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ABSTRACT

We propose an efficient inference method for switching nonlinear dynamical sys-
tems. The key idea is to learn an inference network which can be used as a proposal
distribution for the continuous latent variables, while performing exact marginal-
ization of the discrete latent variables. This allows us to use the reparameterization
trick, and apply end-to-end training with stochastic gradient descent. We show that
the proposed method can successfully segment time series data (including videos)
into meaningful “regimes”, by using the piece-wise nonlinear dynamics.

1 INTRODUCTION

Consider watching from above an airplane flying across country or a car driving through a field. The
vehicle’s motion is composed of straight, linear dynamics and curving, nonlinear dynamics. This
is illustrated in fig. 1(a). In this paper, we propose a new inference algorithm for fitting switching
nonlinear dynamical systems (SNLDS), which can be used to segment time series data as sequences
of images, or lower dimensional signals, such as (x,y) locations into meaningful discrete temporal
“modes” or “regimes”. The transitions between these modes may correspond to the changes in internal
goals of the agent (e.g., a mouse switching from running to resting, as in Johnson et al. (2016)) or
may be caused by external factors (e.g., changes in the road curvature). Discovering such discrete
modes is useful for scientific applications (c.f., Wiltschko et al. (2015); Linderman et al. (2019)) as
well as for planning in the context of hierarchical reinforcement learning (c.f., Kipf et al. (2019)).

Figure 1: (a): Trajectory of a particle moving along a counter-clockwise route. The direction of
motion is indicated by the arrow and the brightness, from lower to brighter intensity. (b) Ground
truth segmentation into “regimes”. Blue is moving straight, yellow is turning counter-clockwise, red
is turning clockwise. (c) Segmentation learned by our SNLDS model. (d) Segmentation learned by
baseline SLDS model. Note that to model the nonlinear dynamics, the SLDS model needs to use
more segments.

There has been extensive previous work, some of which we review in Section 2, on modeling temporal
data using various forms of state space models (SSM). We are interested in the class of SSM which
has both discrete and continuous latent variables, which we denote by st and zt, where t is the
discrete time index. The discrete state, st ∈ {1, 2, . . . ,K}, represents the mode of the system at
time t, and the continuous state, zi ∈ RH , represents other factors of variation, such as location and
velocity. The observed data is denoted by xt ∈ RD, and can either be a low dimensional projection of
zt, such as the current location, or a high dimensional signal that is informative about zt, such as an
image. We may optionally have observed input or control signals ut ∈ RU , which drive the system in
addition to unobserved stochastic noise. We are interested in learning a generative model of the form
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pθ(s1:T , z1:T ,x1:T |u1:T ) from partial observations, namely (x1:T ,u1:T ). This requires inferring
the posterior over the latent states, pθ(s1:T , z1:T |v1:T ), where vt = (xt,ut) contains all the visible
variables at time t. For training purposes, we usually assume that we have multiple such trajectories,
possibly of different lengths, but we omit the sequence indices from our notations for simplicity. This
problem is very challenging, because the model contains both discrete and continuous latent variables
(a so-called “hybrid system”), and has nonlinear transition and observation models.

The main contribution of our paper is a new way to perform efficient approximate inference in this
class of SNLDS models. The key observation is that, conditioned on knowing z1:T as well as v1:T ,
we can marginalize out s1:T in linear time using the forward-backward algorithm. In particular, we
can efficiently compute the gradient of the log marginal likelihood, ∇

∑
s1:T

log p(s1:T |z̃1:T ,v1:T ),
where z̃1:T is a posterior sample that we need for model fitting. To efficiently compute posterior
samples z̃1:T , we learn an amortized inference network qφ(z1:T |v1:T ) for the “collapsed” NLDS
model p(z1:T ,v1:T ). The collapsing trick removes the discrete variables, and allows us to use the
reparameterization trick for the continuous z. These tricks let us use stochastic gradient descent
(SGD) to learn p and q jointly, as explained in Section 3. We can then use q as a proposal distribution
inside a Rao-Blackwellised particle filter (Doucet et al., 2000), although in this paper, we just use a
single posterior sample, as is common with Variational AutoEncoders (VAEs, Kingma & Welling
(2014); Rezende et al. (2014)).

Although the above “trick” allows us efficiently perform inference and learning, we find that in
challenging problems (e.g., when the dynamical model p(zt|zt−1,vt) is very flexible), the model
ignores the discrete latent variables, and does not perform mode switching. This is a form of “posterior
collapse”, similar to VAEs, where powerful decoders can cause the latent variables to be ignored, as
explained in Alemi et al. (2018). Our second contribution is a new form of posterior regularization,
which prevents the aforementioned problem and results in a significantly improved segmentation.

We apply our method, as well as various existing methods, to two previously proposed low-
dimensional time series segmentation problems, namely a 1d bouncing ball, and a 2d moving
arm. In the 1d case, the dynamics are piecewise linear, and all methods perform perfectly. In the
2d case, the dynamics are piecewise nonlinear, and we show that our method infers much better
segmentation than previous approaches for comparable computational cost. We also apply our method
to a simple new video dataset (see fig. 1 for an example), and find that it performs well, provided we
use our proposed regularization method.

In summary, our main contributions are

• Learning switching nonlinear dynamical systems parameterized with neural networks by
marginalizing out discrete variables.
• Using entropy regularization and annealing to encourage discrete state transitions.
• Demonstrating that the discrete states of nonlinear models are more interpretable.

2 RELATED WORK

In this section, we briefly summarize some related work.

