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ABSTRACT

Object-based approaches for learning action-conditioned dynamics has demon-
strated promise for generalization and interpretability. However, existing ap-
proaches suffer from structural limitations and optimization difficulties for com-
mon environments with multiple dynamic objects. In this paper, we present a
novel self-supervised learning framework, called Multi-level Abstraction Object-
oriented Predictor (MAOP), for learning object-based dynamics models from raw
visual observations. MAOP employs a three-level learning architecture that en-
ables efficient dynamics learning for complex environments with a dynamic back-
ground. We also design a spatial-temporal relational reasoning mechanism to sup-
port instance-level dynamics learning and handle partial observability. Empirical
results show that MAOP significantly outperforms previous methods in terms of
sample efficiency and generalization over novel environments that have multiple
controllable and uncontrollable dynamic objects and different static object lay-
outs. In addition, MAOP learns semantically and visually interpretable disentan-
gled representations.

1 INTRODUCTION

Model-based deep reinforcement learning (DRL) has recently attracted much attention for improv-
ing sample efficiency of DRL, such as (Heess et al., 2015; Schmidhuber, 2015; Gu et al., 2016;
Racanière et al., 2017; Finn & Levine, 2017). One of the core problems for model-based rein-
forcement learning is to learn action-conditioned dynamics models through interacting with envi-
ronments. Pixel-based approaches have been proposed for such dynamics learning from raw visual
perception, achieving remarkable performance in training environments (Oh et al., 2015; Watter
et al., 2015; Chiappa et al., 2017).

To unlock sample efficiency of model-based DRL, learning action-conditioned dynamics models
that generalize over unseen environments is critical yet challenging. Finn et al. (2016) proposed an
action-conditioned video prediction method that explicitly models pixel motion and thus is partially
invariant to object appearances. Zhu et al. (2018) developed an object-oriented dynamics predictor,
taking a further step towards generalization over unseen environments with different object lay-
outs. However, due to structural limitations and optimization difficulties, these methods do not learn
and generalize well for common environments with a dynamic background, which contain multiple
moving objects in addition to controllable objects.

To address these limitations, this paper presents a novel self-supervised, object-oriented dynamics
learning framework, called Multi-level Abstraction Object-oriented Predictor (MAOP). This frame-
work simultaneously learns disentangled object representations and predicts object motions condi-
tioned on their historical states, their interactions to other objects, and an agent’s actions. To reduce
the complexity of such concurrent learning and improve sample efficiency, MAOP employs a three-
level learning architecture from the most abstract level of motion detection, to dynamic instance
segmentation, and to dynamics learning and prediction. A more abstract learning level solves an
easier problem and has lower learning complexity, and its output provides a coarse-grained guidance
for the less abstract learning level, improving its speed and quality of learning convergence. This
multi-level architecture is inspired by humans’ multi-level motion perception from cognitive sci-
ence studies (Johansson, 1975; Lu & Sperling, 1995; Smith et al., 1998) and multi-level abstraction
search in constraint optimization (Zhang & Shah, 2016). In addition, we design a novel CNN-based
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spatial-temporal relational reasoning mechanism, which includes a Relation Net to reason about
spatial relations between objects and an Inertia Net to learn temporal effects. This mechanism offers
a disentangled way to handle physical reasoning in the setting with partial observability.

Empirical results show that MAOP significantly outperforms previous methods in terms of sample
efficiency and generalization over novel environments that have multiple controllable and uncontrol-
lable dynamic objects and different object layouts. It can learn from few examples and accurately
predict the dynamics of objects as well as raw visual observations in previously unseen environ-
ments. In addition, MAOP learns disentangled representations and gains semantically and visually
interpretable knowledge, including meaningful object masks, accurate object motions, disentangled
reasoning process, and the discovery of the controllable agent.

2 RELATED WORK

Object-oriented reinforcement learning has received much research attention, which exploits effi-
cient representations based on objects and their interactions. This learning paradigm is close to that
of human cognition in the physical world and the learned object-level knowledge can be robustly
generalized across environments. Early work on object-oriented RL requires explicit encodings of
object representations, such as relational MDPs (Guestrin et al., 2003), OO-MDPs (Diuk et al.,
2008), object focused q-learning (Cobo et al., 2013), and Schema Networks (Kansky et al., 2017).
In this paper, we present an end-to-end, self-supervised neural network framework that automati-
cally learns object representations and dynamics conditioned on actions and object relations from
raw visual observations.

Action-conditioned dynamics learning aims to address one of the core problems for model-based
DRL, that is, constructing an environment dynamics model. Several pixel-based approaches have
been proposed for learning how an environment changes in response to actions through unsuper-
vised video prediction and achieve remarkable performance in training environments (Oh et al.,
2015; Watter et al., 2015; Chiappa et al., 2017). Fragkiadaki et al. (2016) propose an object-centric
prediction method to learn the dynamics model when given the object localization and tracking.
Finn et al. (2016) develop a dynamics prediction method that explicitly models pixel motions and
is partially invariant to object appearances, and its usage for model-based DRL is demonstrated
with model predictive controller (Finn & Levine, 2017). Recently, Zhu et al. (2018) propose an
object-oriented dynamics learning paradigm that enables its learned model to generalize over un-
seen environments with different object layouts and be robust to changes of object appearances.
However, this paradigm focuses environments with a single dynamic object. In this paper, we take
a further step towards learning object-oriented dynamics model in more general environments with
multiple controlled and uncontrollable dynamic objects. In addition, we design an instance-aware
dynamics mechanism to support instance-level dynamics learning and handle partial observations.

