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Abstract

Listen, Attend and Spell (LAS) [4] maps a sequence of acoustic spectra directly to
a sequence of graphemes, with no explicit internal representation of phones. This
paper asks whether LAS can be used as a scientific tool, to discover the phone
set of a language whose phone set may be controversial or unknown. Phonemes
have a precise linguistic definition, but phones may be defined in any manner
that is convenient for speech technology: we propose that a practical phone set
is one that can be inferred from speech following certain procedures, but that is
also highly predictive of the word sequence. We demonstrate that such a phone
set can be inferred by clustering the hidden nodes activation vectors of an LAS
model during training, thus encouraging the model to learn a hidden representation
characterized by acoustically compact clusters that are nevertheless predictive of
the word sequence. We further define a metric for the quality of a phone set (the
sum of conditional entropy of the graphemes given the phone set and the phones
given the acoustics), and demonstrate that according to this metric, the clustered-
LAS phone set is comparable to the original TIMIT [5] phone set. Specifically, the
clustered-LAS phone set is closer to the acoustics; the original TIMIT phone set is
closer to the text.

1 Introduction

Traditional automatic speech recognition (ASR) usually is composed of multiple components includ-
ing an acoustic model, a language model, and a pronunciation dictionary. Recently, modern ASR
models implemented based on neural networks, such as connectionist temporal classification (CTC)
[6] and LAS, have demonstrated the ability to learn a complete end-to-end optimal transformation
from speech to text. Since such models generally are not dependent on utilizing specific language
models or pronunciation dictionaries, their architectures are popular with new researchers trying to
enter speech recognition community. Typical neural-network based models rely on the Recurrent
Neural Networks (RNNs), and the key to success of utilizing such deep learning mechanisms is their
ability to learn a hidden representation of the training data.
In this work, we take a step further to explore the possibility of defining a new phone set for the
TIMIT dataset using the LAS model by incorporating a clustering method to soft align acoustics and
graphemes. In the LAS model, the Listener takes the input acoustic signals and encodes the signals to
a hidden nodes vector, the hidden nodes vector is accumulated with weights computed by an Attender,
and then the accumulated hidden nodes vector feeds into the Speller to generate transcripts. Since
the hidden nodes vector represents the relationship between the generated graphemes and the input
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acoustic signals, we cluster the hidden nodes that are maximally attended by one or more output
trigraphs. In this way, we train the model to learn the underlying relationship between the graphemes
and acoustics.
The clustered pairs of hidden nodes and corresponding graphemes are the new defined phone set. We
evaluate the new phone set by using an entropy utility function, the sum of the conditional entropy
of the graphemes given the phones, and of the phones given the acoustics. The experiment reveals
that the new phone set is comparable with the reference phone set. The new phone set has lower
conditional entropy of phones given the acoustics than the reference phone set, but the new phone set
has higher conditional entropy of graphemes given phones. Overall, the reference phone set is better.

2 Related Work

2.1 End-to-end learning in ASR

In order to learn the active speech-to-text transformation in an end-to-end fashion, it is necessary to
represent several discrete optimization problems as differentiable continuous optimizations. Two
approaches using RNNs have recently been successful: connectionist temporal classification (CTC)
[6] and LAS. CTC generates the labels of a sequence of data with RNNs by estimating the probability
distribution given the input sequence once per input time step, whereas LAS uses an Attender to
accumulate state vectors across input time steps, and generates output characters at each output time
step using a sequence-to-sequence mechanism given the transformed input nodes vector. Hybrids
of CTC and LAS also exist [8]. Sequence-to-sequence neural network models with attention were
first proposed for machine translation, and therefore some machine translation toolkits are able to
implement LAS [11].

2.2 Representations between acoustics and text in speech recognition models

Deep learning works if and only if it’s able to find an accurate hidden representation of training data,
thereby enabling the system to learn the relationship between the input signal and output words. For
conventional ASR, the phone is the smallest temporal unit in speech and serves as an intermediate
representation connecting speech and text. A Hidden Markov Model (HMM) observes acoustic
signal features and computes the likelihoods of triphone states, from which the likelihoods of words
may be computed [9]. Hybrid HMM-(Neural Network)NN systems use the NN to compute phone
likelihoods, and the HMM to compute phone alignment [10]. The transformation from speech to
text always consists of a series of smaller transformations, from one hidden representation to the
next, with each representation slightly more text-like and less speech-like than the one before it. In
traditional ASR, these representations are explicit: triphone, phone, and word. In end-to-end models
such as Deep Speech [1], the same sequence of transformations is learned from data: Belinkov and
Glass [3] investigate the hidden representations of Deep Speech 2 [1], and the study shows that the
phonetic information loss gradually increases from the bottom layer to the top layer.

