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ABSTRACT

High-risk domains require reliable confidence estimates from predictive models.
Deep latent variable models provide these, but suffer from the rigid variational dis-
tributions used for tractable inference, which err on the side of overconfidence. We
propose Stochastic Quantized Activation Distributions (SQUAD), which imposes
a flexible yet tractable distribution over discretized latent variables. The proposed
method is scalable, self-normalizing and sample efficient. We demonstrate that
the model fully utilizes the flexible distribution, learns interesting non-linearities,
and provides predictive uncertainty of competitive quality.

1 INTRODUCTION

In high-risk domains, prediction errors come at high costs. Luckily such (g
domains often provide a fail-safe: self-driving cars perform an emer- | g
gency stop, doctors run another diagnostic test, and industrial processes
are temporarily halted. For deep learning models, this can be achieved
by rejecting datapoints with a confidence score below a predetermined |eo e
threshold. This way, a low error rate can be guaranteed at the cost of =

rejecting some predictions. However, estimating high quality confidence Figure 1: DLVMs have
scores from neural networks, which create well-ordered rankings of cor- layers of stochastic la-
rect and incorrect predictions, remains an active area of research. tent variables.

Deep Latent Variable Models (DLVMs, fig. [I)) approach this by postulating latent variables z for
which the uncertainty in p(z|x) influences the confidence in the target prediction. Recently, efficient
inference algorithms have been proposed in the form of variational inference, where an inference
neural network is optimized to predict parameters of a variational distribution that approximates an
otherwise intractable distribution (Kingma & Welling| (2013)); Rezende et al.[ (2014); |Alem1 et al.
(2016); |Achille & Soatto| (2016)).

Figure 2: A dis-
tribution gy is op-
timized to approxi-
mate pg=.

Variational inference relies on a tractable class of distributions that can be op-
timized to closely resemble the true distribution (fig. [2), and it’s hypothesized
that more flexible classes lead to more faithful approximations and thus better
performance (Jordan et al.[(1999)). To explore this hypothesis, we propose a
novel tractable class of highly flexible variational distributions. Considering
that neural networks with low-precision activations exhibit good performance
(Holi & Hwang| (1993)); Hubara et al.| (2016))), we make the modeling as-
sumption that latent variables can be expressed under a strong quantization
scheme, without loss of predictive fidelity. If this assumption holds, it be-
comes tractable to model a scalar latent variable with a flexible multinomial
distribution over the quantization bins (fig. 3).

By re-positioning the variational distribution from a poten- — gr(;le » p(z)
SQUAD

tially limited description of moments, as found in commonly
applied conjugate distributions, to a direct expression of prob-
abilities per value, a variety of benefits arise. As the output
domain is constrained, the method becomes self-normalizing,

.

relieving the model from hard-to-parallelize batch normaliza-

tion techniques (loffe & Szegedy| (2015)). More interesting Figure 3: SQUAD quantizes the
priors can be explored and the model is able to learn unique domain of z to model a flexible and
activation functions per neuron. tractable variational distribution.
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More concretely, the contributions of this work are as follows:

e We propose a novel variational inference method by leveraging multinomial distributions
on quantized latent variables.

e We show that the emerging predicted distributions are multi-modal, motivating the need for
flexible distributions in variational inference.

e We demonstrate that the proposed method applied to the information bottleneck objective
computes competitive uncertainty over the predictions and that this manifests in better per-
formance under strong risk guarantees.

2 BACKGROUND

In this work, we explore deep neural networks for regression and classification. We have data-points
consisting of inputs x and targets y in a dataset D = {(x’,y") | i € [1, ..., N]} and postulate latent
variables z that represent the data. We focus on the Information Bottleneck (IB) perspective: first
proposed by [Tishby et al.| (2000), the information bottleneck objective I(y,z;0) — BI(x,2;0) is
optimized to maximize the mutual information between z and y, whilst minimizing the mutual in-
formation between z and x. The objective can be efficiently optimized using a variational inference
scheme as shown concurrently by both |Alemi et al.|(2016) and |Achille & Soatto| (2016). Under the
Markov assumption P(z,x,y) = p(z|x)p(y|x)p(x), they derive the following lower bound:

N
I(y,%:0) ~ BI(x,7:60) > £ = = > Bpyape 08 05(yal2)] ~ 8Dxw po(abxn)Ir(), (1)

n=1
where E,(,|x, ) is commonly estimated using a single Monte Carlo sample and r(z) is a variational
approximation to the marginal distribution of z. In practice r(z) is fixed to a simple distribution
such as a spherical Gaussian. |Alemi et al.| (2016) and |Achille & Soatto| (2016) continue to show
that the Variational Auto Encoder (VAE) Evidence Lower Bound (ELBO) proposed in |Kingma &
Ba (2014)); Rezende et al.|(2014) is a special case of the IB bound wheny = x and g = 1:

I(z,2) = BI(2,1) 2 Epy (afx,,)[10g g0 (xn|2)] — Dxrlpo(2[xn) | r(2)], )

where ¢ represents the identity of data-point x;. Interestingly, the VAE perspective considers the
bound to optimize a variational distribution ¢(z|x), whilst the IB perspective prescribes that ¢(z|x)
in the ELBO is not a variational posterior but the true encoder p(z|x), and instead p(y|z) and p(z)
are the distributions approximated with variational counterparts. However, deriving the ELBO on a
conditional distribution p(y|x) leads to a KL divergence between the approximate posterior ¢(z|x)
and the real posteriorp(z|x), which is not available at test time, rather than the prior p(z). Hence,
the information bottleneck perspective provides a more fundamental motivation for the bound in

equation

Alternatively, equation[I|can be interpreted as a domain-translating beta-VAE (Higgins et al.|(2016)),
where an input image is encoded into a latent space and decoded into the target domain. The La-
grange multiplier 8 then controls the trade-off between rate and distortion, as argued by |Alemi et al.
(2017). However, this does not naturally arise from deriving the ELBO using Jensen’s inequality on
the conditional likelihood p(y|x).

3 METHOD

In this work, we follow the IB interpretation of the bound in equation |l| and leave the evaluation of
our proposed variational inference scheme in other models such as the VAE for further work. At
the heart of our proposal lies the assumption that neuron networks can be effective under strong
activation quantization schemes. We start with presenting the derivation if the model in the context
of a single latent-layer information bottleneck, following the single data-point loss in equation|T]and
dropping the subscript ,, for clarity, with figure 4] for visual reference:

L =Leror — LxL = IEpg(z|x) [IOg QG(Y|Z)] - BDKL[p0(Z|X)HT(Z)]' 3)

To impose a flexible, multi-modal distribution over z, we first make a mean-field assumption
p(z|x) = [], p(zk|x). We then quantize the domain of each of the K scalar latent variables zj
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Figure 4: The left diagram visualizes the computational graph of SQUAD at training time, providing
a detailed view on how an individual latent variable is sampled. The right diagram visualizes how
the proposed matrix-factorization variant improves the parameter efficiency of the model.

such that only a small set of potential values remain: z; € v = {vy,...,vc} Vk withe.g. C =11,
see fig. 5] We use the same quantization scheme, defined by v, for all the latents. The specific
scheme is considered part of the prior, and is discussed in figure 3]

Although the number of values of z is relatively small, the space of values over all the latent variables
grows exponentially. We thus take to a monte-carlo estimation scheme. To optimize the parameters
6 with Stochastic Gradient Descent (SGD), we need to derive a fully differentiable sampling scheme
that allows us to sample values of z. . To formulate this, we re-parametrize the expectation over z
in equation using a set of variables s, € {1,...,C} which index the value vector v, allowing us
to use a softmax function to represent the distribution over z:

po(21 = ve|X) £ py(sk = c|x) = softmax(Wx + b)... 4)

These indexing values s are then used in conjunction with values v as in input for gg(y|z), which
is modelled with a small network fy(-): (abusing notation to indicate element-wise indexing with

v[s]):
»Cerror = Es~p9 [IOg f@ (V[S])]

To enable sampling from the discrete variables s, we use the Gumbel-Max trick (Gumbel| (1954)),
denoted gumb(), re-parameterizing the expectation Eg..,, with uniform noise € ~ U (0, 1):

Lerror = Ee [log fo <v {arg max gumb(py(s|x), e)} ﬂ . 5)

As the argmax is not differentiable, we approximate this expectation using the Gumbel-Softmax
trick (Maddison et al.| (2016); Jang et al.[| (2016)), which generates samples that smoothly deform
into one-hot samples as the softmax temperature 7 approaches 0. Using the inner product (denoted
-) of the approximate one-hot samples and v, we create samples from z:

Leror ~ E. [log fo (v - softmax gumb(py (s|x), 6))} . (6)
In practice, we anneal 7 from 1.0 to 0.5 during the training process, as proposed by [Yang et al.

