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ABSTRACT

Attacks on natural language models are difficult to compare due to their differ-
ent definitions of what constitutes a successful attack. We present a taxonomy
of constraints to categorize these attacks. For each constraint, we present a real-
world use case and a way to measure how well generated samples enforce the
constraint. We then employ our framework to evaluate two state-of-the art at-
tacks which fool models with synonym substitution. These attacks claim their
adversarial perturbations preserve the semantics and syntactical correctness of the
inputs, but our analysis shows these constraints are not strongly enforced. For a
significant portion of these adversarial examples, a grammar checker detects an
increase in errors. Additionally, human studies indicate that many of these ad-
versarial examples diverge in semantic meaning from the input or do not appear
to be human-written. Finally, we highlight the need for standardized evaluation
of attacks that share constraints. Without shared evaluation metrics, it is up to
researchers to set thresholds that determine the trade-off between attack quality
and attack success. We recommend well-designed human studies to determine the
best threshold to approximate human judgement.

1 INTRODUCTION

Advances in deep learning have led to impressive performance on many tasks, but models still make
mistakes. Models are particularly vulernable to adversarial examples, inputs designed to fool models
(Szegedy et al., 2014). Goodfellow et al. (2014) demonstrated that image classification models could
be fooled by perturbations indistinguishable to humans.
Due to the importance of natural language processing (NLP) tasks, a large body of research has
focused on applying the concept of adversarial examples to text, including (Alzantot et al., 2018;
Jin et al., 2019; Kuleshov et al., 2018; Zhang et al., 2019; Ebrahimi et al., 2017; Gao et al., 2018;
Li et al., 2018; Samanta & Mehta, 2017; Liang et al., 2017; Jia & Liang, 2017; Iyyer et al., 2018;
Papernot et al., 2016a). The importance of tasks such as spam and plagiarism detection highlights
the need for robust NLP models. However, there are fundamental differences between image and
text data. Unlike images, two different sequences of text are never entirely indistinguishable. This
raises the question: if indistinguishable perturbations aren’t possible, what are adversarial examples
in text?
We observe that each work from recent literature has a slightly different definition of what con-
stitutes an adversarial example in natural language. Comparing the success rate of two attacks is
meaningless if the attacks use different methods to evaluate the same constraints or define different
constraints altogether. In this paper, we build on Gilmer et al. (2018) to introduce a taxonomy of
constraints specific to adversarial examples in natural language. To the best of our knowledge, our
work provides the first comprehensive framework for categorizing and evaluating attack constraints
in natural language. We discuss use cases and propose standardized evaluation methods for each of
these constraints.
We then apply our evaluation methods to the synonym-substitution based attacks of Jin et al. (2019)
and Alzantot et al. (2018). These attacks claimed to preserve the syntax and semantics of the original
sentence, while remaining non-suspicious to a human interpreter. However, we find that most of their
adversarial examples contain additional grammatical errors, and human surveys reveal that many
adversarial examples also change the meaning of the sentence and/or do not appear to be written by
humans. These results call into question the ubiquity of synonym-based adversarial examples and
emphasize the need for more careful evaluation of attack approaches.
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Lastly, we discuss how previous works rely on arbitrary thresholds to determine the semantic sim-
ilarity of two sentences. These thresholds can be tuned by the researcher to make their methods
seem more successful with little penalty in quantitative metrics. Thus, we highlight the importance
of standardized human evaluations to approximate the true threshold value. Any method that intro-
duces a novel approach to measure semantic similarity should support their choice of threshold with
defensible human studies.
The three main contributions of this paper are:
• We formally define and categorize constraints on adversarial examples in text, and introduce eval-

uation methods for each category.
• Using these categorizations and evaluation methods, we quantitatively disprove claims that state-

of-the-art synonym-based substitutions preserve semantics and grammatical correctness.
• We show the sensitivity of attack success rate to changes in semantic similarity thresholds set by

researchers. We assert that perturbations which claim semantic similarity should use standardized
human evaluation studies with precise wording to determine an appropriate threshold.