Relation-based deep learning approaches make significant progress in a wide range of domains
such as physical reasoning (Chang et al., 2016; Battaglia et al., 2016), computer vision (Watters
et al., 2017; Wu et al., 2017), natural language processing (Santoro et al., 2017), and reinforcement
learning (Zambaldi et al., 2018; Zhu et al., 2018). Relation-based nets introduce relational inductive
biases into neural networks, which facilitate generalization over entities and relations and enables
relational reasoning (Battaglia et al., 2018). OODP (Zhu et al., 2018) is similar to this paper, learning
object-level dynamics conditioned on actions and object-to-object relations. In contrast to OODP,
this paper proposes a novel spatial-temporal relational reasoning mechanism, which includes an
Inertia Net for learning temporal effects in addition to a CNN-based Relation Net for reasoning
about spatial relations. This mechanism offers a disentangled way to handle physical reasoning in
the setting of partial observability.

Instance Segmentation has been one of the fundamental problems in computer vision. Instance
segmentation can be regarded as the combination of semantic segmentation and object localization.
Many approaches have been proposed for instance segmentation, including DeepMask (Pinheiro
et al., 2015), InstanceFCN (Dai et al., 2016), FCIS (Li et al., 2017), and Mask R-CNN (He et al.,
2017). Most models are supervised learning and require a large labeled training dataset. Liu et al.
(2015) proposes a weakly-supervised approach to infer object instances in foreground by exploit-
ing dynamic consistency in video. In this paper, we design a self-supervised, three-level approach
for learning dynamic rigid object instances. At the most abstract level, the foreground detection
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module provides a coarse-grained guidance for producing region proposals at the instance segmen-
tation level. The instance segmentation level then learns coarse instance segmentation. This coarse
instance segmentation provides a guidance for learning accurate instances at the dynamics learning
level, whose instance segmentation considers not only object appearances but also motion prediction
conditioned on object-to-object relations and actions.

3 MULTI-LEVEL ABSTRACTION OBJECT-ORIENTED PREDICTOR (MAOP)

In this section, we will present a novel self-supervised deep learning framework, aiming to learn
object-oriented dynamics models that are able to generalize over unseen environments with different
object layouts and multiple dynamic objects. Such an object-oriented dynamics learning approach
requires simultaneously learning object representations and motions conditioned on their historical
states, their interactions to other objects, and an agent’s actions. This concurrent learning is very
challenging for an end-to-end approach in complex environments with a dynamic background. Ev-
idences from cognitive science studies (Johansson, 1975; Lu & Sperling, 1995; Smith et al., 1998)
show that human beings are born with prior motion perception ability (in Cortical area MT) of
perceiving moving and motionlessness, which enables learning more complex knowledge, such as
object-level dynamics prediction. Inspired by these studies, we design a multi-level learning frame-
work, called Multi-level Abstraction Object-oriented Predictor (MAOP), which incorporates motion
perception levels to assist in dynamics learning.
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Figure 1: Multi-level abstraction framework from a top-down decomposition view. First, we perform
motion detection to produce foreground masks. Then, we utilize the foreground masks as dynamic
region proposals to guide the learning of dynamic instance segmentation. Finally, we use the learned
dynamic instance segmentation networks (including Instance Splitter and Merging Net) as a guiding
network to generate region proposals of dynamic instances and guide the learning of Object Detector
in the level of dynamics learning.

Figure 1 illustrates three levels of MAOP framework: dynamics learning, dynamic instance segmen-
tation, and motion detection. The dynamics learning level is an end-to-end, self-supervised neural
network, aiming to learn object representations and instance-level dynamics, and predict the next vi-
sual observation conditioned on an agent’s action. To guide the learning of the object representations
and instance localization at the level of dynamics learning, the more abstracted level of dynamic in-
stance segmentation learns a guiding network in a self-supervised manner, which can provide coarse
dynamic instance mask proposals. It exploits the spatial-temporal information of locomotion prop-
erty and appearance pattern to capture the region proposals of dynamic instances. To facilitate the
learning of dynamic instance segmentation, MAOP employs the more coarse-grained level of motion
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detection, which detects changes in image sequences and provides guidance on proposing regions
potentially containing dynamic instance. As the learning proceeds, the knowledge distilled from
the more coarse-grained level are gradually refined at the more fine-grained level by considering
additional information. When the training is finished, the coarse-grained levels of dynamic instance
segmentation and motion detection will be removed at the testing stage. In the rest of this section,
we will describe in detail the design of each level and their connections.