3 Model

3.1 Brief descriptions of LAS model

LAS is an end-to-end speech recognition model that generates the transcripts directly from input
acoustic signals without the implementations of multiple submodules of traditional ASR. The basic
LAS model includes two modules: a Listener and a Speller. The Listener comprises three layer of
pyramidal Bidirectional Long Short Term Memory (pBLSTM) [7], which encode the input acoustic
signals and reduce the input time length to one-eighth of the original. The output of the Listener is
represented by hidden nodes vectors h, then the vectors are fed into the Speller as the input. The
Speller is a sequence-to-sequence attention-based LSTM transducer. The attention mechanism of the
transducer takes the hidden nodes vectors from the Listener and character distribution from previous
step as input and generates a context vector as a weighted sum of all input hidden nodes vectors. The
context vector is then used to generate the output character at the current step.
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Figure 1: Modified architecture of Listen, attend and spell

The input of the clustering algorithm are the corresponding hidden nodes of the maximum attention frames
generated by the AttentionContext vector for correctly inferenced character from the Speller. In this figure,
y2, y4, and y5 are correctly inferenced characters, and their corresponding context vectors of c1, c3, and c4
generate the attention vectors whose maximally attended input frames are h2, h4, and h7 respectively. Thus, h2,
h4, and h7 are the input of the cluster.

3.2 Experiment LAS model

Figure 1 shows the overall modified LAS model of the experiment. We are aiming at finding the
hidden relationship between the input acoustic signals and output transcripts, so we introduce a
clustering component in the original LAS model to encourage the Listener to learn a hidden represen-
tation in which frames are grouped into compact clusters. Specifically, for each character correctly
inferenced by the LSTM transducer from the Speller, we cluster the corresponding maximally
attended hidden nodes. The hidden nodes vectors are a cumulative nonlinear transformation of the
Mel-Frequency Cepstral Coefficients (MFCCs), and are trained to optimally summarize whatever
information about the MFCC is necessary for the Speller to correctly generate output characters. By
clustering maximum attended hidden nodes, we force the system to learn groupings of speech frames
that have similar hidden nodes vectors and are also connected to similar output character sequences.

3.3 Learning

The modified LAS system can be trained jointly for accurate character output, but also for optimally
clustered internal hidden nodes vectors. The training criterion of the modified LAS model contains
two parts: word loss and clustering loss. The loss function can be described as the following,

ε = − 1

Ty

Ty∑
i=1

logP (yi|x, y1,(i−1)) +
∑Ty

i=1[yi = ŷi]‖ht(i)− µk(t(i))‖2∑Ty

i=1[yi = ŷi]

t(i) = argmax
t

αit k(t) = argmin
k
‖ht − µk‖2

where Ty is the length of generated output characters. αit is the attention computed between output
frame i and input frame t, and [.] is unit indicator function. The first part of the training criterion is the
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cross entropy between the reference transcripts and the generated transcripts, and is the error measure
used in the standard LAS algorithm. x is the original input acoustic signal; yi and y1:(i−1) refer to
the reference character at output time i, and the sequence from times 1 through (i− 1). The second
part is the average squared distance between hidden nodes attended by correctly inference characters
and their closest cluster centroids. t(i) is the index of the input frame that is maximally attended by
output frame i. ht is the hidden nodes vector at input frame t. The inferenced character at each output
step is yi, and corresponding reference character is ŷi. When the inferenced character is the same as
the reference character, the corresponding maximally attended hidden node ht(i) is selected to be
the input of a clustering algorithm. µk(t(i)) is the corresponding cluster centroid. k(t) is the index of
the closest cluster of hidden nodes vector ht. By minimizing this error function, we encourage the
Listener to learn a hidden embedding, ht, that is useful in predicting the output character yi, but that
can also be clustered into compact phone-like clusters with centroids µk.

