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ABSTRACT

We investigate methods for semi-supervised learning (SSL) of a neural linear-
chain conditional random field (CRF) for Named Entity Recognition (NER) by
treating the tagger as the amortized variational posterior in a generative model
of text given tags. We first illustrate how to incorporate a CRF in a VAE, en-
abling end-to-end training on semi-supervised data. We then investigate a se-
ries of increasingly complex deep generative models of tokens given tags enabled
by end-to-end optimization, comparing the proposed models against supervised
and strong CRF SSL baselines on the Ontonotes5 NER dataset. We find that our
best proposed model consistently improves performance by ≈ 1% F1 in low- and
moderate-resource regimes and easily addresses degenerate model behavior in a
more difficult, partially supervised setting.

1 INTRODUCTION

Named entity recognition (NER) is a critical subtask of many domain-specific natural language
understanding tasks in NLP, such as information extraction, entity linking, semantic parsing, and
question answering. State-of-the-art models treat NER as a tagging problem (Lample et al., 2016;
Ma & Hovy, 2016; Strubell et al., 2017; Akbik et al., 2018), and while they have become quite
accurate on benchmark datasets in recent years (Lample et al., 2016; Ma & Hovy, 2016; Strubell
et al., 2017; Akbik et al., 2018; Peters et al., 2018; Devlin et al., 2018), utilizing them for new
tasks is still expensive, requiring a large corpus of exhaustively annotated sentences (Snow et al.,
2008). This problem has been largely addressed by extensive pretraining of high-capacity sentence
encoders on massive-scale language modeling tasks (Peters et al., 2018; Devlin et al., 2018; Howard
& Ruder, 2018; Radford et al., 2019; Liu et al., 2019b), but it is natural to ask if we can squeeze
more signal from our unlabeled data.

Latent-variable generative models of sentences are a natural approach to this problem: by treating
the tags for unlabeled data as latent variables, we can appeal to the principle of maximum marginal
likelihood (Berger, 1985; Bishop, 2006) and learn a generative model on both labeled and unlabeled
data. For models of practical interest, however, this presents multiple challenges: learning and
prediction both require an intractable marginalization over the latent variables and the specification
of the generative model can imply a posterior family that may not be as performant as the current
state-of-the-art discriminative models.

We address these challenges using a semi-supervised Variational Autoencoder (VAE) (Kingma et al.,
2014), treating a neural tagging CRF as the approximate posterior. We address the issue of optimiza-
tion through discrete latent tag sequences by utilizing a differentiable relaxation of the Perturb-and-
MAP algorithm (Papandreou & Yuille, 2011; Mensch & Blondel, 2018; Corro & Titov, 2018), al-
lowing for end-to-end optimization via backpropagation (Rumelhart et al., 1988) and SGD (Robbins
& Monro, 1951). Armed with this learning approach, we no longer need to restrict the generative
model family (as in Ammar et al. (2014); Zhang et al. (2017)), and explore the use of rich deep gen-
erative models of text given tag sequences for improving NER performance. We also demonstrate
how to use the VAE framework to learn in a realistic annotation scenario where we only observe a
biased subset of the named entity tags.

Our contributions can be summarized as follows:
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1. We address the problem of semi-supervised learning (SSL) for NER by treating a neural
CRF as the amortized approximate posterior in a discrete structured VAE. To the best of
our knowledge, we are the first to utilize VAEs for NER.

2. We explore several variants of increasingly complex deep generative models of text given
tags with the goal of improving tagging performance. We find that a joint tag-encoding
Transformer (Vaswani et al., 2017) architecture leads to an ≈ 1% improvement in F1 score
over supervised and strong CRF SSL baselines.

3. We demonstrate that the proposed approach elegantly corrects for degenerate model perfor-
mance in a more difficult partially supervised regime where sentences are not exhaustively
annotated and again find improved performance.

4. Finally, we show the utility of our method in realistic low- and high-resource scenarios,
varying the amount of unlabeled data. The resulting high-resource model is competitive
with state-of-the-art results and, to the best of our knowledge, achieves the highest reported
F1 score (88.4%) for models that do not use additional labeled data or gazetteers.

2 METHODS

We first introduce the tagging problem and tagging model. We then detail our proposed modeling
framework and architectures.