3.1 OBJECT-ORIENTED DYNAMICS LEARNING LEVEL

The semantics of this level is formulated as learning an object-based dynamics model with the region
proposals generated from the more abstracted level of dynamic instance segmentation. The whole
architecture is shown in the top part of Figure 1, which is an end-to-end neural network and can be
trained in a self-supervised manner. It takes a sequence of video frames and an agent’s actions as
input, learns the disentangled representations (including objects, relations and effects) and the dy-
namics of controllable and uncontrollable dynamic object instances conditioned on the actions and
object relations, and produce the predictions of raw visual observations. The whole architecture in-
cludes four major components: A) an Object Detector that decomposes the input image into objects;
B) an Instance Localization module responsible for localizing dynamic instances; C) a Dynamics
Net for learning the motion of each dynamic instance conditioned on the effects from actions and
object-level spatial-temporal relations; and D) a Background Constructor that computes the back-
ground image from the learned static object masks. Algorithm 1 illustrates the interactions of these
components and the learning paradigm of object based dynamics, which is a general framework and
agnostic to the concrete form of each component. In the following paragraphs, we will describe the
detailed implementation of every components.

Algorithm 1 Basic paradigm of object-oriented dynamics learning.

Input: A sequence of video frames It−h:t with length h, input action at at time t.
1: Object masks Ot−h:t ← ObjectDetector(It−h:t), O include dynamic and static masks D,S
2: Instance masks Xt−h:t ← InstanceLocalization(It−h:t,Dt−h:t)

3: Predicted instance masks X̂
t+1
← ∅

4: for each instance mask x in X do
5: Effects from spatial relations mt

1 ← RelationNet(xt,Ot,at)
6: Effects from temporal relations mt

2 ← InertiaNet(xt−h:t,at)
7: Total effects mt ←mt

1 + mt
2

8: Predicted instance mask x̂t+1 ← Transformation(xt,mt)

9: X̂
t+1
← X̂

t+1⋃
x̂t+1

10: end for
11: Background image Bt+1 ← BackgroundConstructor(It,St)

12: Predicted next frame Î
t+1
← Merge(X̂

t+1
,Bt+1)

Object Detector and Instance Localization Module. Object Detector is a CNN module aiming to
learn object masks from input image. An object mask describes the spatial distribution of a class
of objects, which forms the fundamental building block of our object-oriented framework. Consid-
ering that instances of the same class are likely to have different motions, we append an Instance
Localization Module to Object Detector to localize each dynamic instance to support instance-level
dynamics learning. The class-specific object masks in conjunction with instance localization build
the bridge to connect visual perception (Object Detector) with dynamics learning (Dynamics Net),
which allows learning objects based on both appearances and dynamics.

Specifically, Object Detector receives image It ∈ RH×W×3 at timestep t and then outputs object
masks Ot ∈ [0, 1]H×W×nO , including dynamic object masks Dt ∈ [0, 1]H×W×nD and static object
masks St ∈ [0, 1]H×W×nS , where H and W denote the height and width of the input image,
nD and nS denotes the maximum class number of dynamic and static objects respectively, and
nO = nD + nS . The entry Ou,v,i indicates the probability that the pixel Iu,v,: belongs to the i-
th object class. Then, Instance Localization Module uses the dynamic object masks to compute
each single instance mask Xt

:,:,i ∈ [0, 1]HM×WM (1 ≤ i ≤ nM ), where HM and WM denote the
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height and width of the bounding box of this instance and nM denotes the maximum number of
localized instances. As shown in Figure 1, Instance Localization Module first samples a number of
bounding boxes on the dynamic object masks and then select the regions, each of which contains
only one dynamic instance. As we focus on the motion of rigid objects, the affine transformation is
approximatively consistent for all pixels of each dynamic instance mask. Inspired by this, we define
a discrepancy loss Linstance for a sampled region that measures the motion consistence of its pixels
and use it as a selection score for selecting instance masks. To compute this loss, we first compute
an average rigid transformation of a sampled region between two time steps based on the instance
masks and masked image in this region, then apply this transformation to this region at the previous
time step, and finally compared this predicted region with the region at the current time. Obviously,
when a sampled region contains exactly one dynamic instance, this loss will be extremely small, and
even zero when the object masks are perfectly learned. More details of the region proposal sampling
and instance mask selection can be found in Appendix A.

Dynamics Net. Dynamics Net is designed to learn instance-based motion effects of actions, object-
to-object spatial relations (Relation Net) and temporal relations of spatial states (Inertia Net), and
then reason about the motion of each dynamic instance based on these effects. Its architecture is
illustrated in Figure 2, which has an Effect Net for each class of objects. An Effect Net consists of
one Inertia Net and several Relation Nets. As shown in the left subfigure, instance-level dynamics
learning is performed, which means the motion of each dynamic instance is individually computed.
We take as an example the computation of the motion of the i-th instance Xt

:,:,i to show the detailed
structure of the Effect Net.
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Figure 2: Architecture of Dynamics Net (left) and its component of Effect Net (right). Different
classes are distinguished by different letters (e.g., A, B, ... , F).