2 BACKGROUND

Research has shown that current deep neural network models lack the ability to classify adversarial
examples correctly (Szegedy et al., 2014). Two images that appear identical to a human but are
different by a minuscule amount can be assigned grossly different classification scores by a model.
These adversarial examples expose issues that arise from the black-box nature of deep learning
predictions. Studying them is key to eventually building secure applications based on deep learning.
The search for adversarial examples can be framed as a simple optimization problem: maximizing
the change in prediction while minimizing the change in input (Goodfellow et al., 2014; Szegedy
et al., 2014; Papernot et al., 2016b; Carlini & Wagner, 2017). Past work in the image domain
explored applying a small factor of the gradient to move an input in the “worst-case” direction.
Zhao et al. (2017) applied a similar approach for text by mapping sentences into latent space. Since
then, most approaches have been more heuristic-driven due to the difficulty of maintaining syntactic
and semantic similarity otherwise. We categorize these attacks into four groups.

Attacks by Character Substitution: Recently, multiple studies proposed to attack natural language
classification models by replacing words with deliberately misspelled words (Ebrahimi et al., 2017;
Gao et al., 2018; Li et al., 2018). These studies used character replacements to change a word into
one that the model doesn’t recognize. Such replacements are designed to create character sequences
that a human would easily correct into the intended words.
Character replacements, while effective in certain circumstances, can be detected with any spell-
checking software. Besides, Pruthi et al. (2019) demonstrated a way to train a model that correctly
classifies these misspelled inputs.

Attacks by Word Insertion or Removal: Liang et al. (2017) and Samanta & Mehta (2017) devised
a way to determine the most important words in the input and then used heuristic-driven rules to
generate perturbed inputs by adding or removing important words. Jia & Liang (2017) appended
extra sentences to paragraphs that were inputs to reading comprehension tasks. These three studies
each point out interesting flaws in natural language models, but do not produce adversarial examples
that retain the semantics of the original input.

Attacks by Paraphrase: The bulk of recent work has defined adversarial examples in natural lan-
guage as any sequences that both fool the model and share the meaning of the original input (Michel
et al., 2019). Thus, if document x is of class y, then any paraphrase of x that is not of class y is a
bona-fide adversarial example. Ribeiro et al. (2018) and Iyyer et al. (2018) proposed to use neural
machine translation systems to paraphrase input text to create semantic-preserving perturbations.
However, these systems have difficulty generating diverse, syntactically correct paraphrases. Their
paraphrases often have bad grammar and overall have trouble fooling the model.

Attacks by Synonym Substitution: Due to the difficulty of generating paraphrases in general,
Alzantot et al. (2018); Jin et al. (2019); Kuleshov et al. (2018); Papernot et al. (2016a) have de-
veloped easier ways to generate a subset of all paraphrases: by replacing a certain number of words
from the input with synonyms.
Alzantot et al. (2018) proposed generating word-level swaps with a population-based optimization
algorithm. The study aimed to generate semantically and syntactically similar adversarial examples
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that fool well-trained sentiment analysis and textual entailment models. In order to select the best
replacement word, the study computed the nearest neighbors of a selected word according to the
distance in the counter-fitted embedding space. It also used the Google one billion words language
model to filter out words that do not fit within the context.
Another recent system, TextFooler, was proposed by Jin et al. (2019) to attack three DNN models,
including the powerful pre-trained BERT (Devlin et al., 2018), and the widely used convolutional
and recurrent neural networks. The method identifies the most important words in the input sequence
and replaces them one-by-one with synonyms until the model output changes. The study used
counter-fitted word embeddings (Mrksic et al., 2016) to select the best replacement word and then
utilized the Universal Sentence Encoder (Cer et al., 2018) to measure a similarity score between the
perturbed and original inputs.
Jia et al. (2019) and Huang et al. (2019) used a technique called Interval Bound Propagation (IBP) to
train models that withstand synonym attacks. IBP encourages models to make the same prediction
on all sequences within a predefined neighborhood. In this case, it ensures that sentences that are a
few synonym swaps away from each other have similar prediction scores. However, IBP is currently
only feasible for simple models: feedforward networks, CNNs, and LSTMs with only a few layers.
Perhaps more problematic, training with IBP causes a substantial drop in accuracy on the test set.
Barreno et al. (2006) define a broad framework to determine if a machine learning model is secure,
but do not specify to adversarial examples on text. Gilmer et al. (2018) laid out a set of potential con-
straints for the attack space when generating adversarial examples, which are each useful in different
real-world scenarios. Michel et al. (2019) defined a framework for evaluating attacks on machine
translation models, focusing on meaning preservation constraints, but restricted their definitions to
sequence-to-sequence models.

