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ABSTRACT

A plethora of computer vision tasks, such as optical flow and image alignment,
can be formulated as non-linear optimization problems. Before the resurgence of
deep learning, the dominant family for solving such optimization problems was
numerical optimization, e.g, Gauss-Newton (GN). More recently, several attempts
were made to formulate learnable GN steps as cascade regression architectures. In
this paper, we investigate recent machine learning architectures, such as deep neural
networks with residual connections, under the above perspective. To this end, we
first demonstrate how residual blocks (when considered as discretization of ODEs)
can be viewed as GN steps. Then, we go a step further and propose a new residual
block, that is reminiscent of Newton’s method in numerical optimization and
exhibits faster convergence. We thoroughly evaluate the proposed Newton-ResNet
by conducting experiments on image/speech classification and image generation.
All the experiments demonstrate that Newton-ResNet requires less parameters to
achieve the same performance with the original ResNet.

1 INTRODUCTION

A wealth of computer vision problems (e.g., structure from motion (Buchanan & Fitzgibbon, 2005),
stereo (Lucas et al., [1981} |Clark et al.| [2018), image alignment (Antonakos et al.| [2015)), optical
flow (Zikic et al.| [2010; [Baker & Matthews| |2004; Rosman et al., |2011))) are posed as nonlinear
optimization problems. Before the resurgence of the machine learning era, the dominant family
for solving such optimization problems’| was numerical optimization, e.g, Gauss-Newton (GN).
Recently, it was proposed that the GN steps, called descent directions, can be learned and represented
as a cascade regression to solve non-linear least square problems (Xiong & De la Torrel [2013)).
With the advent of deep learning, the aforementioned ideas were combined with learnable feature
representations using deep convolutional neural networks for solving problems such as alignment
and stereo (Trigeorgis et al.l 2016} Clark et al.l 2018]). In this paper, we first try to draw similarities
between learning descent directions and the structure of the popular residual networks. Motivated by
that, we further extend residual learning by adopting ideas from Newton’s numerical optimization
method, which exhibits faster convergence rate than Gauss-Newton based methods (both theoretically
and empirically as we show in our experiments).

ResNet (He et al.l 2016) is among the most popular architectures for approximating non-linear
functions through learning. The core component of ResNet is the residual block which can be seen
as a linear difference equation. That is, the ' residual block is expressed as «;,, = x; + Cx; for
input x;. By considering the residual block as a discretization of Euler ODEs (Haber et al., 2018}
Chen et al., |2018)), each residual block expresses a learnable, first order descent direction.

We propose to accelerate the convergence (i.e., employ fewer residual blocks) in approximation of
non-linear functions by introducing a novel residual block that exploits second-order information
in analogy to Newton’s method in non-linear optimization. Since the (second order) derivative is
not analytically accessible, we rely on the idea of |Xiong & De la Torre|(2014) to learn the descent
directions by exploiting second order information of the input. We build a deep model, called
Newton-ResNet, that involves the proposed residual block. Newton-ResNet requires less residual
blocks to achieve the same accuracy compared to original ResNet. This is depicted in Fig. |1} the

"We assume that the function we want to approximate is Lipschitz continuous and differentiable.
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COIltOUIH shows the loss landscape near the minimum of each method and indeed the proposed method
requires fewer steps.
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Figure 1: Contours around the minima of (a) ResNet18, (b) Newton-ResNet. Starting from a random
point x(, ResNet needs more steps, i.e. more residual blocks, to reach the minimum.

Our contributions are as follows:

e We first establish a conceptual link between residual blocks in deep networks and standard
optimization techniques, such as Gauss-Newton. This motivates us to design a novel residual
block that learns the descent directions with second order information (akin to Newton steps
in nonlinear optimization). A deep network composed of the proposed residual blocks is
coined as Newton-ResNet.

e We show that Newton-ResNet can effectively approximate non-linear functions, by demon-
strating that it requires less residual blocks and hence significantly less parameters to achieve
the performance of the original ResNet. We experimentally verify our claim on four different
datasets of images and speech in classification tasks. Additionally, we conduct experiments
on image generation with Newton-ResNet-based GAN (Goodfellow et al.,2014).

o We empirically demonstrate that Newton-ResNet is a good function approximator even in
the absence of activation functions, where the corresponding ResNet performs poorly.