As shown in the right subfigure of Figure 2, we first use a sub-differentiable tailor module introduced
by Zhu et al. (2018) to enable the inference of dynamics focusing on the relations with neighbour
objects. This module crops a w-size “horizon” window from the concatenated masks of all objects
Ot centered on the expected location of Xt

:,:,i, wherew denotes the maximum effective range of rela-
tions. Then, the cropped object masks are respectively concatenated with the constant x-coordinate
and y-coordinate meshgrid map (to make networks more sensitive to the spatial information) and
fed into the corresponding Relation Nets (RN) according to their classes. We use Ct

:,:,i,j to de-
note the cropped mask that crops the j-th object class Ot

:,:,j centered on the expected location of
the i-th dynamic instance (the class it belongs to is denoted as ci, 1 ≤ ci ≤ nD). The effect of
object class j on class ci, Et(ci, j) ∈ R2×na (na denotes the number of actions) is calculated as,
Et(ci, j) = RNci,j

(
concat

(
Ct

:,:,i,j ,Xmap,Ymap
))
. Note that there are total nD × nO RNs for

nD×nO pairs of object classes that share the same architecture but not their weights. To handle the
partial observation problem, we add an Inertia Nets (IN) to learn the self-effects of an object class
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through historical states, Et
self(ci) = INci

(
concat

(
Xt
:,:,i,X

t+1
:,:,i , . . . ,X

t+h
:,:,i

))
, where h is the history

length and there are total nD INs for nD dynamic object classes that share the same architecture but
not their weights. To predict the motion vector mt

i ∈ R2 for the i-th dynamic instance, all these
effects are summed up and then multiplied by the one-hot coding of action at ∈ {0, 1}na , that is,
mt

i =
((∑

j E
t(ci, j)

)
+ Et

self(ci)
)
· at.

Background Extractor. This module extracts the static background of input image based on the
static object masks learned by Object Detector and then it is combined with the predicted dynamic
instances to predict the next visual observation. As Object Detector can decompose its observation
into objects in an unseen environment with a different object layout, Background Constructor is
able to generate a corresponding static background and support the visual observation prediction
in novel environments. Specifically, Background Constructor maintains an external background
memory B ∈ RH×W×3 which is continuously updated (via moving average) by the static object
mask learned by Object Detector. Denoting α as the decay rate, the updating formula is given by,
Bt = αBt−1 + (1− α)It

∑
i St

:,:,i, B0 = 0.

Prediction and Training Loss. At the output end of our model, the prediction of the next frame is
produced by merging the learned object motions and the background Bt. The pixels of a dynamic
instance can be calculated by masking the raw image with the corresponding instance mask and we
can use Spatial Transformer Network (STN) (Jaderberg et al., 2015) to apply the learned instance
motion vector mt

i on these pixels. First, we transform all the dynamic instances according to the
learned instance-level motions. Then, we merge all the transformed dynamic instances with the
background image calculated from Background Extractor to generate the prediction of the next
frame. In this paper, we use the pixel-wise l2 loss to restrain image prediction error, denoted as
Lprediction. To get earlier feedback before reconstructing images and facilitate the training process,
we add a highway loss, Lhighway =

∑
i

ww(ūi, v̄i)
t + mt

i − (ūi, v̄i)
t+1
ww2

2
, where (ūi, v̄i)

t is the
excepted location of i-th instance mask Xt

:,:,i. In addition, we add a proposal loss to utilize the
dynamic instance proposals provided by the abstracted problem to guide our optimization, which is
given by Lproposal =

ww∑
i(D

t
:,:,i−Pt

:,:,i)
ww2

2
, where P denotes the dynamic instance region proposals

computed by the more abstract learning level (i.e., dynamic instance segmentation level). The total
loss of the dynamics learning level is given by combining the previous losses with different weights,

LDL = Lhighway + λ1Lprediction + λ2Lproposal

3.2 DYNAMIC INSTANCE SEGMENTATION LEVEL

This level aims to generate region proposals of dynamic instances to guide the learning of object
masks and facilitate instance localization at the level of dynamics learning. The architecture is
shown in Figure 1. Instance Splitter aims to identify regions, each of which potentially contains one
dynamic instance. To learn to divide different dynamic object instances onto different masks, we use
the discrepancy loss Linstance described in Section 3.1 to train Instance Splitter. Considering that one
object instance may be split into smaller patches on different masks, we append a Merging Net (i.e.,
a two-layer CNN with 1 kernel size and 1 stride) to Instance Splitter to learn to merge redundant
masks by a merging loss Lmerge based on the prior that the patches of the same instance are adjacent
to each other and share the same motion. In addition, we add a foreground proposal loss Lforground
to encourage attentions on the dynamic regions. The total loss of this level is given by combining
these losses with different weights,

LDIS = Linstance + λ3Lmerge + λ4Lforground

For more complex domains with arbitrary deformation and appearance change, MAOP is also read-
ily to incorporate the vanilla Mask R-CNN (He et al., 2017) or other off-the-shelf supervised object
detection methods (Liu et al., 2018) as a plug-and-play module into our framework to generate re-
gion proposals of dynamic instances. In addition, although the network structure of this level is
similar to Object Detector in the level of dynamics learning, we do not integrated them together as a
whole network because the concurrent learning of both object representations and dynamics model
is not stable. Instead, we first learn the coarse object instances only based on the spatial-temporal
consistency of locomotion and appearance pattern, and then use them as proposal regions to perform
object-oriented dynamics learning at the more fine-grained level, which in turn fine-tunes the object
representations.
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Figure 3: Examples of 1-to-3 generalization experiments.