2.1 PROBLEM STATEMENT

NER is the task of assigning coarsely-typed categories to contiguous spans of text. State-of-the-art
approaches (Lample et al., 2016; Ma & Hovy, 2016; Strubell et al., 2017; Akbik et al., 2018; Liu
et al., 2019a) do so by treating span extraction as a tagging problem, which we now formally define.

We are given a tokenized text sequence x1:N ∈ XN and would like to predict the corresponding tag
sequence y1:N ∈ YN which correctly encodes the observed token spans. 1 In this work, we use the
BILOU (Ratinov & Roth, 2009) tag-span encoding, which assigns four tags for each of the C span
categories (e.g., B-PER, I-PER, L-PER, U-PER for the PERSON category.) The tag types
B, I, L, U respectively encode beginning, inside, last, and unary tag positions in the original
span. Additionally we have one O tag for tokens that are not in any named entity span. Thus our tag
space has size |Y| = 4C + 1.

2.2 TAGGING CRF

We call the NER task of predicting tags for tokens inference, and model it with a discriminative dis-
tribution qφ(y1:N |x1:N ) having parameters φ. Following state-of-the-art NER approaches (Lample
et al., 2016; Ma & Hovy, 2016; Strubell et al., 2017; Akbik et al., 2018), we use a neural encoding
of the input followed by a linear-chain CRF (Lafferty et al., 2001) decoding layer on top.

We use the same architecture for qφ throughout this work, as follows:

1. Encode the token sequence, represented as byte-pairs, with a fixed pretrained language
model. 2 That is, we first calculate:

h01:N = Pretrained-LM(x1:N ), h01:N ∈ RN×dLM

In our first experiments exploring the use of pretrained autoregressive information for gen-
eration (§3.1), we use the GPT2-SM model (Radford et al., 2019; Hugging Face, 2019).
In the experiments after (§3.2) we use the RoBERTa-LG model (Liu et al., 2019b; Hug-
ging Face, 2019).

2. Down-project the states: h11:N = h01:NW1 + b1, W1 ∈ RdLM×dyq , b1 ∈ Rdyq

1We will often omit sequence boundaries (x ← x1:N ) to save space, but will always index individual
elements xi.

2We represent the tags at the byte-pair level to ensure alignment between the number of tokens and tags for
the generative models in §2.3
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3. Compute local tag scores: syi = v>y h
1
i + b2,y, vy ∈ Rdyq , b2 ∈ R|Y|

4. Combine local and transition potentials: ψyi,yi+1 = syi + Tyi,yi+1 , Tyi,yi+1 ∈ R

5. Using special start and end states y0 = ∗, yN+1 = � with binary potentials ψ∗,y =
T∗,y, ψy,� = Ty,� and the forward algorithm (Lafferty et al., 2001) to compute the the
partition function Z, we can compute the joint distribution:

qφ(y1:N |x1:N ) = exp{
N∑
i=0

ψyi,yi+1
− logZ(ψ)} (1)

Our tagging CRF has trainable parameters φ = {W1, b1, V, b2, T} 3 and we learn them on a dataset
of fully annotated sentences DS = {(xi1:Ni , y

i
1:Ni)} using stochastic gradient descent (SGD) and

maximum likelihood estimation.

LqS(φ;DS) =
∑

(x,y)∈DS

log qφ(y|x) (2)

2.3 SEMI-SUPERVISED CRF-VAE

We now present the CRF-VAE, which treats the tagging CRF as the amortized approximate poste-
rior in a Variational Autoencoder. We first describe our loss formulations for semi-supervised and
partially supervised data. We then address optimizing these objectives end-to-end using backprop-
agation and the Relaxed Perturb-and-MAP algorithm. Finally, we propose a series of increasingly
complex generative models to explore the potential of our modeling framework for improving tag-
ging performance.