3 CONSTRAINTS ON ADVERSARIAL EXAMPLES IN NATURAL LANGUAGE

When constructing adversarial examples, it’s important to define the space of inputs available to
the attacker. A successful adversarial example is defined as one that fools the model, but other
constraints are often defined to restrict the outputs that an attacker may produce.
For a given classifier F and a test input x, we denote ygt as the ground-truth output, F (x) as the
model output, and C0, C1, ...Cn as a set of functional constraints, each of which represents whether
an attack satisfies a certain constraint. An example xadv is considered adversarial if:

F (xadv) 6= F (x) ∧ Ci(x,xadv) ∀i (1)
Adversarial examples aim to achieve two goals at the same time: (1) to induce misclassification by
achieving F (xadv) 6= ygt (we focus on untargeted attacks), and (2) to restrict xadv . For instance,
C0(x,xadv) requires morphology be preserved between x and xadv .
Unlike with images, text perturbations are never indistinguishable. The attacker must decide what
makes two natural language inputs indistinguishable based on the scenario. This increases the im-
portance of clearly defining constraints. Different sets of constraints are appropriate for different
use cases. We extend on the categorization of attack spaces for adversarial examples introduced
by (Gilmer et al., 2018) to introduce a taxonomy of constraints for natural language specifically,
and discuss possible motivations for studying each constraint. We propose a method for evaluating
whether adversarial examples meet each constraint.
We define three mutually exclusive categories of semantics-related constraints on attacks in natural
language: altering an input sequence while changing as few characters as possible (morphologically-
preserving), altering an input sequence while retaining its meaning (semantics-preserving), and
crafting an input sequence which contains a specific message (semantics-constrained). We then
define two constraints which may be used in addition to any semantic constraints: a requirement
for adversarial examples to be grammatically correct, and the requirement to appear to have been
written by a human (non-suspicious). Appendix A.1 categorizes a selection of prior work into these
groups.
3.1 MORPHOLOGY-PRESERVING PERTURBATION

In some situations, the attacker is willing to change the semantics of the input as long as all changed
sentences read the same to a human. These character substitutions may change the semantics of the
sentence, as long as the reader can figure out the intended words from the context. If no defense is
provided for morphological perturbations, an attacker can easily transmit a message by adding or a
deleting a handful of characters (Gao et al., 2018).
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A perturbation is morphology-preserving if satisfying C(x,xadv) := {d(x,xadv) ≤ ε}, where d
measures the morphological distance between two strings. One common choice of d for morpholog-
ical distance is dedit(x, xadv), the edit distance between x and xadv . Edit distance is the minimum
number of operations (insertions, deletions, or substitutions) required to transform the string xadv

back into x.
3.2 SEMANTICS-PRESERVING PERTURBATION

The attacker starts with an input sequence and is allowed to modify the input sequence however
they want as long as the semantics is preserved. A use case for this class of adversarial examples
is tricking plagiarism detection software. An attacker wants to preserve as much of the original
document as possible but still avoid detection.
An adversarial example is semantics-preserving if a human labeler agrees that any changes between
the input sequence x and the modified sequence xadv do not alter the meaning of the sequence. We
define dsem(x,xadv) as the score given by humans when asked to rate if the meaning is preserved
on a Likert scale of 1-5, where 1 is “Strongly Agree” and 5 is “Strongly Disagree” (Likert, 1932; Jin
et al., 2019). A perturbation is semantics-preserving if:

dsem(x,xadv) ≤ ε (2)