2.1 STATE SPACE MODELS

We consider the following state space model:

pθ(x, z, s) = p(x1|z1)p(z1|s1)

[
T∏
t=2

p(xt|zt)p(zt|zt−1, st)p(st|st−1,xt−1)

]
, (1)

where st ∈ {1, . . . ,K} is the discrete hidden state, zt ∈ RL is the continuous hidden state, and
xt ∈ RD is the observed output, as in fig. 2(a). For notational simplicity, we ignore any observed
inputs or control signals ut, but these can be trivially added to our model.

Note that the discrete state influences the latent dynamics zt, but we could trivially make it influence
the observations xt as well. More interesting are which edges we choose to add as parents of the
discrete state st. We consider the case where st depends on the previous discrete state, st−1, as in a
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Figure 2: Left: Illustration of the generative model. Dashed arrows indicate optional connections.
Right: Illustration of the inference network. Solid black arrows share parameters θ with the
generative model, solid blue arrows have parameters φ that are unique to q. The diamonds represent
deterministic nodes computed with RNNs: hxt is a bidirectional RNN applied to x1:T , and hzt is a
unidrectional RNN applied to hxt−1 and zt−1.

hidden Markov model (HMM), but also depends on the previous observation, xt−1. We can trivially
depend on multiple previous observations; we assume first-order Markov for simplicity. This means
that state changes do not have to happen “open loop”, but instead may be triggered by signals from
the environment. We can also condition zt on xt−1, and st on zt−1. It is straightforward to handle
such additional dependencies (shown by dashed lines in fig. 2(a)) in our inference method, which is
not true for some of the other methods we discuss below.

We still need to specify the functional forms of the conditional probability distributions. In this paper,
we make the following fairly weak assumptions:

p(xt|zt) = N (xt|fx(zt),R), (2)
p(zt|zt−1, st = k) = N (zt|fz(zt−1, k),Q), (3)

p(st|st−1 = j,xt−1) = Cat(st|S(fs(xt−1, j)), (4)

where fx,z,s are nonlinear functions (MLPs or RNNs), N (·, ·) is a multivariate Gaussian distribution,
Cat(·) is a categorical distribution, and S(·) is a softmax function. R ∈ RD×D and Q ∈ RH×H are
learned covariance matrices for the Gaussian emission and transition noise.

If fx and fz are both linear, and p(st|st−1) is first-order Markov without dependence on zt−1, the
model is called a switching linear dynamical system (SLDS). If we allow st to depend on zt−1, the
model is called a recurrent SLDS (Linderman et al., 2017; Linderman & Johnson, 2017). We will
compare to rSLDS in our experiments.

If fz is linear, but fx is nonlinear, the model is sometimes called a “structured variational autoencoder”
(SVAE) (Johnson et al., 2016), although that term is ambiguous, since there are many forms of
structure. We will compare to SVAEs in our experiments.

If fz is a linear function, the model may need to use lots of discrete states in order to approximate the
nonlinear dynamics, as illustrated in fig. 1(d). We therefore allow fz (and fx) to be nonlinear. The
resulting model is called a switching nonlinear dynamical system (SNLDS), or Nonlinear Regime-
Switching State-Space Model (RSSSM) (Chow & Zhang, 2013). Prior work typically assumes fz
is a simple nonlinear model, such as polynomial regression. If we let fz be a very flexible neural
network, there is a risk that the model will not need to use the discrete states at all. We discuss a
solution to this in Section 3.3.

The discrete dynamics can be modeled as a semi-Markov process, where states have explicit durations
(see e.g., Duong et al. (2005); Chiappa (2014)). One recurrent, variational version is the recurrent
hidden semi-Markov model (rHSMM, Dai et al. (2017)). Rather than having a stochastic continuous
variable at every timestep, rHSMM instead stochastically switches between states with deterministic
dynamics. The semi-Markovian structures in this work have an explicit maximum duration, which
makes them less flexible. A revised method, (Kipf et al., 2019), is able to better handle unknown
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durations, but produces a potentially infinite number of distinct states, each with deterministic
dynamics. The deterministic dynamics of these works may limit their ability to handle noise.

2.2 VARIATIONAL INFERENCE AND LEARNING

A common approach to learning latent variable models is to maximize the evidence lower bound
(ELBO) on the log marginal likelihood (see e.g., Blei et al. (2016)). This is given by log p(x) ≤
L(x;θ,φ) = Eqφ(z,s|x) [log pθ(x, z, s)− log qφ(z, s|x)] , where qφ(z, s|x) is an approximate
posterior.1 Rather than computing q using optimization for each x, we can train an inference network,
fφ(x), which emits the parameters of q. This is known as "amortized inference" (see e.g., Kingma &
Welling (2014)).

If the posterior distribution qφ(z, s|x) is reparameterizable, then we can make the noise independent
of φ, and hence apply the standard SGD to optimize θ,φ. Unfortunately, the discrete distribution
p(s|x) is not reparameterizable. In such cases, we can either resort to higher variance methods
for estimating the gradient, such as REINFORCE, or we can use continuous relaxations of the
discrete variables, such as Gumbel Softmax (Jang et al., 2017), Concrete (Maddison et al., 2017b), or
combining both, such as REBAR (Tucker et al., 2017). We will compare against a Gumbel-Softmax
version of SNLDS in our experiments. The continuous relaxation approach was applied to SLDS
models in (Becker-Ehmck et al., 2019) and HSSM models in (Liu et al., 2018a; Kipf et al., 2019).
However, the relaxation can lose many of the benefits of having discrete variables (Le et al., 2019).
Relaxing the distribution to a soft mixture of dynamics results in the Kalman VAE (KVAE) model
of Fraccaro et al. (2017). A concern is that soft models may use a mixture of dynamics for distinct
ground truth states rather than assigning a distinct mode of dynamics at each step as a discrete model
must do. We will compare to KVAE in our experiments. In Section 3, we propose a new method to
avoid these issues, in which we collapse out s so that the entire model is differentiable.