2.3.1 SEMI-SUPERVISED VAE

The purpose of this work is to consider methods for estimation of qφ in semi-supervised data
regimes, as in Kingma et al. (2014); Miao & Blunsom (2016); Yang et al. (2017), where there is
additional unlabeled data DU = {(xi1:Ni)}. To learn in this setting, we consider generative models
of tags and tokens pθ(x1:N |y1:N )p(y1:N ) and, for unobserved tags, aim to optimize the marginal
likelihood of the observed tokens under the generative model.

log pθ(x1:N ) = log
∑
y1:N

pθ(x1:N |y1:N )p(y1:N )

This marginalization is intractable for models that are not factored among yi, so we resort to opti-
mizing the familiar evidence lower bound (ELBO) (Jordan et al., 1999; Blei et al., 2017) with an
approximate variational posterior distribution, which we set to our tagging model qφ. We maximize
the ELBO on unlabeled data in addition to maximum likelihood losses for both the inference and
generative models on labeled data, yielding the following objectives:

LS =
∑

(x,y)∈DS

log pθ(x|y) + log qφ(y|x) (3)

LU =
∑
x∈DU

Eqφ [log pθ(x|y)]− βKL(qφ||p(y)) (4)

L(θ, φ;DS ∪ DU , α, β) = LS + αLU (5)

where α is scalar hyper-parameter used to balance the supervised loss LS and the unsupervised loss
LU (Kingma et al., 2014). β is a scalar hyper-parameter used to balance the reconstruction and KL
terms for the unsupervised loss (Bowman et al., 2015; Higgins et al., 2017). We note that, unlike a
traditional VAE, this model contains no continuous latent variables.

3We omit the Pretrained-LM parameters since they are not updated during training.
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2.3.2 PARTIALLY SUPERVISED LEARNING (PSL)

Assuming that supervised sentences are completely labeled is a restrictive setup for semi-supervised
learning of a named entity tagger. It would be useful to be able to learn the tagger on sentences which
are only partially labeled, where we only observe some named entity spans, but are not guaranteed
all entity spans in the sentence are annotated and no O tags are manually annotated. 4 This presents
a challenge in that we are no longer able to assume the usual implicit presence of O tags, since
unannotated tokens are ambiguous. While it is possible to optimize the marginal likelihood of the
CRF on only the observed tags yO, O ⊂ {1, . . . , N} in the sentence (Tsuboi et al., 2008), doing
so naively will result in a degenerate model that never predicts O, by far the most common tag (Jie
et al., 2019). Interestingly, this scenario is easily addressed by the variational framework via the KL
term. We do this by reformulating the objective in Equation 5 to account for partially observed tag
sequences:

Let DP = {(xi1:Ni , y
i
O)} be the partially observed dataset where, for some sentence i, O ⊂

{1, . . . , Ni} is the set of observed positions and U = {1, . . . , Ni} \ O is the set of unobserved
positions. Our partially supervised objective is then

LP =
∑

(x,yO)∈DP

[
log qφ(yO|x) + αEqφ [log pθ(x|yO ∪ yU )]− αβKL(qφ(yU |x, yO)||p(yU ))

]
(6)

which can be optimized as before using the constrained forward-backward and KL algorithms de-
tailed in Appendix B.

We also explore using this approach simply for regularization of the CRF posterior by omitting
the token model pθ(x|y). Since we do not have trainable parameters for the generative model in
this case, the reconstruction likelihood drops out of the objective and we have, for a single datum
(xi, yiO) ∈ DP , the following loss:

LiP = log qφ(yiO|xi)− αβKL(qφ(yiU |xi, yiO)||p(yiU ))

2.3.3 DIFFERENTIABLE PERTURB-AND-MAP

Optimizing Equations 5 and 6 with respect to θ and φ using backpropagation and SGD is straight-
forward for every term except for the expectation terms Eqφ(y|x)[log pθ(x|y)]. To optimize these
expectations, we first make an Monte Carlo approximation using a single sample drawn from qφ.
This discrete sample, however, is not differentiable with respect to φ and blocks gradient compu-
tation. While we may appeal to score function estimation (Miller, 1967; Williams, 1992; Paisley
et al., 2012; Ranganath et al., 2014; Miao & Blunsom, 2016; Mohamed et al., 2019) to work around
this, its high-variance gradients make successful optimization difficult.

Following Papandreou & Yuille (2011); Mensch & Blondel (2018); Corro & Titov (2018); Kim
et al. (2019), we can compute approximate samples from qφ that are differentiable with respect to
φ using the Relaxed Perturb-and-MAP algorithm (Corro & Titov, 2018; Kim et al., 2019). Due to
space limitations, we leave the derivation of Relaxed Perturb-and-MAP for linear-chain CRFs to
Appendix A and detail the resulting CRF algorithms in Appendix B.