2 RELATED WORK

The literature on resnets is vast; we focus below on the perspectives of a) theoretical understanding,
b) alternative architectures and c) modifications of the transformation path.

A significant line of research is the theoretical understanding behind the performance of residual
connections. The work of [Hardt & Mal(2017) proves that arbitrarily deep linear residual networks
have no spurious local optima; all critical points correspond to a global minimum. [Zaeemzadeh
et al. (2018) attribute the success of resnet to the norm presentation. More recently, Shamir| (2018)
proves that a network with residual connections is provably better than the corresponding network
without the residuals. [Balduzzi et al.| (2017) focus on the gradients in residual connections; they study
the correlations during initialization and introduce an appropriate initialization. These works are
orthogonal to ours; they methodologically study the theoretical properties of deep learning, while we
focus on reducing the number of residual blocks required.

The perspective of topological extension of the residual block is closer to our work. The popular
densenet (Huang et al.,[2017) uses dense connections which use concatenation instead of addition of
the representation. Dual path networks of |Chen et al.|(2017) use a new block structure that includes
both dense and residual connections. Wang et al.| (2018) prove that resnet and densenet share the

The method of [Li et al.| (2018); [Im et al.| (2016) is used to compute the contours.
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same topology with different feature fusion method (addition and concatenation respectively). They
propose a framework that generalizes both residual and dense connections.

The work that is most closely related to ours is that of Srivastava et al.|(2015); they define a topology
that includes residual connections and higher order correlations. However, we offer a new perspective
on the higher order correlations. In addition, we experiment with a) large scale problems, b) with
linear blocks that highway networks have not used.

A popular line of research modifies the transformation path of each residual block. In ResNeXt (Xie
et al., 2017) and Inception (Szegedy et al., 2017) the authors add group convolutions in the transfor-
mation path. In|Zhang et al.|(2017) the transformation path is a (set of) residual blocks itself, i.e. they
obfuscate one residual block inside another. In wide residual networks (Zagoruyko & Komodakis),
2016) they advocate for increased width of each block. All related works are complementary to ours,
since we do not modify the transformation path modules.

The applications of residual networks are diverse and often with impressive results. Such applications
include object detection/recognition (Szegedy et al.l [2017)), face recognition (Deng et al.| [2019)),
generative models (Miyato et al.,[2018). However, these networks have tens or hundreds of residual
blocks. A line of research that reduces the number of parameters is that of pruning the network (Han
et al.,|2015; |Li et al., 2017} |Chin et al., 2018). Han et al.|(2015)) propose to prune the weights with
small magnitude, while|Chin et al.|(2018) propose a meta-learning technique to improve heuristic
pruning techniques. However, pruning does not reduce the training resources (it even increases the
time because for a single model, we train the network at least twice), and it is largely based on
hand-engineered heuristics. That is, there is no solid understanding of the theoretical properties of
pruning methods.

3 METHOD

To develop our intuition, we explore the linear residual block in sec. [3.1} i.e. the residual block
without any activation functions. In sec. we extend the proposed formulation in the presence of
activation functions as typically used in ResNet.

Tt D1 @ (D—a141

O
—C o

(a) Original residual block (b) Our residual block

Figure 2: Schematic of the (a) original, (b) our residual block for the #** layer. The path that includes
C is referred to as the transformation path; while the other (with the identity transformation) is
referred to as the shortcut path. The symbol C' denotes the operations in the transformation path,
e.g. convolutions in He et al|(2016)). The symbols N7, [N, are normalization layers, e.g. batch
normalization or 1 x 1 convolutions. The symbol * denotes an element-wise product.

3.1 LINEAR RESIDUAL BLOCK

Before the introduction of the residual block, all the neural networks were a composition of linear
layers, e.g. fully-connected or convolutional layers, and activation functions. The (input) representa-
tion was transformed in each layer through a linear operation if we ignore the activation functions.
The residual block of |[He et al.|(2016) enables the input representation to pass through unchanged by
introducing a two-pathway block consisting of a shortcut path and a transformation path. The #*"
residual block (in a network) is ;1 = x; + Cx; for input m That is, the residual block expresses
a linear difference equation.