The SVAE model of Johnson et al. (2016) also uses the forward-backward algorithm to compute
q(s|v); however, they assume the dynamics of z are linear Gaussian, so they can apply the Kalman
smoother to compute q(z|v). Assuming linear dynamics can result in over-segmentation, as we
have discussed. A forward-backward algorithm is applied once to the discrete states and once to the
continuous states to compute a structured mean field posterior q(z)q(s). In contrast, we perform
approximate inference for z using one forward-backward pass and then exact inference for s using a
second pass, as we explain in Section 3.

2.3 MONTE CARLO INFERENCE

There is a large literature on using sequential Monte Carlo methods for inference in state space
models (see e.g., Doucet & Johansen (2011)). When the model is nonlinear (as in our case), we may
need a lot of particles to get a good approximation, which can be expensive. We can often get better
(lower variance) approximations by analytically marginalizing out some of the latent variables; the
resulting method is called a “Rao Blackwellised particle filter” (RBPF).

Prior work (e.g., Doucet et al. (2001)) has applied RBPF to SLDS models, leveraging the fact that it
is possible to marginalize out p(z|s,v) using the Kalman filter. It is also possible to compute the
optimal proposal distribution for sampling from p(st|st−1,v) in this case. However, this relies on
the model being conditionally linear Gaussian. By contrast, we marginalize out p(s|z,v), so we can
handle nonlinear models. In this case, it is hard to compute the optimal proposal distribution for
sampling from p(zt|zt−1,v), so instead we use variational inference to learn to approximate this.

3 METHOD

3.1 INFERENCE

We use the following variational posterior: qφ,θ(z, s|x) = qφ(z|x)pθ(s|z,x), where pθ(s|z,x) is
the exact posterior (under the generative model) computed using the forward-backward algorithm,

1 In the case of sequential models, we can create tighter lower bounds using methods such as FIVO (Maddison
et al., 2017a), although this is orthogonal to our work.
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and qφ(z|x) is defined below. To compute qφ(z|x), we first process x1:T through a bidirectional
RNN, whose state at time t is denoted by hxt . (As noted in Krishnan et al. (2017), due to the
Markov assumptions of our model, we only need a backward RNN to summarize xt:T , rather a
bidirectional RNN to summarize x1:T , but we use the latter for simplicity.) We then use a forward
(causal) RNN, whose state denoted by hzt , to compute the parameters of q(zt|z1:t−1,x1:T ), where
the hidden state is computed based on hzt−1 and hxt . This gives the following approximate posterior:
qφ(z1:T |x1:T ) =

∏
t q(zt|z1:t−1,x1:T ) =

∏
t q(zt|hzt ). See fig. 2(b) for an illustration.

We can draw a sample z1:T ∼ qφ(z|x) sequentially, and then treat this as “soft evidence” for the
HMM model. The (sample dependent) parameters used in the forward-backward algorithm are
given by At(j, k) = p(st = j|st−1 = k,xt−1), Bt(k) = p(xt|zt)p(zt|zt−1, st = k) for t > 1,
B1(k) = p(x1|z1)p(z1|s1 = k), and π(k) = p(s1 = k). We can then compute the following
posterior marginals: γ2t (j, k) = p(st = k, st−1 = j|x1:T , z1:T ) and γ1t (k) = p(st = k|x1:T , z1:T ),
which can be used to compute the gradients of the log likelihood, as we discuss below.

3.2 LEARNING

The evidence lower bound (ELBO) for a single sequence x is given by

LELBO(θ,φ) = Eqφ(z|x)pθ(s|x,z) [log pθ(x, z)pθ(s|x, z)− log qφ(z|x)pθ(s|x, z)] (5)

= Eqφ(z|x) [log pθ(x, z)− log qφ(z|x)] (6)

Because qφ(z) is reparameterizable, we can approximate the gradient as follows:

∇θ,φL(θ, φ) ≈ ∇θ,φ log pθ(x, z̃)−∇φ log qφ(z̃|x) (7)

where z̃ is a sample from the variational proposal z̃ ∼ qφ(z̃1|x1:T )
∏T
t=2 qφ(z̃t|z̃t−1,x1:T ). The

second term can be computed by applying backpropagation through time to the inference RNN. In
the appendix, we show that the first term is given by

T∑
t=2

∑
j,k

γ2t (j, k)∇ [logBt(k)At(j, k)] +
∑
k

γ11(k)∇ [logB1(k)π(k)] (8)

3.3 ENTROPY REGULARIZATION AND TEMPERATURE ANNEALING

When using expressive nonlinear functions (e.g. an RNN or MLP) to model p(zt|zt−1, st), we
found that the model only used a single discrete state, analogous to posterior collpase in VAEs (see
e.g., Alemi et al. (2018)). To encourage the model to utilize multiple states, we add an additional
regularizing term to the ELBO that penalizes the KL divergence between the state posterior at each
time step and a uniform prior pprior(st = k) = 1/K (Burke et al., 2019). We call this a cross-entropy
regularizer:

LCE =

T∑
t=1

DKL(pprior(st)||p(st|z1:T ,x1:T )). (9)

Our overall objective now becomes

L(θ,φ) = LELBO(θ,φ)− βLCE(θ,φ). (10)

Note that 0 ≤ LCE ≤ ∞, so we need to choose the scale of β > 0 appropriately. To further smooth
the optimization problem, we apply temperature annealing to the discrete state transitions, as follows:
p(st = k|st−1 = j,xt−1) = S(p(st=k|st−1=j,xt−1)

τ ), where τ is the temperature.