2.4 PROPOSED GENERATIVE MODELS

We model the prior distribution of tag sequences y1:N as the per-tag product of a fixed categorical
distribution p(y1:N ) =

∏
i p(yi). The KL between qφ and this distribution can be computed in

polynomial time using a modification of the forward recursion derived in Mann & McCallum (2007),
detailed in Appendix B.

We experiment with several variations of architectures for pθ(x1:N |y1:N ), presented in order of
increasing complexity.

Baseline - CRF-Autoencoder (AE): The CRF Autoencoder (Ammar et al., 2014; Zhang et al.,
2017) is the previous state-of-the-art semi-supervised linear-chain CRF, which we consider a strong

4This regime applies to situations such as weak supervision (i.e. a low-recall database or gazatteer used for
distant supervision), incidental supervision (i.e., a random Wikipedia sentence), or online and active learning.
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baseline. This model uses a tractable, fully factored generative model of tokens given tags and does
not require approximate inference. Due to space limitations, we have detailed our implementation
in Appendix C.

MF: This is our simplest proposed generative model. We first embed the relaxed tag samples,
represented as simplex vectors yi ∈ ∆|Y|, into Rdyp as the weighted combination of the input vector
representations for each possible tag:

ui = Uyi, U ∈ Rdyp×|Y| (7)

We then compute factored token probabilities with an inner product

pθ(xi|yi) = σX (w>xiui)

where σX is the softmax function normalized over X . This model is generalization of the CRF
Autoencoder architecture in Appendix C where the tag-token parameters θx,y are computed with a
low-rank factorization WU>.

MT: The restrictive factorization of MF is undesirable, since we expect that information about
nearby tags may be discriminative of individual tokens. To test this, we extend MF to use the full
tag context by encoding the embedded tag sequence jointly using a two-layer transformer (Vaswani
et al., 2017) with four attention heads per layer before predicting the tokens independently. That is,

pθ(xi|y1:N ) = σX (w>xivi), v1:N = Transformerθ(u1:N )

MF-GPT2: Next, we see if we can leverage information from a pretrained language model to
provide additional training signal to pθ. We extend MF by adding the fixed pretrained language
modeling parameters from GPT2 to the token scores:

pθ(xi|yi, x<i) = σX

(
w>xiui√
dyp

+
z>xih

0
i√

dGPT2

)

where zxi and h0i are the input token embeddings and hidden states from GPT2, respectively. We
additionally normalize the scales of the factors by the square root of the vector dimensionalities to
prevent the GPT2 scores from washing out the tag-encoding scores (dyp = 300 and dGPT2 = 768).

MT-GPT2: We add the same autoregressive extention to MT, using the tag encodings v instead of
embeddings u.

pθ(xi|y1:N , x<i) = σX

(
w>xivi√
dyp

+
z>xih

0
i√

dGPT2

)

MT-GPT2-PoE: We also consider an autoregressive extension of MT, similar to MT-GPT2, that
uses a product of experts (PoE) (Hinton, 2002) factorization instead

pθ(xi|y, x<i) = σX
(
pθ(xi|y1:N )pGPT2(xi|x<i)

)
pθ(xi|y1:N ) = σX (w>xivi), pGPT2(xi|x<i) = σX (z>xih

0
i )

MT-GPT2-Residual: Our last variation directly couples GPT2 with pθ by predicting a residual via
a two-layer MLP based on the tag encoding and GPT2 state:

pθ(xi|y1:N , x<i) = σX (z>xi h̄
0
i ), h̄

0
i = h0i + fMLP(〈h0i , vi〉)

For the MF-GPT2, MT-GPT2, and MT-GPT2-PoE models, we choose these factorizations specifi-
cally to prevent the trainable parameters from conditioning on previous word information, removing
the possibility of the model learning to ignore the noisy latent tags in favor of the strong signal
provided by pretrained encodings of the sentence histories (Bowman et al., 2015; Yang et al., 2017;
Kim et al., 2018). We further freeze the GPT2 parameters for all models, forcing the only path for
improving the generative likelihood to be through the improved estimation and encoding of the tags
y1:N .
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3 EXPERIMENTS AND RESULTS

We experiment first with the proposed models generative models for SSL and PSL in a moderately
resourced regime (keeping 10% labeled data) to explore their relative merits. We then evaluate
our best generative model from these experiments, (MT), with an improved bidirectional encoder
language model in a low- and high-resource settings, varying the amount of unlabeled data.5

For data, we use the OntoNotes 5 (Hovy et al., 2006) NER corpus, which consists of 18 entity types
annotated in 82,120 train, 12,678 validation, and 8,968 test sentences.