3.3 MOTION DETECTION LEVEL

At this level, we employ foreground detection to detect changing regions from a sequence of image
frames and provide coarse dynamic region proposals Fp for assisting in dynamic instance segmenta-
tion. In our experiments, we use a simple unsupervised foreground detection approach proposed by
Lo & Velastin (2001). Our framework is also compatible with many advanced unsupervised fore-
ground detection methods (Lee, 2005; Maddalena et al., 2008; Zhou et al., 2013; Guo et al., 2014)
that are more efficient or more robust to moving camera. These complex unsupervised foreground
detection methods have the potential to improve the performance but are not the focus of this work.

4 EXPERIMENTS

We evaluate our model on two games, Monster Kong and Flappy Bird, from the Pygame Learn-
ing Environment (Tasfi, 2016), which allows us to test generalization ability over various scenes
with different layouts. Here, the Monster Kong is the advanced version of that used by Zhu et al.
(2018), which has a more general and complex setting. The monster wanders around and breathes
out fires randomly, and the fires also move with some randomness. The agent explores with actions
up, down, left, right, jump and noop. All these dynamic objects interact with the environments and
objects according to their own physics engine. Moreover, gravity and jump model has a long-term
dynamics effects, leading to a partial observation problem. To test whether our model can truly learn
the underlying physical mechanism behind the visual observations and perform relational reasoning,
we set the k-to-m zero-shot generalization experiment, where we use k different environments for
training andm different unseen environments for testing. Flappy Bird is a side-scroller game, where
a bird flies between columns of green pipes with action jump and noop. Since the unseen environ-
ments will be similar with the training ones without limitation of samples in this game, we limit the
samples for training. Two experimental settings are shown in Figure 3. We use random exploration
on Monster Kong, and an expert guided random exploration on Flappy Bird because in this domain
a totally random exploration will lead to an early death of the agent even at the very beginning.

We compare MAOP with state-of-the-art action-conditioned dynamics learning baselines, AC Model
(Oh et al., 2015), CDNA (Finn et al., 2016), and OODP (Zhu et al., 2018). AC Model adopts an
encoder-LSTM-decoder structure, which performs transformations in hidden space and constructs
pixel predictions. CDNA explicitly models pixel motions to achieve invariance to appearance.
OODP and MAOP both aim at learning object-level dynamics through an object-oriented learning
paradigm, which decomposes raw images into objects and perform prediction based on object-level
relations. OODP is only designed for class-level dynamics, while MAOP is able to learn instance-
level dynamics. Implementation details of MAOP can be found in Appendix C.

4.1 ZERO-SHOT GENERALIZATION AND SAMPLE EFFICIENCY

To make a sufficient comparison with the previous methods on the generalization ability and sample
efficiency of object dynamics learning and image prediction, we conduct 1-5, 2-5 and 3-5 gener-
alization experiments with a variety of evaluation indices on Monster Kong. We use n-error accu-
racy to measure the performance of object dynamics prediction, which is defined as the proportion
that the difference between the predicted and ground-true agent locations is less than n pixel. We
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also add an extra pixel-based measurement (denoted by object RMSE), which compares the pixel
difference near dynamic objects between the predicted and ground-truth images. To evaluate the
image prediction, we adopt a typical image prediction loss (pixel-wise RMSE). In Figure 4 and
B7 (Appendix B), we plot the learning curve for better visualization of the comparison in unseen
environments. Further, we add a video (https://github.com/maop2018/maop-video/
blob/master/video.avi) for better perceptual understanding of the prediction performance
in unseen environments.

Models
Training environments Unseen environments

1-5† 1-5 2-5 3-5 1-5† 1-5 2-5 3-5

Agent All Agent All Agent All Agent All Agent All Agent All Agent All Agent All

MAOP 0.67 0.80 0.88 0.87 0.86 0.87 0.80 0.83 0.60 0.77 0.81 0.84 0.85 0.87 0.80 0.85
0-error OODP 0.24 0.17 0.18 0.16 0.22 0.17 0.26 0.20 0.20 0.16 0.20 0.15 0.18 0.15 0.26 0.18

accuracy AC Model 0.04 0.59 0.87 0.94 0.80 0.93 0.77 0.92 0.01 0.18 0.08 0.16 0.30 0.48 0.45 0.66
CDNA 0.30 0.66 0.41 0.76 0.42 0.78 0.44 0.74 0.31 0.55 0.37 0.59 0.40 0.71 0.41 0.70

MAOP 0.90 0.91 0.97 0.94 0.97 0.93 0.96 0.93 0.86 0.90 0.96 0.93 0.97 0.93 0.95 0.93
1-error OODP 0.49 0.29 0.32 0.23 0.34 0.23 0.35 0.25 0.39 0.25 0.34 0.22 0.32 0.21 0.34 0.22

accuracy AC Model 0.07 0.63 0.98 0.99 0.95 0.98 0.94 0.98 0.02 0.34 0.15 0.26 0.52 0.67 0.66 0.77
CDNA 0.42 0.84 0.48 0.86 0.48 0.86 0.51 0.87 0.45 0.82 0.45 0.83 0.47 0.84 0.48 0.86