At the beginning stage of training, β, τ are set to large values. Doing so ensures that all states
are visited, and can explain the data equally well. Over time, we reduce the regularizers to 0 and
temperature to 1, according to a fixed annealing schedule; this allows clusters to start to separate
(c.f., Rose (1998)), as each regime learns its own local dynamical model. The overall approach is
similar to multi-step pretraining, as used in prior papers such as the rSLDS paper (Linderman et al.,
2017), but our approach works in a continuous end-to-end fashion.
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4 EXPERIMENTS

In this section, we compare our method to various other methods that have been recently proposed
for time series segmentation using latent variable models. Since it is hard to evaluate unsupervised
learning methods, such as segmentation, we use three synthetic datasets, where we know the ground
truth.

In each case, we fit the model to the data, and then estimate the most likely hidden discrete state
at each time step, ŝt = argmax q(st|x1:T ). Since the model is unidentifiable, the state labels
have no meaning, so we post-process them by applying the best permutation over labels so as to
maximize the F1 score across frames. Here the F1 score is the harmonic mean of precision and
recall, 2× precision× recall/(precision+ recall), where precision is the percentage of
the predictions that match the ground truth states, and recall is the percentage of the ground truth
states that match the predictions. We also compute the switching-point F1 by only considering the
frames where the ground truth state changes. This measure compliments the frame-wise F1, because
it measures the accuracy in time. Since matching the exact time of the switch point is very hard in the
unsupervised setting with noisy observations, we also consider a detected change point as correct, if
it occurs within some small temporal interval around the ground truth as noted in Section 4.3.

4.1 1D BOUNCING BALL

In this section, we use a simple dataset from Johnson et al. (2016). The data encodes the location of a
ball bouncing between two walls in a one dimensional space. The initial position and velocity are
random, but the wall locations are constant.

We apply our SNLDS model to this data, where fx and fz are both MLPs. We found that regularization
was not necessary in this experiment. We also consider the case where fx and fz are linear (which
corresponds to an SLDS model), the rSLDS model of Linderman et al. (2017), the SVAE model
of Johnson et al. (2016), the Kalman VAE (KVAE) model of Fraccaro et al. (2017) and a Gumbel-
Softmax version of SNLDS as described in Appendix A.2. We use the implementations of rSLDS,
SVAE, and KVAE provided by the authors.

As the data is generated by a simple piece-wise linear dynamics and all models we tested learn a
perfect segmentation, as shown in Figure 3(a) and Table 1. This serves as a “sanity check” that we are
able to use and implement the rSLDS, SVAE, KVAE and Gumbel-Softmax SNLDS code correctly.
(See also Appendix A.3 for further analysis.)

Note that the “true” number of discrete states is just 2, encoding whether the ball is moving up or down.
We find that our method can learn to ignore irrelevant discrete states if they are not needed. This is
presumably because we are maximizing the marginal likelihood since we sum over all hidden states,
and this is known to encourage model simplicity due to the "Bayesian Occam’s razor" effect (Murray
& Ghahramani, 2005). By contrast, with the other methods, we had to be more careful in setting K.

4.2 2D REACHER TASK

In this section, we consider a dataset proposed in the CompILE paper (Kipf et al., 2019). The
observations are sequences of 36 dimensional vectors, derived from the 2d locations of various static
objects, and the 2d joint locations of a moving arm (see Appendix A.4 for details and a visualization).
The ground truth discrete state for this task is the identity of the target that the arm is currently
reaching for (i.e., its "goal").

We fit the same 6 models as above to this dataset. Since it is a much harder problem, we found that
we needed to add regularization to our model to encourage it to switch states. Figure 3(b) visualizes
the resulting segmentation (after label permutation) for a single example. We see that our SNLDS
model matches the ground truth more closely than our SLDS model, as well as the rSLDS, SVAE,
KVAE, and Gumbel-Softmax baselines.

To compare performance quantitatively, we evaluate the models from 5 different training runs on the
same held-out dataset of size 32, and compute the F1 scores. We also report the F1 number from
CompILE. The CompILE paper uses an iterative segmentation scheme that can detect state changes,
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but it does infer what the current latent state is, so we cannot include it in Figure 3(b). As in Table 1,
we find that our SNLDS method is significantly better than the other approaches.

Figure 3: Segmentation on bouncing ball (left) and reacher task (right). From top to bottom:
Row 1. ground truth of latent discrete states; Rows 2, 3, 4, 5, 6, 7. the posterior marginals, p(st =
k|x1:T , z1:T ), of SNLDS, SLDS, rSLDS, SVAE, KVAE, and Gumbel-Softmax SNLDS respectively,
where lighter color represents higher probability. CompILE is not included because it represents
a different model family that directly predicts the segment boundary without calculating posterior
marginals at each time step.