(2017) to reduce gradient variance initially, at the risk of introducing bias.

To conclude our derivation, we use a fixed SQUAD distribution to model the variational marginal
r(z) as shown in figure [5| We can then derive the KL term analytically following the definition for
discrete distributions. Using the fact that the KL divergence is additive for independent variables,
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we get our final loss:

K C -
L =E, [logfa (V Softmaxgumb(pg( )} ﬂ;;pe sk = c|x) 1ogp9((Z::2|cx)).

(7N
For the remainder of this work, we will refer to the latent variables as z in lieu of s, for clarity.

At test time, we can approximate the predictive function p(y*|x*) for a new data-point x* by taking
T samples from the latent variables z i.e. z; ~ p(z|x*), and averaging the predictions for y*:

1 T
polyx) ~ [ aoly2paal )z~ S oy’ 0), ®
t=1

A downside of mean-field variational approximations is that latents are assumed to be uncorrelated.
We can bring some correlation to the latents, and extend the flexibility of the proposed model, by
creating a hierarchical set of latent variables. We maintain a mean-field assumption for the prior,
and the joint posterior distribution of L layers of latents factorizes as follows:

po(21,-..,20|X) = po(2L|2L—-1) - - po(2Z1|x), &)

With go(y|z1, - ..,21) = qo(y|zr). This is straightforwardly implemented with a simple ancestral
sampling scheme.

Interestingly, the strong quantization proposed in our method can itself be considered an additional
information bottleneck, as it exactly upper-bounds the number of bits per latent variable. Such
bottlenecks are theorized to have a beneficial effect on generalization (Tishby et al.[(2000); Achille
& Soatto| (2016); |Alemi et al.[(2017;2016))), and we can directly control this bottleneck by varying
the number of quantization bins.

The computational complexity of the method, as well as the number of model parameters 6, scale
linearly in C, i.e. O(C') (with C the number of quantization bins). It is thus suitable for large-scale
inference. We would like to stress that the proposed method differs from work that leverages the
Gumbel-Softmax trick to model categorical latent variables: our proposal models continuous scalar
latent variables by quantizing their domain and modeling belief with a multinomial distribution.
Categorical latent variable models would incur a much larger polynomial complexity penalty of

0(C?).

The method is easily integrated into existing deep neural network architectures, and SQUAD layer
implementations are provided at/github.com/anonymized.

Matrix-factorization variant In the natural image domain, we anticipate a need for a high amount
of information per variable, for which a small number of bins does not suffice. To improving the
tractability of using a large number of quantization bins, we propose a variant of SQUAD that uses
a matrix factorization scheme to improve the parameter efficiency. Formally, equation ] becomes:

p(sp = clx) = softmax(wgyc(wfcx + b))+ b%yc),

with full layer weights W” and W' respectively of shape (K, B,C) and (| X|, K, B), where K
denotes the number of neurons, B the number of factorization inputs, C' number of quantization
bins and | X | the input dimensionality. To improve the parameter efficiency, we can learn W' per
layer as well, resulting in shape (| X, 1, B), which is found to be beneficial for large C by the hyper-
parameter search presented in section[5] We depict this alternative model on the right side of figure ]
and will refer to it as SQUAD-factorized. We leave further extensions such as Network-in-Network
(Lin et al.[(2013))) for future work.

4 RELATED WORK

Outside the realm of DLVMs, other methods have been explored for predictive uncertainty. |Laksh-
minarayanan et al.|(2017) propose deep ensembles: straightforward averaging of predictions from a


github.com/anonymized

Under review as a conference paper at ICLR 2019

1(z) 1(2) 1(z)

1 B IS N I 1
Z-16 -12 -8 -4 0 4 8 12 16 Z-16 -12 -8 -4 0 4 8 12 16 Z -14 -8 -5 0 5 8 1.4

Figure 5: In the IB bound, the marginal p(z) is approximated with a fixed distribution r(z). Using
our proposed SQUAD distribution we can impose a variety of interesting forms for r(z) via the
spacing v and weighting r(z;, = v.) of the quantization bins. For the values v, we compare linearly
spaced bins (left) versus bins with equal probability mass under a normal distribution (right). Fur-
thermore, we explore the effect of allowing the bin values to be optimized with SGD on a per-neuron
or per-layer basis, to allow the model to optimize the quantization scheme with the highest fidelity.
For the prior probabilities, we explore a uniform prior (left) and probability mass of the bins under
a normal distribution (middle).
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Figure 6: Risk/coverage curve (with log-axes for discernibility) of 2-layer models on notMNIST.
Lines closer to the lower-right are better. As the selective classifier lowers the confidence threshold,
coverage increase at the cost of greater classification risk. Area around curves represents 90%
confidence bounds computed using 10 initializations/splits.

small set of separately adversarially trained DNNs. Although highly scalable, this method requires
retraining a model up to 10 times, which can be inhibitively expensive for large datasets.