3Each residual block has different parameters C ®) however we drop the dependence on ¢ for simplification.



Under review as a conference paper at ICLR 2020

We propose instead a new residual block that captures second order information. The new residual
block is:
LTyl = ¢ +th+aazt*Smt (1)

for input x; with S the same dimensions as C' and # an element-wise product. The scalar parameter
a € R is learnable and plays the role of scaling the significance of the second order interactions.
To reduce the number of parameters, we can share the parameters of S and C'; we introduce some
normalization in the quadratic term. The proposed residual block then is expressed as:

L1 = Tt + C.’Bt + OZNQ(Nl(ZCt) * C:Iit) (2)

with Ny, N3 two normalization operators. The proposed residual block is depicted in Fig. 2}

3.2 RESIDUAL BLOCK WITH ACTIVATION FUNCTIONS

Frequently activation functions are used in conjunction with the residual block. We consider a residual
block with activation functions and two convolutions in the transformation path. If we define the
function f;(x) = Ca(¢(C1)), the residual block is x¢1 = (@ + fi(x:)) with ¢ denoting an
activation function, such as RELU. To avoid cluttering the notation, batch normalization is ignored in
the last equation.

The proposed residual block in the presence of activation functions becomes:

Top1 = O(@e + fe(@e) + aNa(Ni(we) * fi(ae))) 3)

The proposed residual block can be used with different architectures, e.g. three convolutions or with
group convolutions.

4 EXPERIMENTS

Implementation details: All the optimization-related hyper-parameters, e.g. the optimizer, the
learning rate, the initializations, the number of epochs etc., remain the same as in the original ResNet.
Further improvement can be obtained by tuning those values for our residual block, but this is out of
our scope. Unless mentioned otherwise, each experiment is conducted 5 times and the average and
the standard deviation are reported.

Datasets: The following four datasets are used in this work:

1. CIFARIO (Krizhevsky et al.l [2014): This is a widely used dataset that contains 60, 000
images of natural scenes. Each image is of resolution 32 x 32 x 3 and is classified in one of
the 10 classes.

2. CIFARI0O0 (Krizhevsky et al.): This is an extension over CIFARI10; it includes the same
amount of images but there are 100 classes.

3. ImageNet (Russakovsky et al.,|2015): The ImageNet 2012 dataset (Russakovsky et al.,|2015)
comprises 1.28 million training images and 50K validation images from 1000 different
classes. We train networks on the training set and report the top-1 and top-5 error on the
validation set.

4. Speech Commands (Warden, 2018)): This newly released dataset contains 60, 000 audio files;
each audio contains a single word of a duration of one second. There are 35 different words
(classes) with each word having 1, 500 — 4, 100 recordings. Every audio file is converted
into a mel-spectrogram of resolution 32 x 32.

Below, we conduct an experiment on image classification on CIFAR10 in sec. .1} we modify the
experiment by removing the activation functions, i.e. have networks linear with respect to the weights,
in sec. Sequentially, image classification experiments on CIFAR100 and ImageNet are conducted
in sec. .3|and sec. f.4]respectively. In addition to the image classification experiments, we exhibit
how the proposed residual block can be used on image generation in sec. 4.5] Furthermore, an
experiment on audio classification is conducted in sec.
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4.1 RESNET CLASSIFICATION ON CIFARI10

We utilize CIFARIO0 as a popular dataset for classification. We train each method for 120 epochs
with batch size 128. The SGD optimizer is used with initial learning rate of 0.1. The learning rate
is multiplied with a factor of 0.1 in epochs 40, 60, 80, 100. We use two ResNet architectures, i.e.
ResNet18 and ResNet34, as baselines. Our model, called Newton-ResNet, is built with the proposed
residual blocks; we add enough blocks to match the performance of the respective baseline.

In Table[I]the two different ResNet baselines are compared against Newton-ResNet; the respective
Newton-ResNet models have the same accuracy. However, each Newton-ResNet has ~ 40% less
parameters than the respective baseline. In addition, we visualize the test accuracy for ResNet18 and
the respective Newton-ResNet in Fig. [3] The test error of the two models is similar throughout the
training; a similar phenomenon is observed for ResNet34 in Fig. [d]

Table 1: Image classification on CIFAR10 with ResNet. The # abbreviates ‘number of’, while the
parameters are measured in millions. The term ‘block’ abbreviates a ‘residual block’. Note that
each baseline, e.g. ResNetl8, has the same performance with the respective Newton-ResNet, but
significantly more parameters.