Table 1: Quantitative comparisons (in %±σ) for segmentation on bouncing ball and reacher task. We
report the F1 scores in percentage with mean and standard deviation over 5 runs. (S.P. for switching
point, F.W. for frame-wise, the best mean is in bold.) The F1 score for CompILE is adapted from Kipf
et al. (2019), where only switching point F1 score is provided. The F1 score for KVAE is computed
based on taking ‘argmax’ on the ‘dynamics parameter network’ as described in Fraccaro et al. (2017).

DATASET Bouncing Ball Reacher Task

METRIC F1 (S.P.) F1 (F.W.) F1 (S.P.) F1 (F.W.)

SLDS (Ours) 100. 100. 59.6± 3.2 81.0± 3.4
SNLDS (Ours) 100. 100. 78.1 ± 4.2 89.0 ± 2.0

rSLDS 100. 100. 47.2± 3.2 69.8± 3.5
SVAE 100. 100. 35.3± 2.6 62.3± 4.9
KVAE 100. 100. 21.5± 8.0 33.7± 7.5

Gumbel-Softmax SNLDS 97.6± 1.8 93.8± 4.0 5.0± 8.7 14.2± 9.3
CompILE - - 74.3± 3.3 -

4.3 IMAGE DATASET (DUBINS PATH)

In this section, we apply our method to a new dataset that is created by "rendering" a point moving
in the 2d plane. The motion follows the Dubins model2, which is a simple model for piece-wise
nonlinear (but smooth) motion that is commonly used in the fields of robotics and control theory
because it corresponds to the shortest path between two points that can be traversed by wheeled
robots, airplanes, etc. In the Dubins model, the change in direction is determined by an external
control signal ut. We replace this with three latent discrete control states: go straight, turn left, and
turn right. These correspond to fixed, but unobserved, input signals ut (see Appendix A.5 for details).
After generating the motion, we create a series of images, where we render the location of the moving
object as a small circle on a white background. Our goal in generating this dataset was to assess how
well we can recover latent dynamics from image data in a very simple, yet somewhat realistic, setting.

The publicly released code for rSLDS and SVAE does not support high dimensional inputs like
images (even though the SVAE has been applied to an image dataset in Johnson et al. (2016)), and
there is no public code for CompILE. Therefore we could not compare to these methods for this
experiment. Also, since we already showed in Section 4.2 that our method is much better than these

2 https://en.wikipedia.org/wiki/Dubins_path
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approaches, as well as Kalman VAE and Gumbel-Softmax version of SNLDS, on the simpler reacher
task, we expect the same conclusion to hold on the harder task of segmenting videos.

Instead we focus on comparing SNLDS with SLDS to see the advantage of allowing each regime
to be represented by a nonlinear model. The results of segmenting one sequence with these models
using 5 states are shown in Figure 1. We see that the SLDS model has to approximate the left and
right turns with multiple discrete states, whereas the non-linear model learns a more interpretable
representation.

We again compare the models using F1 scores in Table 2. Because the SLDS model used too many
states, we calculated two versions of the metric. The first was a greedy metric that optimally assigned
the best single state to match the ground truth. The second used an oracle to optimally merge states
to match the ground truth. The SNLDS model significantly outperforms the SLDS in both scenarios.

Table 2: Quantitative comparisons (in %) for S(N)LDS on Dubins path. For SLDS, F1 scores
with both greedy 1-to-1 matching (Greedy) and optimal merging (Merging) are provided. The
switching point F1 scores are estimated with both precise matching (Tol 0) or allowing at most 5-step
displacement (Tol 5).

METRIC SLDS (Greedy) SLDS (Merging) SNLDS
F1 (Switching point, Tol 0) 3.5± 1.0 4.4± 3.1 11.3 ± 5.7
F1 (Switching point, Tol 5) 33.7± 2.5 67.0± 3.4 82.5 ± 1.9

F1 (Frame-wise) 29.4± 3.6 61.5± 8.0 84.3 ± 7.2

4.4 ANALYSIS OF THE ANNEALING SCHEDULE

Many latent variable models are trained in multiple stages, in order to avoid getting stuck in bad local
optima. For example, to fit the rSLDS model, Linderman et al. (2017) firstly pretrain an AR-HMM
and SLDS model, and then merge them; similarly, to fit the SVAE model, Johnson et al. (2016) first
train with a single latent state and then increase K.

We found a similar strategy was necessary for the Reacher and Dubins tasks, but we do this in a
smooth way using annealed regularizations. Early in training, we train with large temperature τ
and entropy coefficient β. This encourages the model to use all states equally, so that the dynamics,
inference, and emission sub-networks stabilized before beginning to learn specialized behavior. We
then anneal the entropy coefficient to 0, and the temperature to 1 over time. We found it best to first
decay the entropy coefficient β and then decay the temperature τ .

Figure 4: Comparing the relative negative log-likelihood (left) and the frame-wise F1 scores (right)
on Dubins paths with 3 different annealing schedules. In the first run (green), the regularization
coefficient and temperature start to decay at the very beginning of training. In the second run (red), the
cross entropy regularization coefficients starts to decay at step 20, 000, while temperature annealing
starts at step 40, 000. In the third run (blue), the coefficient decay starts at step 50, 000, while
temperature annealing starts at step 100, 000.

Figure 4 demonstrates the effect of 3 different annealing schedules on the relative log likelihood
(defined as Lt − Lmin, where Lmin = mint Lt;1,2,3 across all three runs, and Lt is the negative
log-likelihood.), and the F1 score. The green curve starts annealing right away; we see the F1 score
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is flat, since only one discrete state is used. The red curve starts annealing later, which improves F1.
However, the best results are shown in the blue curve, which starts the decay even later.