3.1 EXPLORATION OF GENERATIVE ARCHITECTURES

We begin by comparing the proposed generative models, M* along with the following baselines:

1. Supervised (S): The supervised tagger trained only on the 10% labeled data.
2. Supervised 100% (S*): The supervised tagger trained on the 100% labeled data, used for

quantifying the performance loss from using less data.
3. AE-Exact: The CRF Autoencoder using exact inference (detailed in Appendix C.)
4. AE-Approx: The same tag-token pair parameterization used by the CRF Autoencoder,

but trained with the approximate ELBO objective as in Equation 11 instead of the exact
objective in Equation 12. The purpose here is to see if we lose anything by resorting to the
approximate ELBO objective.

To simulate moderate-resource SSL, we keep annotations for only 10% of the sentences, yielding
8, 212 labeled sentences with 13, 025 annotated spans and 73, 908 unlabeled sentences. Results are
shown in Table 1. All models except S* use this 10% labeled data.

We first evaluate the proposed models and baselines without the use of a prior, since the use of
a locally normalized factored prior can encourage overly uncertain joint distributions and degrade
performance (Jiao et al., 2006; Mann & McCallum, 2007; Corro & Titov, 2018). We then explore
the inclusion of the priors for the supervised and MT models with β = 0.01.6

We explore two varieties of prior tag distributions: (1) the “gold” empirical tag distribution (Emp)
from the full training dataset and (2) a simple, but informative, hand-crafted prior (Sim) that places
50% mass on the O tag and distributes the rest of its mass evenly among the remaining tags. We
view (2) as a practical approach, since it does not require knowledge of the gold tag distribution, and
use (1) to quantify any relative disadvantage from not using the gold prior. We find that including
the prior with a small weight, β = 0.01, marginally improved performance and interestingly, the
simple prior outperforms the empirical prior, most likely because it is slightly smoother and does
not emphasize the O tag as heavily.7

Curiously, we found that the approximate training of the CRF Autoencoder AE-Approx outper-
formed the exact approach AE-Exact by nearly 2% F1.

We also note that our attempts to leverage signal from the pretrained autoregressive GPT2 states had
negligible or negative effects on performance, thus we conclude that it is the addition of the joint
encoding transformer architecture MT that provides the most gains (+0.8% F1).

PSL: We also evaluate the supervised and transformer-based generative models, S and MT, on the
more difficult PSL setup, where naively training the supervised model on the marginal likelihood of
observed tags produces a degenerate model, due to the observation bias of never having O tags. In
this setting we drop 90% of the annotations from sentences randomly, resulting in 82,120 incom-
pletely annotated sentences with 12,883 annotations total. We compare the gold and simple priors
for each model. From the bottom of Table 1, we see that again our proposed transformer model MT
outperforms the supervised-only model, this time by +1.3% F1. We also find that in this case, the
MT models need to be trained with higher prior weights β = 0.1, otherwise they diverge towards
using the O tag more uniformly with the other tags to achieve better generative likelihoods.

5Code and experiments are available online at github.com/<anonymizedforsubmission>
6In preliminary SSL experiments we found β > 0.01 to have a negative impact on performance, likely due

to global/local normalization mismatch of the CRF and the prior.
7The empirical prior puts 85% mass on the O tag
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Model α β P R F1
Supervised 100% (S*) - 0.0 0.808 0.798 0.803

Supervised (S) - 0.0 0.761 0.738 0.749
AE-Exact - 0.0 0.736 0.721 0.728

AE-Approx 0.1 0.0 0.767 0.728 0.747
MF (Factored) 0.1 0.0 0.761 0.719 0.739

MT (Transformer) 0.1 0.0 0.758 0.756 0.757
MF-GPT2 0.1 0.0 0.754 0.710 0.731
MT-GPT2 0.1 0.0 0.762 0.755 0.759

