300

400

500
Hopper [-1.0, 1.0]

0 50 100 150 200

0

100

200

300

Walker2D [-0.25, 0.25]

0 50 100 150 200

0

100

200

300

Walker2D [-0.5, 0.5]

0 100 200 300 400 500

0

100

200

300

400

HalfCheetah [-0.25, 0.25]

0 100 200 300 400 500

0

200

400

600

HalfCheetah [-0.5, 0.5]

0 100 200 300 400 500
Training Steps (×1e3)

200

250

300

350

400
Ant [-0.1, 0.1]

0 100 200 300 400 500
Training Steps (×1e3)

200

300

400

Ant [-0.25, 0.25]

0 100 200 300 400 500
Training Steps (×1e3)

100

200

300

400

Humanoid [-0.1, 0.1]

0 100 200 300 400 500
Training Steps (×1e3)

100

200

300

400

500

600
Humanoid [-0.25, 0.25]

(a) Mean cumulative reward with full standard deviation.

0 50 100 150 200
1600

1400

1200

1000

800

600

Pendulum [-0.66, 0.66]

0 50 100 150 200

1500

1250

1000

750

500

Pendulum [-1.0, 1.0]

0 50 100 150 2001750

1500

1250

1000

750

500

250

Pendulum [-2.0, 2.0]

MIP GA CEM NAF DDPG TD3 SAC

0 50 100 150 200

100

200

300

Hopper [-0.25, 0.25]

0 50 100 150 200
0

100

200

300

400
Hopper [-0.5, 0.5]

0 50 100 150 200
0

100

200

300

400

Hopper [-1.0, 1.0]

0 50 100 150 200

0

50

100

150

200

250

300
Walker2D [-0.25, 0.25]

0 50 100 150 200

0

50

100

150

200

250

Walker2D [-0.5, 0.5]

0 100 200 300 400 500
0

100

200

300

400
HalfCheetah [-0.25, 0.25]

0 100 200 300 400 500

0

100

200

300

400

500

600 HalfCheetah [-0.5, 0.5]

0 100 200 300 400 500
Training Steps (×1e3)

200

250

300

350

Ant [-0.1, 0.1]

0 100 200 300 400 500
Training Steps (×1e3)

150

200

250

300

350

400

Ant [-0.25, 0.25]

0 100 200 300 400 500
Training Steps (×1e3)

100

150

200

250

300

350

400

Humanoid [-0.1, 0.1]

0 100 200 300 400 500
Training Steps (×1e3)

100

200

300

400

Humanoid [-0.25, 0.25]

(b) Mean cumulative reward with half standard deviation.

Figure 5: Mean cumulative reward over all 320 configurations (32 hyper parameter combinations×
10 random seeds). Shaded area is ± full or half standard deviation. Data points are average over a
sliding window of size 6. The length of an episode is limited to 200 steps.

21

0 200 400 600 800 1000
0

200

400

600

800

1000

Hopper [-0.25, 0.25]

0 200 400 600 800 1000
0

1000

2000

3000

Hopper [-1.0, 1.0]

0 500 1000 1500 2000
0

500

1000

1500

2000

2500

Walker2D [-0.25, 0.25]

GA DDPG TD3 SAC

0 500 1000 1500 2000
0

1000

2000

3000

4000

5000

Walker2D [-1.0, 1.0]

0 200 400 600 800 1000
0

500

1000

1500

2000

HalfCheetah [-0.25, 0.25]

0 500 1000 1500 2000
Training Steps (×1e3)

0

2000

4000

6000

8000

10000

12000

HalfCheetah [-1.0, 1.0]

0 200 400 600 800 1000
Training Steps (×1e3)

500
1000
1500
2000
2500
3000
3500
4000

Ant [-0.25, 0.25]

0 500 1000 1500 2000
Training Steps (×1e3)

1000

2000

3000

4000

5000

6000

Ant [-1.0, 1.0]

0 500 1000 1500 2000
Training Steps (×1e3)

0

1000

2000

3000

4000

5000
Humanoid [-0.1, 0.1]

0 500 1000 1500 2000
Training Steps (×1e3)

0

1000

2000

3000

4000

5000

6000

7000
Humanoid [-0.4, 0.4]

(a) Mean cumulative reward with full standard deviation.