We propose ε = 2 as a general rule: on average, humans should either “agree” or “strongly agree”
that x and xadv have the same meaning.
Evaluation of semantics-preserving perturbations should ideally be done by humans, but machine
evaluation of semantic similarity can be used as a proxy for human judgment, as explored by Michel
et al. (2019). Automated metrics of meaning should always be supported by human studies.
3.3 SEMANTICS-CONSTRAINED INPUT

The attacker may generate any input sequence as long as it contains the semantic content that the
attacker intends. This is distinct from the semantics-preserving case because there is no starting
input sequence to perturb; the attacker can convey their message by any means possible. In these
cases, the attacker can write anything, as long as it conveys specific meaning.
As discussed by Gilmer et al. (2018), one use case for semantics-constrained input is to fool a spam
classifier. The attacker finds some way to relay their message that evades spam detection. The
attacker may create any sequence as long as it contains the semantic content they desire. Examples
with this constraint are more difficult to generate than semantics-preserving perturbations because
the search space is much bigger and it is challenging to check that the model produces incorrect
output without human review.
Evaluation of semantics-constrained input is more difficult than semantics-preserving perturbations,
as there is no starting point to compare to. There will never be automated way to tell if an email
is spam with 100% accuracy. Whether an input is semantics-constrained must be determined by a
human judge.
3.4 SYNTACTIC CONSTRAINT

Under this constraint, the attacker is constrained to inputs that are grammatically valid. Perturbations
that introduce grammar errors often aren’t semantics-preserving. However, in many cases, a human
reader will recognize that x and xadv have the same meaning even if xadv introduced additional
syntactic errors. There may be use cases for both semantics-preserving perturbations and semantics-
constrained inputs with and without syntactic constraints:
• Semantics-preserving perturbation with syntactic constraint: Consider a student who wishes

to alter a copied assignment to evade plagiarism detection. They must perturb the assignment
while preserving the meaning, but introducing grammatical errors would get them a bad grade.

• Semantics-preserving perturbation without syntactic constraint: An attacker who wishes to
illegally distribute a PDF online must retain the content in the PDF, but readers of the PDF are
indifferent to whether grammar errors are introduced as long as the meaning is unchanged. Similar
to the case of illegal video streaming discussed in Gilmer et al. (2018), the consumers of the PDF
may be thought of as colluding with the attacker.

• Semantics-constrained input with syntactic constraint: An adversary wishing to evade a fake
news classifier must generate an article with correct grammar.

• Semantics-constrained input without syntactic constraint: Someone wishing to post offensive
content on social media may be willing to purposely misspell words or insert grammatical errors
in order to get their content onto a platform.
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Evaluation of whether adversarial examples follow the grammatical constraint requires a way of
measuring the amount of grammar errors in a document. Define G(s) as the number of syntactic
errors in an input sequence s. When applying a semantics-preserving perturbation from x to xadv ,
the grammatical constraint may be represented as

G(xadv)−G(x) ≤ ε (3)

where ε represents the amount of additional grammatical errors the adversary is willing to introduce.
When generating input from scratch, the constraint becomes simply: G(xadv) ≤ ε, where ε is the
amount of total grammatical errors the adversary is willing to create. Methods which claim to
introduce no grammatical errors imply ε = 0. Evaluation of G(x) and G(xadv) may be done by
humans, but pragmatically it is more convenient and consistent to use an automatic grammar checker
such as LanguageTool (Naber, 2003).
3.5 NON-SUSPICIOUS CONSTRAINT