MT-GPT2 (no-scale) 0.1 0.0 0.766 0.734 0.751
MT-GPT2-PoE 0.1 0.0 0.766 0.742 0.753

MT-GPT2-Residual 0.1 0.0 0.766 0.740 0.753
S (Emp) 0.1 0.01 0.754 0.733 0.743
S (Sim) 0.1 0.01 0.754 0.734 0.743

MT (Emp) 0.1 0.01 0.760 0.756 0.758
MT (Sim) 0.1 0.01 0.762 0.757 0.760

S (Emp) - PSL 0.1 0.01 0.741 0.725 0.733
S (Sim) - PSL 0.1 0.01 0.730 0.740 0.735

MT (Emp) - PSL 0.1 0.1 0.731 0.761 0.746
MT (Sim) - PSL 0.1 0.1 0.724 0.774 0.748

Table 1: Semi-supervised and partially-supervised models on 10% supervised training data: best in
bold, second best underlined. The proposed MT* improves performance in SSL and PSL by +1.1%
F1 and +1.3% F1, respectively.

3.2 VARYING RESOURCES

Next we explore our best proposed architecture MT and the supervised baseline in low- and high-
resource settings (1% and 100% training data, respectively) and study the effects of training with an
additional 100K unlabeled sentences sampled from Wikipedia (detailed in Appendix E).

Since we found no advantage from using pretrained GPT2 information in the previous experiment,
we evaluate the use of the bidirectional pretrained language model, RoBERTa (Liu et al., 2019b),
since we expect bidirectional information to highly benefit performance (Strubell et al. (2017); Ak-
bik et al. (2018), among others). We also experiment with a higher-capacity tagging model, S-LG,
by adding more trainable Transformers (L = 4, A = 8, H = 1024) between the RoBERTa encod-
ings and down-projection layers.

From Table 2 we see that, like in the 10% labeled data setting, the CRF-VAE improves upon
the supervised model by 0.9% F1 in this 1% setting, but we find that including additional data
from Wikipedia has a negative impact. A likely reason for this is the domain mismatch between
Ontonotes5 and Wikipedia (news and encyclopedia, respectively).

In the high-resource setting, we find that using RoBERTa significantly improves upon GPT2 (+5.7%
F1) and the additional capacity of S-LG further improves performance by +2.2% F1. Although we
do not see a significant improvement from semi-supervised training with Wikipedia sentences, our
model is competitive with previous state-of-the-art NER approaches and outperforms all previous
approaches that do not use additional labeled data or gazetteers.

4 RELATED WORK

Utilizing unlabeled data for semi-supervised learning in NER has been studied considerably in the
literature. A common approach is a two-stage process where useful features are learned from un-
supervised data, then incorporated into models which are then trained only on the supervised data
(Fernandes & Brefeld, 2011; Kim et al., 2015). With the rise of neural approaches, large-scale
word vector (Mikolov et al., 2013; Pennington et al., 2014) and language model pretraining methods
(Peters et al., 2018; Akbik et al., 2018; Devlin et al., 2018) can be regarded in the same vein.
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Model |DS | |DU | α β P R F1
S 13K 0 - - 0.744 0.712 0.728

MT (Sim) 13K 82K 0.01 0.1 0.752 0.739 0.737
MT (Sim) + Wiki 13K 182K 0.01 0.1 0.746 0.721 0.733

Strubell et al. (2017) 82K 0 - - - - 0.869
Clark et al. (2018)† 82K >1M - - - - 0.888
Chen et al. (2019) 82K 0 - - 0.878 0.876 0.877

Akbik et al. (2018)† 95K 0 - - - - 0.891
Liu et al. (2019a)† 82K 0 - - - - 0.899

S (GPT2) 82K 0 - - 0.808 0.798 0.803
S 82K 0 - - 0.864 0.855 0.860

S-LG 82K 0 - - 0.873 0.892 0.882
MT-LG (Sim) + Wiki 82K 182K 0.1 0.01 0.880 0.890 0.884

Table 2: Low- and high-resource results with RoBERTa, varying available unlabeled data. Best
scores not using additional labeled data in bold. † Uses additional labeled data or gazetteers.