On real problems, where we have no ground truth, we cannot use the F1 score as a metric to determine
the best annealing schedule. However, it seems that the schedules that improve F1 the most also
improve likelihood the most.

5 CONCLUSION

We have demonstrated that our proposed method can effectively learn to segment high dimensional
sequences into meaningful discrete regimes. Future work includes applying this to harder image
sequences, and to hierarchical reinforcement learning.
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A APPENDIX

A.1 DERIVATION OF THE GRADIENT OF THE ELBO

The evidence lower bound objective (ELBO) of the model is defined as:

L(θ, φ) = Eqθ,φ(z,s|x) [log pθ(x, z, s)− log qθ,φ(z, s|x)] (11)

= Eqφ(z|x)pθ(s|x,z) [log pθ(x, z)pθ(s|x, z)− log qφ(z|x)pθ(s|x, z)] (12)

= Eqφ(z|x) [log pθ(x, z)] +H(qφ(z|x)) (13)

where the first term is the model likelihood, and the second is the conditional entropy for variational
posterior of continuous hidden states. We can approximate the entropy of qφ(z|x) as:

H(qφ(z|x)) = H(qφ(z1)) +

T∑
t=2

H(qφ(zt|z̃1:t−1)) (14)

where z̃t ∼ q(zt) is a sample from the variational posterior. In other words, we compute the marginal
entropy for the output of the RNN inference network at each time step, and then sample a single
latent vector to update the RNN state for the next step.

In order to apply stochastic gradient descent for end-to-end training, the minibatch gradient for the
first term in the ELBO (Eq. 13) with respect to θ is estimated as

∇θEqφ(z|x) [log pθ(x, z)] = Eqφ(z|x) [∇θ log pθ(x, z)] (15)

For the gradient with respect to φ, we can use the reparameterization trick to write

∇φEqφ(z|x) [log pθ(x, z)] = Eε∼N [∇φ log pθ(x, zφ(ε,x))] (16)

Therefore, the gradient is expressed as:

∇θL = Eqφ(z|x) [∇θ log pθ(x, z)] , (17)

∇φL = Eε∼N [∇φ log pθ(x, zφ(ε,x))] +∇φH(qφ(z|x)). (18)

To compute the derivative of the log-joint likelihood ∇θ,φ log pθ(v), where we define v =
(x1:T , z1:T ) as the visible variables for brevity. Therefore

∇ log p(v) = Ep(s|v) [∇ log p(v)] (19)

= Ep(s|v) [∇ log p(v, s)]− Ep(s|v) [∇ log p(s|v)] (20)

= Ep(s|v) [∇ log p(v, s)]− 0 (21)

where we used the fact that log p(v) = log p(v, s)− log p(s|v) and

Ep(s|v) [∇ log p(s|v)] =
∫
p(s|v)∇p(s|v)

p(s|v)
= ∇

∫
p(s|v) = ∇1 = 0. (22)
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For∇ log p(v, s), we use the Markov property to rewrite it as:

∇ log p(v, s) =

T∑
t=2

∇ log p(xt|zt)p(zt|zt−1, st)p(st|st−1,xt−1)

+∇ log p(x1|z1)p(z1|s1)p(s1), (23)

with the expectation being:

∇ log p(v) = Ep(s|v) [∇ log p(v, s)]

=
∑
k

p(s1 = k|v)∇ log p(x1|z1)p(z1|s1 = k)p(s1 = k)

+

T∑
t=2

∑
j,k

p(st−1 = j, st = k|v)∇ log p(xt|zt)p(zt|zt−1, st = k)p(st = k|st−1 = j,xt−1)

=

T∑
t=2

∑
j,k

γ2t (j, k)∇ logBt(k)At(j, k) +
∑
k

γ11(k)∇ logB1(k)π(k). (24)

Therefore we reach the Eq. 8.

In summary, one step of stochastic gradient ascent for the ELBO can be implemented as Algorithm 1.

Algorithm 1 SVI for Training SNLDS

Use Bi-RNN to compute hxt from x1:T ;
Recursively sample zt ∼ q(zt|zt−1,x1:T ) using forward RNN applied to zt−1 and hxt ;
Compute parameters A, B and π given x, z;
Use forwards-backwards to compute γ1

1:T , γ2
1:T−1 from (A,B,π);

Use γ to compute ∇θ,φ log p(x, z);
Take gradient step.

A.2 GUMBEL-SOFTMAX SNLDS

Instead of marginalizing out the discrete states with the forward-backward algorithm, one could use a
continuous relaxation via reparameterization, e.g. the Gumbel-Softmax trick (Jang et al., 2017), to
infer the most likely discrete states. We call this Gumbel-Softmax SNLDS.

We consider the same state space model as SNLDS:

pθ(x, z, s) = p(x1|z1)p(z1|s1)

[
T∏
t=2

p(xt|zt)p(zt|zt−1, st)p(st|st−1,xt−1)

]
, (25)

where st ∈ {1, . . . ,K} is the discrete hidden state, zt ∈ RL is the continuous hidden state, and
xt ∈ RD is the observed output, as in Figure 2(a). The inference network for the variational posterior
now predicts both s and z and is defined as

qφz,φs(z, s|x) = qφz (z|x)qφs(s|x) (26)

where

qφz (z1:T |x1:T ) =
∏
t

q(zt|z1:t−1,x1:T ) =
∏
t

q(zt|ht)δ(ht|fRNN (ht−1, zt−1,h
b
t)) (27)

qφs(s1:T |x1:T ) =
∏
t

q(st|st−1,x1:T ) =
∏
t

qGumbel−Softmax(st|g(hbt , st−1), τ) (28)

where ht is the hidden state of a deterministic recurrent neural network, fRNN (·), which works from
left (t = 0) to right (t = T ), summarizing past stochastic z1:t−1. We also feed in hbt , which is a
bidirectional RNN, which summarizes x1:T . The Gumbel-Softmax distribution qGumbel−Softmax
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takes the output of a feed-forward network g(·) and a softmax temperature τ , which is annealed
according to a fixed schedule.