MAOP 0.95 0.94 0.99 0.96 0.99 0.95 0.98 0.94 0.95 0.94 0.98 0.95 0.99 0.95 0.98 0.95
2-error OODP 0.67 0.47 0.44 0.37 0.46 0.32 0.49 0.39 0.60 0.43 0.48 0.34 0.43 0.31 0.46 0.36

accuracy AC Model 0.10 0.64 0.99 0.99 0.98 0.99 0.97 0.98 0.04 0.34 0.20 0.31 0.64 0.73 0.77 0.81
CDNA 0.50 0.86 0.52 0.87 0.53 0.88 0.54 0.88 0.53 0.85 0.47 0.84 0.50 0.86 0.51 0.87

MAOP 31.99 26.65 31.68 30.33 34.14 29.78 31.32 30.80
Object OODP 65.51 66.44 66.66 64.73 67.39 67.41 67.78 64.95
RMSE AC Model 62.02 18.88 22.39 21.30 85.46 57.41 55.45 43.48

CDNA 53.89 34.99 35.26 35.94 56.31 45.34 37.59 37.80

MAOP 6.90 5.64 6.68 6.46 7.90 8.60 8.73 6.55
Image OODP 14.70 15.08 14.89 14.42 15.42 24.68 26.39 14.52
RMSE AC Model 15.99 4.12 4.78 4.69 44.92 39.46 38.07 38.12

CDNA 11.47 7.41 7.58 7.68 12.23 9.87 8.10 8.16

Table 1: Prediction performance on Monster Kong. k-m means the k-to-m generalization problem.
† indicates training with only 1000 samples. ALL represents all dynamic objects.

As shown in Table 1, MAOP significantly outperforms other methods in all experiment settings in
terms of generalization ability and sample efficiency of both object dynamics learning and image
prediction. It can achieve 0.84 0-error accuracy, even with a single training environment, which
suggests MAOP is good at relational reasoning. Although AC Model achieves high accuracy in
training environments, its performance in unseen scenes is much worse, which is probably because
its pure pixel-level inference easily leads to overfitting. CDNA performs better than AC Model in
those uncontrolled objects, but still cannot deal with complicated interactions in lack of knowledge
on object-to-object relations. By the structural limitation of OODP, it has innate difficulty on frames
with multiple dynamic objects.

Model
Training environments Unseen environments

0-acc 1-acc 2-acc 0-acc 1-acc 2-acc

Agent All Agent All Agent All Agent All Agent All Agent All

MAOP 0.52 0.49 0.79 0.76 0.88 0.82 0.51 0.48 0.77 0.77 0.88 0.83

3-steps OODP 0.05 0.08 0.15 0.12 0.27 0.16 0.04 0.07 0.15 0.12 0.26 0.16
AC Model 0.48 0.77 0.68 0.88 0.80 0.92 0.18 0.45 0.35 0.66 0.48 0.72

CDNA 0.15 0.74 0.20 0.77 0.22 0.78 0.21 0.74 0.26 0.78 0.28 0.78

MAOP 0.25 0.17 0.52 0.25 0.64 0.28 0.24 0.17 0.49 0.28 0.62 0.33

8-steps OODP 0.03 0.08 0.05 0.10 0.08 0.11 0.02 0.10 0.05 0.11 0.09 0.13
AC Model 0.12 0.11 0.18 0.14 0.23 0.16 0.00 0.03 0.01 0.04 0.02 0.05

CDNA 0.16 0.68 0.24 0.72 0.29 0.75 0.16 0.68 0.24 0.72 0.29 0.75

Table 2: Performance of long-range prediction on Monster Kong. n-acc means n-error accuracy.
MAOP and OODP are trained for 1-step prediction, while AC Model and CNDA are trained for
3-step prediction. They are all tested for 3-step and 8-step prediction.

In addition, we evaluate our performance of long-range prediction, as shown in Table 2. For action-
conditioned dynamics prediction, our model only trained for 1-step prediction can achieve better
performance than AC Model and CDNA trained for 3-step prediction. Specifically, our model has
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88% probability that the predicted and ground-true agent locations are below 2 pixel when predict-
ing 3 steps of the future, while the probability is 62% when predicting 8 steps of the future, which
is also a satisfactory performance. Because the uncontrolled background objects (e.g., fires) tend to
move according to a certain pattern and LSTM is good at remembering specific patterns of dynam-
ics, CDNA has the highest prediction performance for background objects but fails to predict the
complex dynamics that is conditioned on actions and object relations. Figure B8 illustrates a case to
visualize the 8-step prediction of our model in unseen environments.

We also test our model on Flappy Bird, where we limit the training samples to 100 and 300 to form
a sufficiently challenging generalization task. As shown in Table 3, our performance is similar with
that on Monster Kong. Our generalization ability and sample efficiency significantly outperform
other baselines. Surprisingly, only 100 samples are enough to reach almost perfect 1-error accuracy.