Gal & Ghahramani| (2015b) propose the use of dropout (Srivastava et al.| (2014)) at test time
(Monte Carlo Dropout, or MC-Dropout) and present a Bayesian neural network interpretation of this
method. A follow-up work by |Gal et al.| (2017)) explores the use of Gumbel-Softmax to smoothly
deform the dropout noise to allow optimization of the dropout rate during training. A downside
of MC-Dropout (MCD) is the limited flexibility of the fixed bi-modal delta-peak distribution im-
posed on the weights, which requires a large number of samples for good estimates of uncertainty.
van den Oord et al.| (2017) propose the use of vector quantization in variational inference, quantiz-
ing a multi-dimensional embedding, rather than individual latent variables, and explore this in the
context of auto-encoders.

In the space of learning non-linearity’s, [Su et al. (2017) explore a flexible non-linearity that can
assume the form of most canonical activations. More flexible distributions have been explored for
distributional reinforcement learning by [Dabney et al.| (2017)) using quantile regression, of which
can be seen as a special case of SQUAD where the bin values are learned but have fixed uniform
probability. Categorical distributions on scalar variables have been used to model more flexible
Bayesian neural network posteriors as by [Shayer et al| (2017). The use of a mixture of diracs
distribution to approximate a variety of distributions was proposed by Schrempf et al.[(2006).
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5 RESULTS

Quantifying the quality of uncertainty estimates of models remains an open problem. Various meth-
ods have been explored in previous works, such as relative entropy [Louizos & Welling| (2017)); \Gal
& Ghahramani| (2015a), probability calibration, and proper scoring rules Lakshminarayanan et al.
(2017). Although interesting in their own right, these metrics do not directly measure a good ranking
of predictions, nor indicate applicability in high-risk domains. Proper scoring rules are the excep-
tion, but a model with good ranking ability does not necessarily exhibit good performance on proper
scoring rules: any score that provides relative ordering suffices and does not have to reflect true cal-
ibrated probabilities. In fact, well-ranked confidence scores can be re-calibrated (Niculescu-Mizil
& Caruanal (2005)) after training to improve performance on proper scoring rules and calibration
metrics.

In order to evaluate the applicability of the model in high-risk fields such as medicine, we want to
quantify how models perform under a desired risk guarantee. We propose to use the Selection with
Guaranteed Risk (SGR) metho introduced by |Geifman & FEl-Yaniv| (2017)) to measure this. In
summary, the SGR method uses a confidence score, e.g. the estimated probability of the prediction,
and rejects the prediction if this score is below a certain threshold. This threshold is optimized on a
hold-out set to the tightest possible value that still guarantees a desired minimial error rate with high
probability (e.g. 99%). SGR is formally proven, and empirically shown, to ensure this minimal error
rate under i.i.d. assumptions. We propose to use SGR as evaluation metric for confidence estimation
methods. Specifically, on a hold-out set we measure the percentage of predictions that are accepted
by SGR under a specific risk guarantee, i.e. the coverage. To illustrate, one can imagine that a trivial
solution to guarantee no errors is to reject all data-points, which has 0% coverage. By lowering the
confidence threshold, coverage goes up, but the accuracy of the method goes down. SGR finds the
optimal threshold that ensures the accuracy does not drop below a predetermined threshold, and by
measuring the coverage under this threshold we can effectively compute the real world value of a
confidence estimation methods.

To limit the influence of hyper-parameters on the comparison, we use a extensive hyper-parameter
scheme on all variants and baselines. Specifically we use the automated optimization method TPE
(Bergstra et al.| (2011))) over a maximum of 1000 evaluations per model per experiment. The hyper-
parameters are optimized for coverage at 2% risk (6§ = 0.01) on fashionMNIST (Xiao et al.|(2017)),
and we evaluate the optimal hyperparameters on another dataset, notMNIST, to measure how sen-
sitive the hyperparameters are to a change in the data-distribution. Larger models are evaluated on
Street View Housing Numbers (SVHN) (Netzer et al.| (2011))) using the same optimization scheme.
For the details on the evaluated search space and chosen hyper-parameters we refer the reader to the
appendix.