CIFARI1O classification with ResNet
Model #blocks | # params (M) Accuracy
ResNet18 12,2,2,2 11.2 0.945 + 0.000
Newton-ResNet | [2,2,1,1] 6.0 0.945 + 0.001
ResNet34 3,4,6,3 21.3 0.948 + 0.001
Newton-ResNet | (3, 3,2,2 13.0 0.949 + 0.002
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Figure 3: The test accuracy of (a) ResNetl8 and (b) the respective Newton-ResNet are plotted
(CIFARI1O0 training). The two models perform similarly throughout the training, while ours has 46%
less parameters. The width of the highlighted region denotes the standard deviation of each model
over S runs.

4.2 RESNET WITH LINEAR BLOCKS ON CIFARI10

We remove all the activation functions, both from the transformation path and the output activation
functions. The rest of the settings remain the same as in sec. {.1]

As can be noticed in Table |2} Newton-ResNet outperforms ResNet18 by a significant margin when
removing the activation functions. It is worth noting that the performance of Newton-ResNet
with/without activation functions differs by 7%, i.e. decent performance can be obtained without any
activation functions.
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Table 2: In this experiment all activation functions are removed. The performance of ResNet18 drops
dramatically by 58% when we remove the activation functions. On the contrary, the performance of
Newton-ResNet is decreased by less than 7% (in comparison to Table 3).

CIFARI1O classification with ResNet
Model #blocks | # params (M) Accuracy
ResNet18 12,2,2,2 11.2 0.391 £ 0.001
Newton-ResNet | [1,1,1,1] 5.3 0.876 £+ 0.001
Newton-ResNet | (2, 2,2, 2] 11.9 0.908 + 0.002
Newton-ResNet | [3,3,3,3 18.5 0.916 + 0.002

Algorithm 1: Our residual block
1: function res_block(x:,n_convs, x_proj,lin_proj, ¢, d2)

2: O «— Tt

3 for i=1:n_convs do

4 0 — ¢(BN(conv(0)));
end

5 for i=1:x_proj do

ﬁ: T < ¢a(convixi(xt));
end
S <«— XIt *0

7 for i=1:lin_proj do

§: s « ¢o(norm(convi x1(8)));
end

9: Ti+1 < Tt + O +8

10: return Ts41

11: end function

Table 3: The differences of the proposed method with the original residual block are highlighted in
blue. The x_proj, lin_proj are 1 x 1 convolutions added for normalization purposes in the proposed
residual block.

4.3  CLASSIFICATION ON CIFAR100

We verify the aforementioned classification results on CIFAR100. The settings remain the same as in
sec. As can be noticed in Table ] the test accuracy of ResNet34 and Newton-ResNet is similar,
however Newton-ResNet has ~ 44% less parameters.

The experiment of sec. @] with the linear blocks is repeated on CIFAR100. That is, we remove all
the activation functions and train the networks. The accuracy of each method is reported on Table [5]
The difference observed in sec. d.I|becomes even more pronounced. That is, ResNet performs poorly
in this case and is substantially outperformed by Newton-ResNet.

Table 4: CIFAR100 classification with ResNet. The accuracy of the compared methods is similar, but
Newton-ResNet has 30% less parameters.

CIFAR100 classification with ResNet
Model #blocks | # params (M) Accuracy
ResNet34 13,4, 6,3 21.3 0.769 £ 0.003
Newton-ResNet | (3,4, 3, 2] 14.7 0.769 + 0.001

4.4 CLASSIFICATION ON IMAGENET

We perform a large-scale classification experiment on ImageNet; due to the computational resources
required, this experiment is conducted only once. Following standard practices, we utilize the
following data augmentation techniques: (1) normalization through mean RGB-channel subtraction,
(2) random resized crop to 224 x 224, (3) scale from 5% to 100%, (4) aspect ratio from % to %, and
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Table 5: Experiment on CIFAR100 by removing all activation functions.