3.4 Clustering method

The clustering method in the modified LAS model is a standard k-means clustering algorithm except
that the input varies, since the hidden nodes change for every batch during training. The objective of
the clustering method is to minimize the clustering loss from the loss function.
The centroids of the clusters are randomly initialized with a normal distribution. The hidden nodes
are clustered and labeled for a certain number of iterations for every epoch. Then the centroids are
updated and kept for the next epoch. After every epoch, the empty clusters not used during the
completed epoch will be deleted, and replaced by splitting the largest labeled clusters by scaling the
original centroids by factors of 1.00 and 0.99.

4 Experiment

4.1 Dataset descriptions

Two datasets are used to perform the experiment. The English speech recognition training corpus of
TED-LIUMv2 (TEDLIUM) [14] is used to pre-train the LAS model. The TEDLIUM dataset was
made from audio talks and transcripts from the TED website. There are 1495 audio talks with aligned
transcripts in the dataset.
The TIMIT dataset is used to train the experimental LAS model. The TIMIT dataset comes with
its self-defined dictionary and phoneme alignment transcripts for the audio talks. During training,
audio and transcripts of one female and one male are randomly selected from each dialect region of
the original TIMIT test dataset as development set, and the rest of the original TIMIT test dataset
remains as evaluation test set. A new phone set is discovered for the TIMIT dataset and compared
with the reference phone set.

4.2 Preprocessing of dataset

Both datasets are converted to MFCCs. The raw acoustic signals in the dataset are multiplied by
25ms Hamming windows once every 10ms, and the sampling rate of the input signals is 16000
Hz. The power spectrum is calculated for each frame as the squared magnitude of Discrete Fourier
Transform (DFT) of the original acoustic signals. Forty filters in Mel-spaced filterbank are applied to
the power spectrum, and log filterbank energies are computed by taking the log of the power spectrum.
Then the Discrete Cosine Transform (DCT) of these forty log filterbank energies gives the cepstrum
coefficients.

4.3 Experimental settings

The implementation of the basic LAS model is based on the toolkit eXtensible Neural Machine
Translation (XNMT) [12] using the Dynet framework [11]. The learning rate of the Adam optimizer
is initialized to 0.01 and reduced to half of the original learning rate if WER of the development set
isn’t improved after 3 epochs. Other parameters are set to the values as indicated by the original paper
[4]. The hidden dimension of pLSTM is 512, which is the dimension of the hidden nodes vector. The
Attender has hidden dimension 128. The dropout rate of the entire neural network is 0.3. The Speller
uses a beam search with size 20 to infer test transcripts.
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The experimental model is modified by introducing a new clustering module. The LAS model has
been pre-trained for about 300 epochs. Starting with the pre-trained model, the experimental model
is then trained for 100 epochs; the learning rate of the Adam optimizer remains at 0.03. The number
of iterations for each clustering step is 20, and the dimension of each cluster centroid is the same as
the dimension of the hidden nodes vector, which is 512 in this case. The number of clusters is 100,
which is roughly twice the number of unique English phonemes [2].

5 Results and discussion

5.1 Error measurements of experimental LAS model

Upon convergence, the pre-trained model of LAS has word error rate (WER) 16.72% and character
error rate (CER) 8.46% on the test dataset. With the pre-trained LAS model, the experimental model
has the final WER 26.99% and CER 10.67%. By the training criterion, clustering loss is 16.935 and
maximum likelihood estimation loss is 0.948 per character.

5.2 Comparisons of new discovered phone set and reference phone set

For the experimental LAS model, 100 clusters are used to discover a new phone set for TIMIT. For
all generated transcripts in the test set, every character yi is assigned to the input state vector ht

according to ht(i) = argmaxαit, where αit is the attention, and the closest µk of the corresponding
hidden node ht is credited with one occurrence of the label yi. Conversely, the trigraph sequence
y1:Ty