The non-suspicious constraint specifies that the adversarial example must appear to be human-
written to other humans. It has some overlap with the syntactic constraint, but they do not always go
together. Sentences without grammar errors may still not seem human-written. Conversely, gram-
matically incorrect sentences could always have been written by a human. An example use case of
an attack with the non-suspicious constraint is the plagiarism example discussed above: the student
would not want to make modifications to their assignment such that the teacher would be able to tell
the assignment was not human-written. A case where the non-suspicious constraint does not apply
is the illegal PDF as mentioned earlier, as the consumers of the PDF do not care if it has been altered
as long as meaning is preserved.
Evaluation of the non-suspicious constraint must be done by humans. We propose a method in
which humans are shown a shuffled mix of real and adversarial sequences and must guess whether
each one is real or computer-altered, or computer-generated in the case of semantics-constrained
input. Define the portion of people who correctly identify an adversarial example xadv as computer-
altered as R(xadv) An adversarial example is considered to meet the non-suspicious constraint if
R(xadv) < ε, where 0 < ε ≤ 1. A smaller value of ε enforces more rigorous standards on what
must appear to be written by a human.

4 EXPERIMENTS

We now apply the evaluation framework discussed in Section 3 to evaluate the effectiveness of the
attack techniques from Alzantot et al. (2018) and Jin et al. (2019). We chose these these works
because:
• They claim to find semantics-preserving perturbations which adhere to the syntactic constraint,

and imply adherence to the non-suspicious constraint. However, our inspection of the adversarial
perturbations revealed that many introduced syntax errors or did not preserve semantics.

• They report high attack success rates1.
• These methods cover two of the most effective models for text classification: LSTM and BERT.
To generate examples for evaluation, we attacked BERT using Jin et al. (2019)’s method and attacked
a WordLSTM using Alzantot et al. (2018)’s method. We only considered classification tasks as our
focus is on evaluating the adversarial examples. We evaluate both methods on the IMDB2 and
Yelp polarity document-level sentiment classification datasets and Jin et al. (2019)’s method on the
MR sentence-level sentiment classification dataset (Pang & Lee, 2005; Zhang et al., 2015). We ran
experiments to evaluate whether the generated examples met three constraints: syntax, semantics-
preservation and non-suspicion.
4.1 EVALUATION OF GRAMMATICAL CORRECTNESS

We evaluate fulfillment of the syntactic constraint using a grammar checker. These programs are
easy to use, free, and cover a wide range of grammatical rules over many languages. We chose
to use LanguageTool, an open-source proofreading tool (Naber, 2003). LanguageTool ships with
thousands of human-curated rules for the English language and provides a downloadable server
interface for analyzing sentences.

1We use “attack success rate” to mean the percentage of the time that an attack can find an adversarial
example by perturbing a given input. “After-attack accuracy” or “accuracy after attack” is the accuracy the
model achieves on a set of adversarial examples.

2https://datasets.imdbws.com/
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We ran each of the generated (x,xadv) pairs through LanguageTool and compared the amount of
detected errors to determine if the syntactic constraint as defined in Equation 3 was fulfilled. Lan-
guageTool detected more grammatical errors in xadv for 52.1% of pairs across the five datasets.
There is a clear linear relationship between the number of words changed and the number of gram-
matical errors induced (Figure 1). Clearly, the majority of generated examples don’t fulfill the
syntactic constraint.
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As shown in Table 1, grammatical errors were introduced more often in adversarial examples gener-
ated by Jin et al. (2019) than Alzantot et al. (2018). While Jin et al. (2019) did not filter substitutions
by syntax, Alzantot et al. (2018) judged the grammaticality of each replacement candidate with a
language model.

(Jin et al., 2019) (Alzantot et al., 2018)
IMDB Yelp MR IMDB Yelp

Average score 61.8% 71.6% 35.5% 42.7% 43.8%

Table 1: Percentage of xadv with more errors than x by attack method and dataset.