The evidence lower bound (ELBO) could be written as

LELBO(θ,φ) = Eqφz (z|x)qφs (s|x) [log pθ(x, z, s)− log qφz (z|x)qφs(s|x)] (29)

One step of stochastic gradient ascent for the ELBO can be implemented as Algorithm 2.

Algorithm 2 SVI for Training Gumbel-Softmax SNLDS

Use Bi-RNN to compute hxt from x1:T ;
Recursively sample zt ∼ q(zt|zt−1,x1:T ) using forward RNN applied to zt−1 and hxt ;
Recursively sample st ∼ qGumbel−Softmax(st|g(hbt , st−1), τ) using feedforward network applied
to st−1 and hxt ;
Compute the likelihood for eq. (29);
Take gradient step.

A.3 DETAILS ON THE BOUNCING BALL EXPERIMENT

The input data for bouncing ball experiment is a set of 100000 sample trajectories, each of which is
of 100 timesteps with its initial position randomly placed between two walls separated by a distance
of 10.. The velocity of the ball for each sample trajectory is sampled from U([−0.5, 0.5]). The
exact position of ball is obscured with Gaussian noise N (0, 0.1). The training is performed with
batch size 32. The evaluation is carried on a fixed, held-out subset of the data with 200 samples.
For the inference network, the bi-directional and forward RNNs are both 16 dimensional GRU. The
dimensions of discrete and continuous hidden state are set to be 3 and 4. For SLDS, we use linear
transition for continuous states. For SNLDS, we use GRU with 4 hidden units followed by linear
transformation for continuous state transition. The model is trained with fixed learning rate of 10−3,
with the Adam optimizer (Kingma & Ba, 2015), and gradient clipping by norm of 5. for 10000 steps.

Figure 5: Left Column: SNLDS Segmentation on bouncing ball task with an RNN continuous
transition function. Top left: illustration of input sequence and reconstruction. Center Left (green):
ground truth of the latent discrete states, corresponding to two directions of motion. Lower left (blue):
the posterior marginal of p(st = k|x1:T , z1:T ) of SNLDS at 100, 1000, 2000 and 10000 training
steps, where lighter color represents higher likelihood. Right Column: Training progress of relative
negative log-likelihood (Orange) and frame-wise F1 score (Blue) for SNLDS. Relative negative
log-likelihood is calculated as ln(nllk−min(nllk) + 1.), where nllk is negative log-likelihood. The
scale emphasizes that the loss still improves even late during training.

An example of training a SNLDS model on the Bouncing Ball task is provided as Figure 5. Early
in training, the discrete states do not align well to the ground truth transitions. The three states
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transition rapidly near one of the walls and the frame-wise F1 score is near chance values. However,
by ten thousand iterations, the model has learned to ignore one state and switches between the two
states corresponding to the ball bouncing from the wall. Notably the negative log-likelihood changes
by over 10 orders of magnitude before the model learns accurate segmentation of even this simple
problem. We hypothesize that the likelihood is dominated by errors in continuous dynamics rather
than in the discrete segmentation until very late in training.

A.4 DETAILS ON THE REACHER EXPERIMENT

Figure 6: Illustration of the observations in reacher experiment. This is 2-D rendering of the
observational vector, but the inputs to the model are sequences of vectors, as in Kipf et al. (2019), not
images.

The observations in the reacher experiment are sequences of 36 dimensional vectors, as described in
Kipf et al. (2019). First 30 elements are the target indicator, α, and location, x, y, for 10 randomly
generated objects. 3 out of 10 objects start as targets, α = 1. The (x, y) location for 5 of the non-
target objects are set to (0, 0). A deterministic controller moves the arm to the indicated target objects.
Once a target is reached, the indicator is set to α = 0. (Depicted as the yellow dot disappearing in
Figure 6.) The remaining 6 elements of the observations are the two angles of reacher arm and the
positions of two arm segment tips. The training dataset consists of 10000 observation samples, each
50 timesteps in length.

This more complex task requires more careful training. The learning rate schedule is a linear warm-
up, 10−5 to 10−3 over 5000 steps, from followed by a cosine decay, with decay rate of 2000 and
minimum of 10−5. Both entropy regularization coefficient starts to exponentially decay after 50000
steps, from initial value 1000 with a decay rate 0.975 and decay steps 500. The temperature annealing
follows the same exponential but only starts to decay after 100000 steps. The training is performed
in minibatches of size 32 for 300000 iterations using the Adam optimizer (Kingma & Ba, 2015).