Models
Training environments Unseen environments

1-5† 1-5‡ 1-5† 1-5‡

Agent All Agent All Agent All Agent All

MAOP 0.84 0.90 0.87 0.93 0.83 0.89 0.83 0.92
0-error OODP 0.01 0.29 0.01 0.32 0.01 0.18 0.02 0.15

accuracy AC Model 0.39 0.64 0.48 0.75 0.03 0.18 0.04 0.23
CDNA 0.13 0.78 0.41 0.84 0.10 0.77 0.16 0.79

MAOP 0.99 1.00 0.97 0.97 0.99 0.99 0.98 0.97
1-error OODP 0.05 0.52 0.04 0.56 0.06 0.39 0.07 0.39

accuracy AC Model 0.48 0.80 0.57 0.87 0.07 0.37 0.14 0.45
CDNA 0.26 0.82 0.57 0.89 0.22 0.81 0.36 0.84

MAOP 1.00 1.00 0.99 0.99 1.00 1.00 0.99 0.98
2-error OODP 0.14 0.66 0.12 0.67 0.16 0.59 0.16 0.56

accuracy AC Model 0.53 0.85 0.63 0.90 0.12 0.53 0.24 0.64
CDNA 0.37 0.84 0.66 0.92 0.36 0.84 0.49 0.87

Table 3: Performance of the object dynamics prediction on 1-5 generalization problem on Flappy
Bird. † and ‡ indicates training with only 100 and 300 samples.

Figure 4: Learning curves for the dynam-
ics prediction of the agent in unseen environ-
ments on Monster Kong.

Figure 5: The ground-truth label distribution of
our discovered controllable agents in unseen envi-
ronments on Monster Kong.

4.2 INTERPRETABLE REPRESENTATIONS AND KNOWLEDGE

MAOP takes a step towards interpretable deep learning and disentangled representation learning.
Through interacting with environments, it learns fruitful visually and semantically interpretable
knowledge in an unsupervised manner, which contributes to unlock the “black box” of neural net-
works and open the avenue for further researches on object-based planning, object-oriented model-
based RL, and hierarchical learning.

Visual interpretability. To demonstrate the visual interpretability of MAOP in unseen environ-
ments, we visualize the learned masks of dynamic and static objects. We highlight the attentions of
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the object masks by multiplying the raw images by the binarized masks. Note that MAOP does not
require the actual number of objects but a maximum number and some learned object masks may
be redundant. Thus, we only show the informative object masks. As shown in Figure 6, our model
captures all the key objects in the environments including the controllable agents (the cowboy and
the bird), the uncontrollable dynamic objects (the monster, fires and pipes), and the static objects
that have effects on the motions of dynamic objects (ladders, walls and the free space). We also
observe that model can learn disentangled object representations and distinguish the objects by both
appearance and dynamic property.

Monster Kong Flappy Bird

Figure 6: Visualization of the masked images in unseen environments. Left is the raw image.

Discovery of the controllable agent. With the learned knowledge in MAOP, we can easily uncover
the action-controlled agent from all the dynamic objects, which is useful semantic information that
can be used in heuristic algorithms. Specifically, the object that has the maximal variance of total
effects over actions is the action-controlled agent. Denote the total effects as Ei = (

∑
j E(ci, j)) +

Eself(ci), Ei ∈ R2×na , the label of the action-controlled agent is calculated as, arg maxi V ar(Ei).
The histogram in Figure 5 plotting the ground-truth label distribution of our discovered action-
controlled agents clearly demonstrates that our discovery of the controllable agent achieves perfect
100% accuracy.

Dynamical interpretability. To show the dynamical interpretability behind image prediction, we
test our predicted motions by comparing RMSEs between the predicted and ground-truth motions
in unseen environments (Table B4 in Appendix B). Intriguingly, most predicted motions are quite
accurate, with the RMSEs less than 1 pixel. Such a visually indistinguishable error also verifies our
dynamics learning.

5 CONCLUSIONS AND FUTURE WORK

This paper presents a self-supervised multi-level learning framework for learning action-conditioned
object-based dynamics. This framework is sample-efficient and generalizes object dynamics and
prediction of raw visual observations to complex unseen environments with multiple dynamic ob-
jects. The learned dynamics model potentially enables an agent to directly plan or efficiently learn
for unseen environments. Although a random policy or an expert’s policy is used for exploration
in our experiments, our framework can support smarter exploration strategies, e.g., curiosity-driven
exploration. Our future work includes extending our model for deformation prediction (e.g., object
appearing, disappearing and non-rigid deformation) and incorporating a camera motion prediction
network module introduced by Vijayanarasimhan et al. (2017) for applications such as FPS games
and autonomous driving.
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APPENDIX A INSTANCE LOCALIZATION

Instance localization is a common technique in context of supervised region-based object detection
(Girshick et al., 2014; Girshick, 2015; Ren et al., 2015; He et al., 2017; Liu et al., 2018), which
localizes objects on raw images with regression between the predicted bounding box and the ground
truth. Here, we propose an unsupervised approach to perform dynamic instance localization on
dynamic object masks learned by Object Detector. Our objective is to sample a number of region
proposals on the dynamic object masks and then select the regions, each of which has exactly one
dynamic instance. In the rest of this section, we will describe these two steps in details.

Region proposal sampling. We design a learning-free sampling algorithm for sampling region pro-
posals on object masks. This algorithm generates multi-scale region proposals with a full coverage
over the input mask. Actually, we adopt multi-fold full coverage to ensure that pixels of the potential
instances are covered at each scale. The detailed algorithm is described in Algorithm 2.