is mapped to a phone sequence by looking up each word in the dictionary, then aligning the
dictionary phones with trigraphs using Phonetisaurus. The top five most frequently assigned trigraphs
for each cluster vote to determine the phone label of the cluster. Clusters with no clear majority
phone label are reviewed, and the label is edited by hand. For example, the top five most frequently
labeled trigraphs for one cluster are " wh", "ere", "whe", "wer", and " we". The cluster certainly
captures the similar pronunciations of the center letters of the words "where" and "were", since lip
rounding dominates both words, for this cluster, we assign the phone label as "w". The final phone
set discovered by the clusters of the experimental system contains 40 unique phones.
We used both phonetic reference transcripts and the TIMIT dictionary for constructing two different
phone sets. The reference phone set constructed from the phonetic transcripts contain all possible
phonemic and phonetic symbols used in the TIMIT lexicon, and the total number of unique phones is
61 in the phonetic transcripts. Since the reference transcripts of the TIMIT dataset contain the actual
pronunciations of the words, the phones of the transcripts are very different from the ones used in the
TIMIT dictionary. We also try to find a phone set that represents the reference transcripts using the
dictionary. We utilize the function phonetisaurus-align in toolkit Phonetisaurus G2P [13] to generate
the alignment between each character and the corresponding phone of the reference transcripts. The
stress markers of the TIMIT dictionary are eliminated. The reference phone set constructed from
TIMIT dictionary contains 47 unique phones.
The experimental and both reference phone sets are as shown in the Table 1.

5.3 Entropy measurement

Entropy is commonly used to measure the randomness or disorder of a system. The output of the
experimental model is evaluated by calculating the conditional entropy given different contexts for
both the experimental and reference phone sets. The contexts include both phones and acoustics,
and the dependent variables include phones and graphemes. The graphemes consist of all lowercase
English letters and special tokens, including apostrophe, dash and space that appeared in both
generated and reference transcripts. The acoustics include all individual frames in the test dataset
from the TIMIT corpus. The conditional entropy is calculated as follows,

H(Y |X) = −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x)

5



Table 1: List of phone sets discovered by experimental model and constructed from both reference
dictionary and phonetic transcripts. The bolded phones in both second and the third column highlight
the differences between the experimental and reference phone set.

phone categories experimental model reference (dict) reference (phn)

stops b, d, g, k, p, t b, d, g, k, p, t b, bcl, d, dcl, g, gcl,
k, kcl, p, pcl, t, tcl, dx, q

affricates ch, jh ch, jh ch, jh

fricatives f, s, sh, th, v, z dh, f, s, sh, th, dh, f, s, sh, th,
v, z, zh v, z, zh

nasals en, m, n, ng em, en, eng, m, em, en, eng, m,
n, ng n, ng, nx

semivowels and glides el, hh, hv, l, r, w el, hh, l, r, w, y el, hh, hv, l, r, w, y

vowels
ae, ao, aw, ax, axr aa, ae, ah, ao, aw, ax aa, ae, ah, ao, aw, ax,
ay, eh, er, ey, ih, axr, ay, eh, er, ey, ih axr, ax-h, ay, eh, er, ey, ih,
ix, iy, ow, oy, uw ix, iy, ow, oy, uh, uw ix, iy, ow, oy, uh, uw, ux

non-speech event h# h# h#, pau, epi

Table 2: Entropy of the distribution P (graphemes|phones), P (phones|acoustics), and
P (graphemes|acoustics) for both experimental and reference phone sets. kNN and actual conditional
distribution are used to estimate experimental conditional entropy.

System H(gra|pho) H(pho|aco) H(gra|aco)

kNN-experimental model 1.959 0.424 1.198
kNN-reference (dict) 1.871 1.081 1.351
kNN-reference (phn) 1.757 1.131 1.348
experimental model 2.563 3.681 3.353
reference (dict) 0.776 3.842 3.355
reference (phn) 1.376 4.105 3.355

where X is context variable, and Y is the dependent variable.
For calculating all conditional entropy, we use both actual conditional distributions and estimated
conditional distributions utilizing K-nearest neighbors (kNN) algorithm with K=10 for all contexts
and dependent variables.
Specifically, when we use the actual distribution for calculating H(graphemes|phones),

p(x) =
number of occurrences of phone x in transcripts

total number of phones in transcripts

p(y|x) = number of occurrences of phone x aligned with character y + λ

number of occurrence phone x in transcripts + λ× number of distinct characters
Laplace smoothing is applied for all conditional entropy calculations with the smoothing factor
λ = 1.
Similarly, for calculating H(phones|acoustics), we also calculated the prior and conditional distribu-
tions. We approximate each individual frame as a unique frame. Thus, the prior acoustic distribution
can be approximated by