CIFAR100 classification with linear ResNet
Model #blocks | # params (M) Accuracy
ResNet18 12,2,2,2] 11.2 0.168 + 0.001
Newton-ResNet | [1,1,1,1] 5.3 0.620 &+ 0.001
Newton-ResNet | [2,2,2, 2] 11.9 0.670 + 0.002
Newton-ResNet | (3,3,3,3 18.5 0.689 + 0.002

(5) random horizontal flip. During inference, we perform the following augmentation techniques: (1)
normalization through mean RGB-channel subtraction, (2) scale to 256 x 256, and (3) single center
crop to 224 x 224.

All models are trained on a DGX station with four Tesla V100 (32GB) GPUs. We use MxnetE]and
choose float16 instead of float32 to achieve 3.5 x acceleration and half the GPU memory consumption.
In our preliminary experiments, we noticed that the second order might cause numeric overflow in
float16; this was not observed in the rest of the experiments that use float32. Hence, we use a tanh as
a normalization for the second order term, i.e. the last term of (3). Optimization is performed using
SGD with momentum 0.9, weight decay 1le — 4 and a mini-batch size of 1024. The initial learning
rate is set to 0.4 and decreased by a factor of 10 at 30, 60, and 80 epochs. Models are trained for 90
epochs from scratch, using linear warm-up of the learning rate during first five epochs according to
Goyal et al.|(2017). For other batch sizes due to the limitation of GPU memory, we linearly scale the
learning rate (e.g. learning rate 0.1 for batch size 256).

We report both the Top-1 and Top-5 single-crop validation error in Table[6] For a fair comparison, we
report the results from our training in both the original ResNet and Newton-ResNeﬂ Newton-ResNet
consistently improves the performance with an extremely small increase in computational complexity
and model size. Remarkably, Newton-ResNet50 achieves a single-crop Top-5 validation error of
6.358%, exceeding ResNet50 (6.838%) by 0.48% and approaching the performance achieved by the
much deeper ResNet101 network (6.068% Top-5 error). The loss and Top-1 error throughout the
training are visualized in Fig. ] which demonstrates that the proposed method performs favourably
to the baseline ResNetwhen the same amount of residual blocks are used.

Table 6: Image classification (ImageNet) with ResNet. The column of “Speed” refers to the inference
speed (images/s) of each method.

ImageNet classification with ResNet
Model # Blocks | Top-1 error (%) | Top-5 error (%) | Speed | Model Size
ResNet50 3,4,6,3] 23570 6.838 85K | 50.26 MB
Newton-ResNet50 | |3,4,6, 3| 22.875 6.358 7.5K 68.81 MB
ResNet101 [3,4,23,3] 22.208 6.068 6.2K 87.67 MB

In Table[7} we remove all the “relu” activation functions for both baseline and the proposed method.
Without “relu”, Newton-ResNet50 achieves a single-crop Top-5 validation error of 9.114%, signif-
icantly exceeding ResNet50 (71.562%) and approaching the performance achieved by the “relu”
version (6.068% Top-5 error).

Table 7: Image classification (ImageNet) without “relu”. Newton-ResNet outperforms the corre-
sponding ResNet by a substantial margin.

ImageNet classification without “relu”
Model # Blocks | Top-1 error (%) | Top-5 error (%)
ResNet50 13,4, 6, 3] 85.124 71.562
Newton-ResNet50 | |3,4,6, 3] 27.292 9.114

*https://github.com/NVIDIA/DeepLearningExamples/tree/master/MxNet/Classification/RN50v1.5
5The reported performance for the original ResNet is superior to the one reported in|He et al.[(2016); the
re-implementation of |Hu et al.| (2018)) reports similar results to ours.
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Figure 4: Baseline ResNetarchitectures (ResNet50 and ResNet101) and the Newton counterpart
(Newton-ResNet50) on the ImageNet validation dataset. The proposed method produces consistent
gains in the performance which are sustained throughout the training process.

4.5 RESNET IN GENERATIVE MODELS

Deep discriminative networks include hundreds of layers, while their generative counterparts’ depth is
critical and restricted (mainly because they are hard to train and fit in existing hardware). We explore
whether we can reduce the number of residual blocks in generative models. Generative Adversarial
Networks (GAN) of |(Goodfellow et al.|(2014) have dominated the related literature (Miyato et al.,
2018)) due to their impressive visual results.