Instance mask selection. Instance mask selection aims at selecting the regions, each of which
contains exactly one dynamic instance, based on the discrepancy loss Linstance (Section 3.1). To
screen out high-consistency, non-overlapping and non-empty instance masks at the same time, we
integrate Non-Maximum Suppression (NMS) and Selective Search (SS) (Uijlings et al., 2013) in the
context of region-based object detection (Girshick et al., 2014; Girshick, 2015; Ren et al., 2015; He
et al., 2017; Liu et al., 2018) into our algorithm.

Algorithm 2 Region proposal sampling.
Input: Dynamic object mask D ∈ [0, 1]H×W , the number of region proposal scales nS , the folds

of full coverage T .
1: Initialize proposal set P = ∅.
2: Binarize D to get the indicator for the existence of objects
3: for l = 1 . . . nS do
4: Select scale dx, dy depend on the level l.
5: for t = 1 . . . T do
6: Initialize candidate set C = {(i, j)|Di,j = 1}.
7: while C 6= ∅ do
8: Sample a pixel coordinate (x, y) from C.
9: Get a box B = {(i, j)| |i− x| ≤ dx, |j − y| ≤ dy}.

10: if B is not empty then
11: Insert B into the proposal set P← P ∪ {B}.
12: end if
13: Update the remain candidate set C← C \ B.
14: end while
15: end for
16: end for
17: return P

14



Under review as a conference paper at ICLR 2019

APPENDIX B TABLES AND FIGURES

Figure B7: Learning curves for the dynamics prediction in unseen environments on Monster Kong.
The curves with ”Agent” notation represent the learning curves of the agent, while those with ”All”
notation indicate the learning curves of all dynamic objects.

Time step:   0                1                        2                      3                          4                   5                        6                        7                         8

Prediction

Ground Truth

Action: up left                     up                    no op                  left                   down                  down right

Figure B8: A case shows the 8-step prediction of our model in unseen environments on Monster
Kong.

Model Monster Kong Flappy Bird

1-5† 1-5 2-5 3-5 1-5† 1-5‡

MAOP 1.96 0.34 0.38 0.42 0.30 0.34

Table B4: Average motion prediction error in two experiment environments. † and ‡ correspond to
the same sample restriction experiments in Table 1 and 3
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APPENDIX C IMPLEMENTATION DETAILS FOR EXPERIMENTS

Object Detector in the dynamics learning level and Instance Splitter in the dynamic instance seg-
mentation level have similar architectures with Object Detector in OODP (Zhu et al., 2018). To
augment the interactions of instances when training Instance Splitter, we random sample two region
proposals and combine them into a single region proposal with double size.

Denote Conv(F,K, S) as the convolutional layer with the number of filters F , kernel size K
and stride S. Let R(), S() and BN() denote the ReLU layer, sigmoid layer and batch nor-
malization layer (Ioffe & Szegedy, 2015). The 5 convolutional layers in Object Detector can
be indicated as R(BN(Conv(16, 5, 2))), R(BN(Conv(32, 3, 2))), R(BN(Conv(64, 3, 1))),
R(BN(Conv(32, 1, 1))), and BN(Conv(1, 3, 1)), respectively. The 5 convolutional layers
in Instance Detector can be indicated as R(BN(Conv(32, 5, 2))), R(BN(Conv(32, 3, 2))),
R(BN(Conv(32, 3, 1))), R(BN(Conv(32, 1, 1))), and BN(Conv(1, 3, 1)), respectively.
The architecture of Foreground Detector is similar to binary-class Object Detector and the
5 convolutional layers in Foreground Detector can be indicated as R(BN(Conv(32, 5, 2))),
R(BN(Conv(32, 3, 2))), R(BN(Conv(32, 3, 1))), R(BN(Conv(32, 1, 1))), and
S(BN(Conv(1, 3, 1))), respectively. The CNNs in Relation Net are connected in the
order: R(BN(Conv(16, 3, 2))), R(BN(Conv(32, 3, 2))), R(BN(Conv(32, 3, 2))), and
R(BN(Conv(32, 3, 2))). The last convolutional layer is reshaped and fully connected by the
64-dimensional hidden layer and the 2-dimensional output layer successively. Inertia Net has the
same architecture and hyperparameters as Relation Net.

The hyperparameters for training MAOP in Monster Kong and Flappy Bird are listed as follows:

• The weights of losses, λ1, λ2, and λ3, are 100, 1, and 10, respectively. In addition, all the
l2 losses are divided by HW to keep invariance to the image size.

• Batch size is 16 and the maximum number of training steps is set to be 1× 105.
• The optimizer is Adam (Kingma & Ba, 2014) with learning rate 1× 10−3.
• The raw images of Monster Kong and Flappy Bird are resized to 160× 160× 3 and 160×

80× 3 , respectively.
• Overlapping threshold α is 0.5.
• The size of the horizon window w is 33 on Monster Kong, 41 on Flappy Bird.
• The maximum number of static and dynamic masks is 4 and 12 on Monster Kong, on

Flappy Bird.
• The maximum instance number of each object class is set to be 15.
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