p(x) ≈ 1

total number of acoustic frames in test set
p(y|x) =

number of occurrences of phone y given acoustic frame x+ λ

number of output phones that attend acoustic frame x+ λ× number of phones in defined phone set
H(graphemes|acoustics) can be computed by following the same procedures of calculating
H(phones|acoustics). H(graphemes|acoustics) differs slightly between the experimental and ref-
erence models, because each acoustic frame may be attended by more than one output character.
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Phonetisarus G2P toolkit is also used to calculate the maximum likelihood alignments between
the graphemes and acoustics in phonetic transcripts. Each sentence is treated as one word, and its
corresponding phonetic transcripts are used train the finite-state-transducer model for the alignment
calculations.
When we use the kNN algorithm, the prior is the same with the ones used in the actual distribution
to calculate H(graphemes|phones). For both experimental and reference phone sets, we find all the
phone centroids. For experimental phone set, for each phone centroid x with value of µk, we find the
closest K vectors ht(i) by measuring the distance ‖ht(i)− µk‖2, that is, these ht(i) are from the set
of hidden nodes vectors that are maximally attended by some grapheme. For reference phone set, we
first calculate the phone centroid x as the average of all acoustic frames aligned with each phone.
Then we find K closest frames of each phone centroid x aligned with grapheme y, so

p(y|x) = number of occurrences of grapheme y for phone centroid x
K

Similarly, for calculating H(phones|acoustics), we find the corresponding hidden nodes vector hτ
for each acoustic frame x, then we find the closest K vectors ht(i) by ‖ht(i)− hτ‖2, and these ht(i)
are from all hidden nodes vectors that are used in the clustering algorithm for test dataset. The phone
labels of each hτ are used to estimate the conditional distribution,

p(y|x) = number of occurrences of phone y for acoustic frame x
K

We follow similar procedures of calculating H(phones|acoustics) to calculate
H(graphemes|acoustics). For each acoustic frame x, we find the closest K vectors ht(i) for
hτ from the set of hidden nodes vectors that are maximally attended by certain grapheme,

p(y|x) = number of occurrences of character y for acoustic frame x
K

In order to measure the quality of the experimental phone set, we exploit Markov
Chain property and have the inequality H(graphemes|phones) + H(phones|acoustics) >=
H(graphemes|acoustics). From Table 2, when we use the actual distribution, the conditional entropy
H(graphemes|acoustics) ≈ 3.355 is similar for both experimental and reference phone sets. For the
experimental system, H(graphemes|phones) +H(phones|acoustics)−H(graphemes|acoustics) =
2.563 + 3.681 − 3.353 = 2.891, meaning that quantizing to the experimental phone set would
introduce 2.891 nats of entropy to the LAS speech recognizer. Similarly, the comparable number for
dictionary reference phone set is 0.776+3.842-3.354= 1.264 and for phonetic reference phone set is
1.376+4.105-3.355=2.126. Compared with reference phone set, the experimental phone set is closer
to acoustics but farther from the text. Overall, the reference phone set is slightly better. In particular,
the reference (dict) phone set is very close to the text, because it is computed by looking up each
word in the dictionary. The experimental phone set, conversely, is close to the acoustics, because it is
created by clustering the hidden nodes vectors of the Listener in an LAS speech recognizer. Even
though the experimental phone set is created from the Listener of the LAS model, however, it is not
much farther from the text than the reference (phn) phone set, which is based on manual transcription
of the pronunciations actually used by the speakers in the TIMIT dataset. This result suggests that
the experimental phone set is capturing pronunciation variation comparable to the pronunciation
variation represented by the reference (phn) transcriptions.

6 Conclusions

We defined a new phone set for the TIMIT dataset based on incorporating a clustering mechanism
into the original LAS model. The learning criterion for the experiment model is composed of two
parts: negative log probability of the reference transcripts, and squared distance between clustered
hidden nodes and corresponding centroids of clusters. The learning criterion balances the learning
objectives of the system – reducing the WER of generated transcripts meanwhile grouping the hidden
vectors into compact clusters. The model is pre-trained with a larger dataset, TEDLIUM, and then
trained on the TIMIT dataset for the experiment. The experiment result is evaluated by defining a
utility function, the sum of the conditional entropy of graphemes given phones and the conditional
entropy of phones given acoustics. By quantizing both experimental and reference phone sets, we
show that the experimental phone set has higher "grapheme entropy" but lower "acoustic entropy".
In conclusion, the experimental phone set is comparable with the TIMIT reference phone set, but
TIMIT reference phone set is superior.
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