A savvy defender who wants to build a system robust against these types of substitution attacks may
notice that adversarial examples contain strange phrasings and unnatural errors that a human would
almost never make. LanguageTool detected errors in several categories that appeared far often in
adversarial samples than in the original, human-generated content.
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Figure 2 shows the ratio of appearance of grammatical errors in perturbed vs. original samples. Six
different classes of mistakes appear over 10 times more frequently in the adversarial examples than
original inputs. A description of each type of error is in the appendix.
4.2 EVALUATION OF PRESERVATION OF SEMANTICS

As discussed in Section 3.2, tools for automatically evaluating semantic similarity exist, but human
judgement is essential to confirm such automatic evaluations. While Jin et al. (2019) and Alzantot
et al. (2018) both include human evaluation, these studies include a single scale on which users rated
the similarity of x and xadv to be relatively high. We believe that this phrasing did not generate an
accurate measure of semantic similarity, as users may have considered two sentences with clearly
different meanings to be “similar” due to their small morphological distance. Instead, we ask users
to determine whether the changes between x and xadv preserve the meaning of the passage.
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We set up our own survey to evaluate human judgement on the adversarial examples from Jin et al.
(2019) and Alzantot et al. (2018). We enlisted workers from Amazon Mechanical Turk to label 3907
data points across the five datasets. Our survey randomized the order of x and xadv and displayed
them side-by-side. To evaluate whether the perturbation was semantics-preserving as defined in
Equation 2, we asked users to rate whether they agreed that the changes between the two passages
preserved the meaning of the passage on a scale of 1 (Strongly Agree) to 5 (Strongly Disagree).

(Jin et al., 2019) (Alzantot et al., 2018)
IMDB Yelp MR IMDB Yelp

Average score 2.68 2.86 2.82 3.41 3.62

Table 2: Likert scale response: Does changing from x to xadv preserve meaning?

Average scores as shown in Figure 2 vary by dataset, but users’ answers generally generally average
out to around 3 (“Not Sure”). Clarifying the survey question makes it clear that many of the examples
are not semantics-preserving.
Additionally, we note that due to acquiescence bias, labelers are generally more likely to agree
than disagree when presented with a statement (Jackson & Messick, 1961) 3. To test this effect,
we negated the question: instead of asking whether the changes from x to xadv “preserved” the
meaning of x, we asked whether the differences “changed” the meaning.

(Jin et al., 2019) (Alzantot et al., 2018)
IMDB Yelp MR IMDB Yelp

Average score 2.35 2.26 2.39 2.12 2.17

Table 3: Likert scale response: Does changing from x to xadv change meaning?

Table 3 shows that averages are now closest to “2 - Agree” rather than “3 - Not sure”. Thus, inverting
the question resulted in generated examples being rated as less semantics-preserving. Future human
evaluation studies should use similar practices to minimize the effects of this bias.
4.3 EVALUATION OF NON-SUSPICION

The final claim we investigated was whether adversarial examples generated by these two attack
techniques were truly non-suspicious. We presented examples one by one to humans and asked if
they were real or computer-altered as proposed in Section 3.5. A method that consistently generated
non-suspicious adversarial examples would produce inputs would appear to be human-written. In
this case, human labelers would average an accuracy of 50%. If humans could consistently discern
perturbed inputs from real inputs, they would achieve 100% on this task.
As this is a time-consuming task for long documents, we only evaluated adversarial examples gen-
erated by (Jin et al., 2019)’s method on the sentence-level MR dataset. We sampled 100 (x, xadv)
pairs then used Mechanical Turk to get 10 guesses for each example. Humans achieved 69.2% ac-
curacy on this task. Table 4 presents the confusion matrix of results from the survey. Interestingly,
workers guessed that the examples were real 62.2% of the time, but when they guessed that exam-
ples were computer-altered they were right 75.4% of the time. Thus while some perturbed examples
are non-suspicious, there are some which workers identify with high precision.

Guessed Label
Real Computer-altered

True Label
Original 814 431

Perturbed 186 570

Table 4: Confusion matrix for humans guessing if perturbed examples are computer-altered

5 TO NEED STANDARDIZED METRICS SUPPORTED BY HUMAN EVALUATION

A method that detects or generates semantics-preserving adversarial examples relies on a distance
metric d to measure how well two sentences align in meaning. Two inputs (x1, x2) are paraphrases