We compareﬂ our model against plain Multi-Layer Perceptrons (MLPs) with ReL U activations, MC-
Dropout using Maxout activation (Goodfellow et al.|(2013);|Chang & Chen|(2015)) and an infor-
mation bottleneck model using mean-field Gaussian distributions. We evaluate the complementary
deep ensembles technique (Lakshminarayanan et al.|(2017))) for all methods.

5.1 MAIN RESULTS

We start our analysis by comparing the predictive uncertainty of 2-layer models with 32 latent vari-
ables per layer. In figure [6] we visualize the risk/coverage trade-off achieved using the predicted
uncertainty as a selective threshold, and present coverage results in table [} Overall, we find that
SQUAD performs significantly better than plain MLPs and deep Gaussian IB models, and we tenta-
tively attribute this to the increased flexibility of the multinomial distribution. Compared to a Maxout

"We deviate slightly from |Geifman & El-Yaniv| (2017) in that we use Softmax Response (SR) — the proba-
bility taken from the softmax output for the most likely class — as the confidence score for all methods. |Geifman
& El-Yaniv|(2017) instead proposed to use the variance of the probabilities for MCdropout, but our experiments
showed that SR paints MCDropout in a more favorable light.

2All models are optimized with ADAM (Kingma & Bal (2014)), weight initialization as proposed by [He
et al(2015), a weight decay of 10~° and adaptive learning rate decay scheme — 10x reduction after 10 epochs
of no validation accuracy improvement— and use early stopping after 20 epochs of no improvement.

3We found this baseline to perform stronger in comparison to conventional ReLU MCdropout models, under
equal number of latent variables.
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Table 1: SGR coverage results on Fashion MNIST. We present coverage percentage of the test
dataset for three pre-determined risk-guarantees (one per column), where higher coverage is better,
as well as negative log-likelihood and overall accuracy. The results indicate that SQUAD provides
competitive uncertainty, especially at low-risk guarantees. Bayesian approximations via deep en-
sembles improve coverage all over the board, and for SQUAD in particular. When SGR can not
guarantee the required risk level at high probability, 0% coverage is reported. (2 std. deviations
shown in parentheses, optimal results in bold.)

Fashion MNIST cov@risk 5% cov@risk 1% cov@risk 2%  NLL Acc.
Plain MLP 29.1 (£20.71) 459 (4+4.04) 604 (£3.17) 0.408 (£.036) 87.7 (+.42)
Maxout MCDropout 41.9 (4+9.86) 56.5 (£2.30) 609.9 (£1.48) 0.299 (£.008)  89.5 (£.28)
DLGM 0.0 (£.00) 33.5(£2.42) 47.0(£1.47) 0.446 (£.007) 84.3 (£.15)
SQUAD 42.9 (£7.19) 58.3 (£3.06) 69.5 (£1.55)  0.293 (£.008) 89.5 (+.35)
Deep Ensemble cov@risk .5%  cov@risk 1% cov@risk 2%  NLL Acc.
Plain MLP Ensemble 40.6 58.3 70.2 0.296 89.3
Max. MCD. Ensemble  48.2 59.1 72.2 0.271 90.2
DLGM Ensemble 0.0 343 47.8 0.435 84.7
SQUAD Ensemble 47.5 61.6 73.1 0.273 90.1

Table 2: SQUAD exhibits strong performance on notMNIST using the optimal hyperparameters
found for fashionMNIST.

notMNIST cov@risk .5% cov@risk 1% cov@risk 2% NLL Acc.
Plain MLP 77.4 (£5.20) 85.5(£1.91) 90.3 (£.87) 0.228 (£.009) 93.3 (£.29)
Maxout MCDropout 85.7 (£1.14) 90.6 (+.62) 94.2 (£.36) 0.165 (£.003) 95.3 (£.21)
SQUAD 87.1 (+1.60) 91.1 (£.86) 94.5 (4+.50) 0.161 (£.006) 95.4 (+.22)
Plain MLP Ensemble 85.9 90.6 93.5 0.175 94.9
Max. MCD. Ensemble  88.5 92.8 95.7 0.148 96.0
SQUAD Ensemble 90.7 93.5 96.1 0.137 96.2

Table 3: Results on SVHN indicate that the quantization scheme imposed by SQUAD models might
hinder performance, but that this is effectively compensated by the SQUAD-factorized variant using
a larger amount of bins. Even with 7" = 4 MC samples at test time, SQUAD performs well.