The model architecture is relatively generic. The continuous hidden state z is 8 dimensional. The
number of discrete hidden states is set to 5 for training, which is larger than the ground truth 4
(including states targeting 3 objects and a finished state). The observations pass through an encoding
network with two 256-unit ReLU activated fully-connected nets, before feeding into RNN inference
networks to estimate the posterior distributions q(zt|x1:T ). The RNN inference networks consist of
a 32-unit bidirection LSTM and a 64-unit forward LSTM. The emission network is a three-layer
MLP with [256, 256, 36] hidden units and ReLU activation for first two layers and a linear output
layer. Discrete hidden state transition network takes two inputs: the previous discrete state and
the processed observations. The observations are processed by the encoding network and a 1-D
convolution with 2 kernels of size 3. The transition network outputs a 5 × 5 matrix for transition
probability p(st|st−1) at each timestep. For SNLDS, we use a single-layer MLP as the continuous
hidden state transition functions p(zt|zt−1, st), with 64 hidden units and ReLU activation. For SLDS,
we use linear transitions for the continuous state.

A.5 DETAILS ON THE DUBINS PATH EXPERIMENT

The Dubins path model3 is a simplified flight, or vehicle, trajectory that is the shortest path to reach a
target position, given the initial position (x0, y0), the direction of motion θ0, the speed constant V ,

3 https://en.wikipedia.org/wiki/Dubins_path
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and the maximum curvature constraint θ̇ ≤ u. The possible motion along the path is defined by

ẋt = V cos(θt), ẏt = V sin(θt), θ̇t = u.

The path type can be described by three different modes/regimes: ‘right turn (R)’ , ‘left turn (L)’ or
‘straight (S).’

To generate a sample trajectory used in training or testing, we randomly sample the velocity from a
uniform distribution V ∼ U([0.1, 0.5]) (pixel/step), angular frequency from a uniform distribution
u/2π ∼ U([0.1, 0.15]) (/step), and initial direction θ0 ∼ U([0, 2π)). The generated trajectories
always start from the center of image (0, 0). The duration of each regime is sampled from a Poisson
distribution with mean 25 steps, with full sequence length 100 steps. The floating-point positional
information is rendered onto a 28× 28 image with Gaussian blurring with 0.3 standard deviation to
minimize aliasing.

The same schedules as in the reacher experiment are used for the learning rate, temperature annealing
and regularization coefficient decay.

The network architecture is similar to the reacher task except for the encoder and decoder networks.
Each observation is encoded with a CoordConv (Liu et al., 2018b) network before passing into RNN
inference networks, the archicture is defined in Table 3. The emission network p(xt|zt) also uses
a CoordConv network as described in Table 4. The continuous hidden state z in this experiment is
4 dimensional. The number of discrete hidden states s is set to be 5, which is larger than ground
truth 3. The inference networks are a 32-unit bidirection LSTM and a 64-unit forward LSTM. The
discrete hidden state transition network takes the output of observation encoding network in the
same manner as the reacher task. For SNLDS, we use a two-layer MLP as continuous hidden state
transition function p(zt|zt−1, st), with [32, 32] hidden units and ReLU activation. For SLDS, we use
linear transition for continuous states.

Table 3: CoordConv encoder Architecture. Before passing into the following network, the image is
padded from [28, 28, 1] to [28, 28, 3] with the pixel coordinates.

Layer Filters Shape Activation Stride Padding
1 2 [5, 5] relu 1 same
2 4 [5, 5] relu 2 same
3 4 [5, 5] relu 1 same
4 8 [5, 5] relu 2 same
5 8 [7, 7] relu 1 valid
6 8 2 (Kernel Size) None 1 causal

Table 4: CoordConv decoder Architecture. Before passing into the following network, the input zt is
tiled from [8] to [28, 28, 8], where 8 is the hidden dimension, and is then padded to [28, 28, 10] with
the pixel coordinates.

Layer Filters Shape Activation Stride Padding
1 14 [1, 1] relu 1 valid
2 14 [1, 1] relu 1 valid
3 28 [1, 1] relu 1 valid
4 28 [1, 1] relu 1 valid
5 1 [1, 1] relu 1 same

See Figure 7 for an illustration of the reconstruction abilities (of the observed images) for the SLDS
and SNLDS models. They are visually very similar; however, the SNLDS has a more interpretable
latent state as described in Section 4.3.

A.6 REGULARIZATION AND MULTI-STEPS TRAINING

Training our SNLDS model with a powerful transition network but without regularization will fit the
dynamics p(zt|zt−1, st) with a single state. With randomly initialized networks, one state fits the
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(a) Input (b) SNLDS (c) SLDS

Figure 7: Image sequence reconstruction for Dubins path. The sequence is averaged with early
timepoints scaled to low intensity, late timepoints unchanged to indicate direction.

dynamics better at the beginning and the forward-backward algorithm will cause more gradients to
flow through that state than others. The best state is the only one that gets better.

To prevent this, we use regularization to cause the model to select each mode equally likely until
the inference and emission network are well trained. Thus all discrete modes are able to learn the
dynamics equally well initially. When the regularization decays, the transition dynamics of each
mode can then specialize. The regularization helps the model to better utilize its capacity, and the
model can achieve better likelihood, as demonstrated in Section 4.4 and Figure 4.

Multi-steps training has been used by previous models, and it serves the same purpose as our
regularization. SVAE first trains a single transition model, then uses that one set of parameters to
initialize all the transition dynamics for multiple states in next stage of training. rSLDS training
begins by fitting a single AR-HMM for initialization, then fits a standard SLDS, before finally fitting
the rSLDS model. We follow these implementations of both SVAE and rSLDS in our paper. Both
multi-step training and our regularization ensure the hidden dynamics are well learned before learning
the segmentation. What makes regularization interesting is that it allows the model to be trained with
a smooth transition between early and late training.
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