0 200 400 600 800 1000
0

200

400

600

800

1000
Hopper [-0.25, 0.25]

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

Hopper [-1.0, 1.0]

0 500 1000 1500 2000
0

500

1000

1500

2000

2500
Walker2D [-0.25, 0.25]

GA DDPG TD3 SAC

0 500 1000 1500 2000
0

1000

2000

3000

4000

5000

Walker2D [-1.0, 1.0]

0 200 400 600 800 1000
0

500

1000

1500

2000

HalfCheetah [-0.25, 0.25]

0 500 1000 1500 2000
Training Steps (×1e3)

0

2000

4000

6000

8000

10000

12000
HalfCheetah [-1.0, 1.0]

0 200 400 600 800 1000
Training Steps (×1e3)

1000

1500

2000

2500

3000

3500

4000
Ant [-0.25, 0.25]

0 500 1000 1500 2000
Training Steps (×1e3)

1000

2000

3000

4000

5000

6000
Ant [-1.0, 1.0]

0 500 1000 1500 2000
Training Steps (×1e3)

0

1000

2000

3000

4000 Humanoid [-0.1, 0.1]

0 500 1000 1500 2000
Training Steps (×1e3)

0

1000

2000

3000

4000

5000

6000

Humanoid [-0.4, 0.4]

(b) Mean cumulative reward with half standard deviation.

Figure 6: Mean cumulative reward of the best hyper parameter configuration over 10 random seeds.
Shaded area is ± full or half standard deviation. Data points are average over a sliding window of
size 6. The length of an episode is 1000 steps.

22

E.3 ABLATION ANALYSIS

0 25 50 75 100 125 150 175 200

0

50

100

150

200

250

300

350

Walker2D [-1.0, 1.0]

0 25 50 75 100 125 150 175 200
0

100

200

300

400

500

Hopper [-1.0, 1.0]

GA_L2 GA_DFC_L2 GA_DFC_0_25_L2 GA_DFC_0_5_L2 DUAL_L2

0 100 200 300 400 500

100

200

300

400

500

600

700

800
Humanoid [-0.4, 0.4]

0 100 200 300 400 500
Training Steps (×1e3)

0

200

400

600

800

HalfCheetah [-1.0, 1.0]

0 100 200 300 400 500
Training Steps (×1e3)

0

100

200

300

400

Ant [-0.5, 0.5]

0 25 50 75 100 125 150 175 200
Training Steps (×1e3)

1600

1400

1200

1000

800

600

400

200

Pendulum [-2.0, 2.0]

Figure 7: Mean cumulative reward of the best hyper parameter configuration over 10 random seeds.
Shaded area is ± standard deviation. Data points are average over a sliding window of size 6. The
length of an episode is limited to 200 steps.

0 25 50 75 100 125 150 175 200

0

50

100

150

200

250

Walker2D [-1.0, 1.0]

0 25 50 75 100 125 150 175 200
0

50

100

150

200

250

300

350
Hopper [-1.0, 1.0]

GA_L2 GA_DFC_L2 GA_DFC_0_25_L2 GA_DFC_0_5_L2 DUAL_L2

0 100 200 300 400 500

100

200

300

400

500

Humanoid [-0.4, 0.4]

0 100 200 300 400 500
Training Steps (×1e3)

0

200

400

600

HalfCheetah [-1.0, 1.0]

0 100 200 300 400 500
Training Steps (×1e3)

0

50

100

150

200

250

300

Ant [-0.5, 0.5]

0 25 50 75 100 125 150 175 200
Training Steps (×1e3)

1600

1400

1200

1000

800

600

400

200

Pendulum [-2.0, 2.0]

Figure 8: Mean cumulative reward over all 320 configurations (32 hyper parameter combinations×
10 random seeds). Shaded area is ± standard deviation. Data points are average over a sliding
window of size 6. The length of an episode is limited to 200 steps.

23

0 25 50 75 100 125 150 175 200

0

100

200

300

400

Walker2D [-1.0, 1.0]

0 25 50 75 100 125 150 175 200
0

100

200

300

400

500

600

Hopper [-1.0, 1.0]

GA_200_L2_TOL_MIN GA_200_L2_TOL_100 GA_200_L2_TOL_DYN_100 GA_200_L2_TOL_DYN_1_0 GA_200_L2_TOL_DYN_0_1

0 100 200 300 400 500

200

400

600

800

Humanoid [-0.4, 0.4]

0 100 200 300 400 500
Training Steps (×1e3)

200

0

200

400

600

800

1000

HalfCheetah [-1.0, 1.0]

0 100 200 300 400 500
Training Steps (×1e3)

0

100

200

300

400

500

600
Ant [-0.5, 0.5]

0 25 50 75 100 125 150 175 200
Training Steps (×1e3)

1750

1500

1250

1000

750

500

250

Pendulum [-2.0, 2.0]

Figure 9: Mean cumulative reward of the best hyper parameter configuration over 10 random seeds.
Shaded area is ± standard deviation. Data points are average over a sliding window of size 6. The
length of an episode is limited to 200 steps.