GANSs include two modules, a generator and a discriminator, which are both implemented with
resnet-based neural networks. The generator samples z from a prior distribution, e.g. uniform,
and tries to model the target distribution; the discriminator tries to distinguish between the samples
synthesized from the generator and the target distribution. GAN is typically optimized with an
alternating gradient descent method.

We select the architecture of Miyato et al.|(2018) (SNGAN) as a strong baseline on CIFAR10. The
baseline includes 3 resnet blocks in the generator and 3 in the discriminator. We replace the original
residual blocks with the proposed residual blocks; two such blocks in each module suffice to achieve
the same performance. That is, we reduce by 1 the blocks in both the generator and the discriminator.
In Table|[8]the experimental result is summarized. Note that the experiment is conducted 10 times and
the mean and variance are reported. In Fig. [5]some random samples synthesized by the two methods
are depicted; visually the generated samples are similar.

Table 8: Quantitative results on image generation with resnet-based generator and discriminator.
‘Ours’ denotes a modified SNGAN model; specifically we replace the residual blocks with the
proposed ones. The Inception Score (IS) and the Frechet Inception Distance (FID) are standard
metrics in the GAN literature; higher IS/lower FID imply a superior performance. ‘# G params’
abbreviates the number of generator parameters, while ‘# D params’ the number of discriminator
parameters. The parameters are measured in millions.

Model | # G params | # D params IS FID
SNGAN 4.28 1.05 8.06 £ 0.10 | 19.06 + 0.50
Ours 3.56 0.76 8.03 +£0.11 | 19.03 + 0.39

4.6 CLASSIFICATION ON SPEECH COMMANDS

We evaluate the performance of ResNet on the Speech Commands dataset. This dataset has a different
distribution from the natural images that ResNet is typically applied to. We train each method for
70 epochs with SGD and initial learning rate of 0.01. The learning rate is reduced if the validation
accuracy does not improve for two epochs. We use ResNet34 as a baseline architecture; we build
respectively a network that matches the performance of the baseline.
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Figure 5: Synthesized samples from GAN (sec. . It can be visually verified that both the SNGAN
and ‘Ours’ (with the proposed residual blocks) result in similar visual samples.

The quantitative results are added in Table[0] The two models share the same accuracy, however
Newton-ResNet includes 38% less parameters. This is consistent with the experiments on classical
image datasets, i.e. sec.[d.1}

Table 9: Speech classification with ResNet. The accuracy of the compared methods is similar, but
Newton-ResNet has 38% less parameters.

Speech Commands classification with ResNet
Model # blocks | # params (M) Accuracy
ResNet34 13,4,6, 3] 21.3 0.951 £ 0.002
Newton-ResNet | |3, 3,3, 2] 13.2 0.951 £+ 0.002

5 CONCLUSION

In this work, we establish a link between the residual blocks of ResNet architectures and learning
decent directions in solving non-linear least squares (e.g., each block can be considered as a decent
direction). We exploit this link and we propose a novel residual block that uses second order
interactions as reminiscent of Newton’s numerical optimization method (i.e., learning Newton-like
descent directions). Newton-type methods are likely to converge faster than first order methods (e.g.,
Gauss-Newton). We demonstrate that in the proposed architecture this translates to less residual
blocks (i.e., less decent directions) in the network for achieving the same performance. We conduct
validation experiments on image and audio classification with residual networks and verify our
intuition. Furthermore, we illustrate that with our block it is possible to remove the non-linear
activation functions and still achieve competitive performance.
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Figure 6: The test accuracy of (a) ResNet34 and (b) the respective Newton-ResNet are plotted
(CIFARI10 training; sec.[.3). The two models perform similarly throughout the training. The width
of the highlighted region denotes the standard deviation of each model over 5 runs.
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Figure 7: The test accuracy of (a) ResNet34 and (b) the respective Newton-ResNet are plotted
(CIFAR100 training; sec.4.3). The two models perform similarly throughout the training. The width
of the highlighted region denotes the standard deviation of each model over 5 runs.
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Figure 8: Four input mel-spectrograms; each image is used as input in the speech classification
experiment in sec. @ The label is the corresponding word for each image.
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Figure 9: Training accuracy in the models without activation functions (further details in sec. .
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