3For more discussion, see Section A.2
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(i.e. semantic-preserving) if d(x1, x2) < ε for some fixed threshold ε. Often, a single attack relies
on multiple metrics for d, each with its own threshold ε.
Sometimes, prior work has chosen the same metric d but different thresholds for ε. Synonym sub-
stitution attacks provide one example. These attacks consider two sentences (x,xadv) that differ
by a single word (w ∈ x, wadv ∈ xadv) to have the same meaning if wadv is one of the closest ε
neighbors in the counter-fitted embedding space. In other words, ε indicates how many synonyms
they allowed. At least three different such attacks rely on this metric: Alzantot et al. (2018) uses
ε = 8, Kuleshov et al. (2018) uses ε = 15, and Jin et al. (2019) uses ε = 50. Without an agreed-upon
standard value, choice of ε is at the researcher’s discretion. This is problematic because there is a
direct correlation between the value chosen for ε and the success of an attack.
Jin et al. (2019) used an additional distance metric d defined as the cosine similarity between em-
beddings encoded by the Universal Sentence Encoder (USE) in order to determine if a synonym
swap preserves semantic similarity (Cer et al., 2018). Figure 3 shows accuracy under BERT under
attack by Jin et al. (2019)’s method as the maximum allowed cosine similarity between two sen-
tences’ USE embeddings increases 4 . As ε becomes more strict, the attack becomes less successful.
Figure 4 plots the accuracy under attack as the number of synonyms considered for each substitution
increases. An attack that is more lenient with its standard for what constitutes a synonym is more
successful.
For any distance metric, there is no perfect value of ε. Whether two sentences are truly paraphrases is
often subjective. We cannot expect any automated evaluation tool to perfectly separate paraphrases
from non-paraphrases. However, there will be a range of values for ε that correlate the most closely
with the judgement of humans. Without using standardized human studies like the one in Section
4.2 to verify the linguistic standard provided by the choice of ε, generated adversarial examples may
not be useful at all.
The correct range of values of ε will vary by metric. Every study that presents a new way to measure
semantic similarity should perform a human study to approximate the proper value for ε. With
consistent values for ε, researchers will be able to easily compare methods that use the same metrics.

6 CONCLUSION

We introduced a framework for evaluating fulfillment of attack constraints in natural language. Ap-
plying this framework to synonym substitution attacks raised concerns about the semantic preserva-
tion, syntactic accuracy, and conspicuity of the adversarial examples they generate.
Future work may expand our hierarchy to categorize and evaluate different attack constraints in
natural language. Standardized terminology and evaluation metrics will make it easier for defenders
to determine which attacks they must protect themselves from–and how. It remains to be seen how
robust BERT is when subject to synonym attacks which rigorously preserve semantics and syntax. It
is up to future research to determine how prevalent adversarial examples are throughout the broader
space of paraphrases.

4The MR dataset is excluded due to no USE similarity restrictions being enforced on inputs of less than 15
words.
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A APPENDIX

A.1 CATEGORIZATION OF NLP ATTACKS

Past research in attacks on textual models has provided many disparate sets of constraints for ad-
versarial examples. Here, we select a small slice of the past work and categorize it based on the
taxonomy outlined in Section 3.

Attack Constraint on Meaning Syntactic Constraint Non-suspicious

Synonym Substitution.
(Alzantot et al., 2018;
Kuleshov et al., 2018; Jin
et al., 2019)

semantics-preserving
perturbation

3 3

Character Substitution.
(Ebrahimi et al., 2017; Gao
et al., 2018; Li et al., 2018)

morphology-preserving
perturbation

7 3

Word Insertion or Removal.
(Liang et al., 2017; Samanta
& Mehta, 2017)

semantics-preserving
perturbation

7 7

General Paraphrase.
(Zhao et al., 2017; Ribeiro
et al., 2018; Iyyer et al., 2018)

semantics-preserving
perturbation

3 3

Good Word Attack.
(Lowd & Meek, 2005)

semantics-preserving
perturbation

7 7

Sentence Insertion.
(Jia & Liang, 2017)

semantics-preserving
perturbation

3 7

A.2 DETAILS ABOUT HUMAN STUDIES.
Our experiments relied on labor crowd-sourced from Amazon Mechanical Turk to provide labels for
two tasks. We used five datasets: MIT and Yelp datasets from (Alzantot et al., 2018) and MIT, Yelp,
and Movie Review datasets from (Jin et al., 2019). We added a limitation so that only workers with
“Masters” status on Mechanical Turk could complete our tasks. We estimated that each task would
take approximately 15 seconds to complete, so we paid workers $.05 per label to ensure a fair wage
of $12 per hour. For both tasks, we allotted workers 3 minutes per assignment.