0 25 50 75 100 125 150 175 200
50

0

50

100

150

200

250

300

Walker2D [-1.0, 1.0]

0 25 50 75 100 125 150 175 200
0

100

200

300

400

Hopper [-1.0, 1.0]

GA_200_L2_TOL_MIN GA_200_L2_TOL_100 GA_200_L2_TOL_DYN_100 GA_200_L2_TOL_DYN_1_0 GA_200_L2_TOL_DYN_0_1

0 100 200 300 400 500

100

200

300

400

500

600

700 Humanoid [-0.4, 0.4]

0 100 200 300 400 500
Training Steps (×1e3)

200

0

200

400

600

800

HalfCheetah [-1.0, 1.0]

0 100 200 300 400 500
Training Steps (×1e3)

0

100

200

300

400

Ant [-0.5, 0.5]

0 25 50 75 100 125 150 175 200
Training Steps (×1e3)

1600

1400

1200

1000

800

600

400

200

0
Pendulum [-2.0, 2.0]

Figure 10: Mean cumulative reward over all 320 configurations (32 hyper parameter combinations×
10 random seeds). Shaded area is ± standard deviation. Data points are average over a sliding
window of size 6. The length of an episode is limited to 200 steps.

0 100 200 300 400 500
Training Steps (×1e3)

0

200

400

600

800

HalfCheetah [-0.5, 0.5]

0 100 200 300 400 500
Training Steps (×1e3)

200

250

300

350

400

Ant [-0.1, 0.1]

0 100 200 300 400 500
Training Steps (×1e3)

150

200

250

300

350

400

450

500
Ant [-0.25, 0.25]

CONSTANT DYNAMIC

0 100 200 300 400 500
Training Steps (×1e3)

100

200

300

400

500

600

700
Humanoid [-0.1, 0.1]

0 100 200 300 400 500
Training Steps (×1e3)

100

200

300

400

500

600

Humanoid [-0.25, 0.25]

Figure 11: Comparison of CAQL-MIP with or without dynamic optimality gap on the mean return
over 10 random seeds. Shaded area is ± standard deviation. Data points are average over a sliding
window of size 6. The length of an episode is limited to 200 steps.

24

0 25 50 75 100 125 150 175 200

0

100

200

300

400
Walker2D [-1.0, 1.0]

0 25 50 75 100 125 150 175 200
0

100

200

300

400

500

600

Hopper [-1.0, 1.0]

GA_L2 GA_HINGE

0 100 200 300 400 500

200

400

600

800

Humanoid [-0.4, 0.4]

0 100 200 300 400 500
Training Steps (×1e3)

0

200

400

600

800

1000
HalfCheetah [-1.0, 1.0]

0 100 200 300 400 500
Training Steps (×1e3)

100

200

300

400

500

Ant [-0.5, 0.5]

0 25 50 75 100 125 150 175 200
Training Steps (×1e3)

1600

1400

1200

1000

800

600

400

200

Pendulum [-2.0, 2.0]

Figure 12: Mean cumulative reward of the best hyper parameter configuration over 10 random seeds.
Shaded area is ± standard deviation. Data points are average over a sliding window of size 6. The
length of an episode is limited to 200 steps.

Env. [Action range] `2 CAQL-GA Hinge CAQL-GA

Pendulum [-2, 2] -244.488± 497.467 -232.307± 476.410
Hopper [-1, 1] 253.459± 158.578 130.846± 92.298
Walker2D [-1, 1] 207.916± 100.669 173.160± 106.138
HalfCheetah [-1, 1] 628.440± 234.809 532.160± 192.558
Ant [-0.5, 0.5] 256.804± 90.335 199.667± 84.116
Humanoid [-0.4, 0.4] 443.735± 223.856 297.097± 151.533

Table 10: The mean ± standard deviation of (95-percentile) final returns over all 320 configura-
tions (32 hyper parameter combinations × 10 random seeds). The full training curves are given in
Figure 12.

25

	Introduction
	Preliminaries
	Continuous Action Q-Learning Algorithm
	Plug-N-Play Max-Q Optimizers
	Action Function

	Accelerating Max-Q Computation
	Experiments on MuJoCo Benchmarks
	Conclusions and Future Work
	Hinge Q-learning
	Continuous Action Q-learning Algorithm
	Details of Dual Filtering
	Sub-Optimal Solution to the Relaxed Problem
	Computing Pre-Activation Bounds

	Experimental Details
	Additional Experimental Results
	Optimizer Scalability
	Additional Results
	Ablation Analysis