MLP K=256 (SVHN) cov@risk .5%  cov@risk 1% cov@risk 2% NLL Acc.

Plain MLP 0.0 (£.00) 0.0 (£.00) 36.3 (+2.84) 0.758 (£.065) 83.1 (£.42)
Maxout MCDropout 0.0 (£.00) 50.7 (£1.42)  65.0 (£2.32) 0.480 (£.020) 86.4 (£.71)
SQUAD-factorized 18.4 (£30.33) 53.9 (+1.81) 66.7 (+2.10)  0.454 (£.021) 86.7 (+.88)
SQUAD 1.7 (£6.75) 42.8 (£2.25)  59.3 (£1.38)  0.534 (£.005) 84.6 (£.13)
Max. MCDropout T=4 0.0 (£.00) 38.5(+3.85) 57.6(£2.66) 0.562 (4+.016) 84.9 (£.73)
SQUAD-factorized T=4  10.7 (£26.25) 49.9 (£3.51) 64.5(£2.45) 0.480 (+.024) 86.2 (£.67)
SQUAD T=4 0.0 (£.00) 38.0 (+1.86) 55.6 (+.84) 0.569 (£.019) 83.7 (£.52)

MCdropout model with a similar number of weights, SQUAD appears to have a slight —though not
significant— advantage, despite the strong quantization scheme, especially at low risk guarantees.
Deep ensembles improve results for all methods, which fits the hypothesis that ensembles integrate
over a form of weight uncertainty. When comparing the optimal hyperparameters found for fash-
ionMNIST on the similar notMNIST dataset, we find that SQUAD shows strong performance, as
shown in table 2] This provides some evidence that despite the increase in number hyperparameters
in SQUAD, the optimal settings are more robust to a change in the data distribution.
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Figure 7: By analyzing the emerging predicted distributions of individual neurons in a converged
SQUAD model, we find that the flexible variational distribution is used to its full advantage. Figure
(A) visualizes a subset of interesting stereotypical distributions we hope to find in the model. Figure
(B) summarizes distributions predicted by the model similar to stereotypes, discovered by looking at
predicted distributions with low KL. Figure (C) shows how often distributions similar to stereotypes
arise, as measured by the KL distance (lower KL is closer to stereotypes).

5.2 NATURAL IMAGES

To explore larger models trained on natural image datasets, we re-tune hyper-parameters on 256-
latent 2-layer models over 100 TPE evaluations. As SVHN contains natural images in color, we
anticipate a need for a higher amount of information per variable. We thus explore the effect of the
matrix-factorized variant.

As shown in table 3] SQUAD-factorized outperforms the non-factorized variant. Considering the
computational cost at the optimum of a 4-neuron factorization (B = 4) with C'=37 quantization bins,
the model clocks 3.4 million weights. In comparison, the optimum for the presented MCdropout
results has C'=11, using 9.0 million weights. On an NVIDIA Titan Xp, the dropout baseline takes
13s per epoch on average, while SQUAD-factorized spans just 9s.

To evaluate the sample efficiency of the methods, we compare results at 7' = 4 samples. We find that
SQUAD’s results suffer less from under-sampling the predictive distribution than MCdropout. We
tentatively attribute the sample efficiency to the flexible approximating posterior on the activations,
which is in stark contrast to the rigid approximating distribution that MCdropout imposes on the
weights. In conclusion, SQUAD comes out favorably in a resource-constrained environment.