Task 1: Real vs. fake? In Section 4.3, we present results from our Mechanical Turk survey where
we asked users to guess if a sample of text was real or Computer-altered. We restricted this task to a
single dataset, Movie Review. We chose Movie Review because it had an average sample length of
20 words, much shorter than Yelp or IMDB. We made this restriction because of the time-consuming
nature of classifying long samples as Real or Fake.

Task 2: Semantic Similarity. In Section 4.2, we present results from two Mechanical Turk ques-
tionnaires to judge semantic similarity or dissimilarity. For each task, we show x and xadv , in
a random order. We added a custom script to highlight the different characters between the two
sequences. For both tasks, we provided the following description: “Compare two short pieces of
English text and determine if they mean different things or the same.” We then prompted labelers:
“Changing from one of these sentences to the other X the meaning,” where X was “changes” or
“preserves”.

Phrasing matters. Mechanical Turk comes with a set of pre-designed questionnaire interfaces.
These include one titled “Semantic Similarity” which asks users to rate a pair of sentences on a
scale from “Not Similar At All” to “Highly Similar.” Examples generated by synonym attacks bene-
fit from this question formulation because humans tend to rate two sentences that share many words
as “Similar” due to their small morphological distance, even if they have different meanings.
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Cognitive biases in the Likert scale. It was interesting to compare results from the surveys within
Task 2. Since all we did was negate the question, the results should have been inverses: i.e., every
label that said “Agree” for the first formulation of the question should have said “Disagree” for the
second, etc. However, we found that labelers, at least on the Mechanical Turk, tend to select “Agree”
regardless of the question. When asked if the change from x to xadv “changes” meaning, 68.3% of
labelers selected “Agree”. Surprisingly, when asked if the change from x to xadv “preserves” mean-
ing, 43.6% of labelers still answered with “Agree”! Overall, 55.9% of our 7,816 responses, from
two opposite surveys, were simply “Agree”. We believe that this is an instance of a phenomenon
called acquiescence bias, where respondents to a survey gravitate towards answers that are generally
positive (Jackson & Messick, 1961).

Notes for future surveys. In the future, we would try to filter out bad labels by mixing a small
number of ground-truth “easy” data points into our dataset and rejecting the work of labelers who
performed poorly on this set.

A.3 LANGUAGETOOL ERROR TYPES

LanguageTool presents helpful error message along with each detected grammatical rule violation.
This table displays sample error messages alongside the error codes from Figure 2. For example,
code PRP RB NO VB appears 20 times more frequently in adversarial samples than it does in real,
human-crafted input. This specific error often appears when the attack substitutes a verb with a noun.

Error ID Ratio Example Error Message

1 PRP RB NO VB 20.0 Are you missing a verb?

2 AGREEMENT SENT START 19.0 You should probably use ’have’, ’haven’.

3 DID BASEFORM 14.5 The verb ’should’ requires the base form of the
verb: ’constitute’

4 NON3PRS VERB 13.0 The pronoun ’we’ must be used with a non-third-
person form of a verb: ’summon’, ’summons’

5 A PLURAL 12.4 Don’t use indefinite articles with plural words.
Did you mean ’a circumstance’ or simply ’circum-
stances’?

6 TO NON BASE 12.0 The verb after “to” should be in the base form: ’con-
stitute’.

7 PRP PAST PART 8.7 Possible grammatical error. You used a past partici-
ple without using any required verb (’be’ or ’have’).
Did you mean ’was’, ’were’?

8 AFFORD VB 7.5 This verb is used with the infinitive: ’to better’, ’to
well’
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