5.3 ANALYSIS OF LATENT VARIABLE DISTRIBUTIONS

In order to evaluate if the proposed variational distribution does not simply collapse into single
mode predictions, we want to find out what type of distributions the model predicts over the latent
variables. We visualize the forms of predicted distributions in figure [7p. Although this showcases
only a small subset of potential multi-modal behavior that emerges, this demonstrates that the model
indeed utilizes the distribution to its full potential. To provide an intuition on how these predicted
distributions emerge, we present figure [9]in the appendix.
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Figure 8: By using a 1-dimensional matrix factorization for a SQUAD-factorized distribution, we
can visualize the type of (stochastic) activation functions learned by the method. After training the
model as usual on fashion-MNIST, we take a random neuron from the first layer. We visualize how
the predicted distribution of the output changes as a function of the 1-dimensional input. The left
y-axis indicates the prob(ability per value as shown using the green line. The right y-axis indicates
the value and in blue the most likely value is shown, and the gray dots represent samples from the
neuron. The red line depicts the expected output of the neuron. The shape of the expected output is
akin to a peaky sigmoid activation, and similar shapes are found in the other neurons of the network
as well. This provides food for thought on the design of activation functions for conventional neural
networks.

In figure [§] we visualize one of the activation functions that the method learns for a 1-dimensional
input SQUAD-factorized model. The learned activation functions resemble “peaked” sigmoid ac-
tivations, which can be interpreted as a combination of an RBF kernel and sigmoid. This provides
food for thought on how non-linearity’s for conventional neural networks can be designed, and the
effect of using such a non-linearity can be studied in further work.

6 DISCUSSION

In this work, we have proposed a new flexible class of variational distributions. To measure the
effectiveness for real world classification, we applied the class to a deep variational information
bottleneck model. By placing a quantization-based distribution on the activations, we can compute
uncertainty estimates over the outputs. We proposed an evaluation scheme motivated by the need
in real-world domains to guarantee a minimal risk. The results presented indicate that SQUAD
provides an improvement over plain neural networks and Gaussian information bottleneck models.
In comparison to a MCDropout model, which approximates a Bayesian neural network, we get
competitive performance. Moreover, qualitatively we find that the flexible distribution is used to
its full advantage is sample efficient. The method learns interesting non-linearity’s, is tractable and
scale-able, and as the output domain is constrained, no batch normalization techniques are required.

Various directions for future work arise. The improvement of ensemble methods over individual
models indicates that there remains room for improvement for capturing the full uncertainty of the
output, and thus a fully Bayesian approach to SQUAD which would include weight uncertainty,
shows promise. The flexible class allows us to define a wide variety of interesting priors, which
provides opportunity to study interesting priors that are hard to define as a continuous density. Like-
wise, more effective initialization of parameters for the proposed method requires further attention.
Orthogonally, the proposed class can be applied to other variational objectives as well, such as the
variational auto-encoder. Finally, the discretized nature of the variables allows for the analytical
computation of other divergences such as mutual information and the Jensen-Shannon divergence,
the effectiveness of which remains to be studied.
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Figure 9: This figure serves to provide intuition on how a variety of distributions come about in our
model. We show the set of weights used to predict the probability for the C bins of a randomly
selected latent variable z;—; y—12 from the first layer in a converged 2-layer SQUAD model (re-
shaped to a 28x28 squares for comparison with the data). We then present 5 data-points for which
the neuron predicts a stereotypical distribution, as visualized in the last bar-plot.
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7 APPENDIX

7.1 EFFECT OF HYPER-PARAMETERS ON COVERAGE:

The optimal configuration of hyper-parameters and bin priors have been determined using 700 evalu-
ations selected using TPE. The space of parameters explored is as follows, presented in the hyperopt
API for transparency:

# Shared
C: quniform(2, 10, 1) % 2 + 1,
dropout rate: uniform(0.01, .95),
lr: loguniform(log(0.0001), log(0.01)),
batch_size: gloguniform(log(32), log(512), 1)
# SQUAD & Gaussian
kl_multiplier: loguniform(log(le-6), log(0.01)),
init_scale: loguniform(log(le-3), log(20)),
# SQUAD
use_bin_probs: choice([’uni’, ’'gaus’]),
use_bins: choice([’equal_prob_gaus’,
"linearly_spaced’]),

learn_bin_values: choice ([

"per_neuron’, ’'per_layer’, ’'fixed’]),

In figure[I0] we visualize the pairwise effect of these hyper-parameters on the coverage. The optimal
configuration found in for the main SQUAD model are: batch size: 244, KL multiplier: 0.0027,
learn bin values: per layer, p(z): uniform, v: linearly spread over (-3.5,3.5), Ir: 0.0008, C: 15,
initialization scale: 3.214.
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Figure 10: This figure visualizes the pairwise relationship between hyper-parameters of SQUAD
and the effect on coverage. The top-60 configurations are highlighted. Green values are good, red
values are bad. We have filtered on the optimal settings for bin values and prior to reduce clutter.
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