Another approach is to automatically create silver-labeled data using outside resources, whose low
recall induces a partially supervised learning problem. Bellare & McCallum (2007) approach the
problem by distantly supervising (Mintz et al., 2009) spans using a database. Carlson et al. (2009)
similarly use a gazetteer and adapt the structured perceptron (Collins, 2002) to handle partially
labeled sequences, while Yang et al. (2018) optimize the marginal likelihood (Tsuboi et al., 2008) of
the distantly annotated tags. Yang et al. (2018)’s method, however, still requires some fully labeled
data to handle proper prediction of the O tag. The problem setup from Jie et al. (2019) is the same as
our PSL regime, but they use a cross-validated self-training approach. Greenberg et al. (2018) use a
marginal likelihood objective to pool overlapping NER tasks and datasets, but must exploit dataset-
specific constraints, limiting the allowable latent tags to debias the model from never predicting O
tags.

Generative latent-variable approaches also provide an attractive approach to learning on unsuper-
vised data. Ammar et al. (2014) present an approach that uses the CRF for autoencoding and Zhang
et al. (2017) extend it to neural CRFs, but both require the use of a restricted factored generative
model to make learning tractable. Deep generative models of text have shown promise in recent
years, with demonstrated applications to document representation learning (Miao et al., 2016), sen-
tence generation (Bowman et al., 2015; Yang et al., 2017; Kim et al., 2018), compression (Miao
& Blunsom, 2016), translation (Deng et al., 2018), and parsing (Corro & Titov, 2018). However,
to the best of our knowledge, this framework has yet to be utilized for NER and tagging CRFs. A
key challenge for learning VAEs with discrete latent variables is optimization with respect to the
inference model parameters φ. While we may appeal to score function estimation (Williams, 1992;
Paisley et al., 2012; Ranganath et al., 2014; Miao & Blunsom, 2016), its empirical high-variance
gradients make successful optimization difficult. Alternatively, obtaining gradients with respect to
φ can be achieved using the relaxed Gumbel-max trick (Jang et al., 2016; Maddison et al., 2016)
and has been recently extended to latent tree-CRFs by (Corro & Titov, 2018), which we make use
of here for sequence CRFs.

5 CONCLUSIONS

We proposed a novel generative model for semi-supervised learning in NER. By treating a neural
CRF as the amortized variational posterior in the generative model and taking relaxed differentiable
samples, we were able to utilize a transformer architecture in the generative model to condition on
more context and provide appreciable performance gains over supervised and strong baselines on
both semi-supervised and partially-supervised datasets. We also found that inclusion of powerful
pretrained autoregressive language modeling states had neglible or negative effects while using a
pretrained bidirectional encoder offers significant performance gains. Future work includes the use
of larger in-domain unlabeled corpora and the inclusion of latent-variable CRFs in more interesting
joint semi-supervised models of annotations, such as relation extraction and entity linking.
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A RELAXED PERTURB-AND-MAP FOR LINEAR CHAIN CRFS

Let q̃φ(y|x; τ) be the distribution on y with the potentials ψ for each tag at each position perturbed

by Gumbel noise γ iid∼ G(0, 1) (Gumbel, 1954) and τ ≥ 0 be the temperature:

q̃φ(y|x; τ) =

exp
{

(
N∑
i=0

ψyi,yi+1 + γyi)/τ
}

∑
y′1:N

exp
{

(
N∑
i=0

ψy′i,y′i+1
+ γy′i)/τ)

}
We know from Papandreou & Yuille (2011) that the MAP sequence from this perturbed distribution
is a sample from the unperturbed distribution. Coupled with the property that the zero temperature
limit of the Gibbs distribution is the MAP state (Wainwright et al., 2008), it immediately follows
that the zero temperature limit of the perturbed q̃ is a sample from q:

ỹ = arg max
y∈Y

q̃φ(y|x; τ) (8)

lim
τ→0

qφ(y|x; τ) = one-hot(arg max
y∈Y

qφ(y|x)) (9)

⇒ lim
τ→0

q̃φ(y|x; τ) = one-hot(ỹ) (10)

where qφ(y|x; τ) is the tempered but unperturbed qφ and “one-hot” is a function that converts ele-
ments of YN to a one-hot vector representation.

Thus we can use the temperature τ to anneal the perturbed joint distribution q̃φ(y|x; τ) to a sample
from the unperturbed distribution, ỹ ∼ qφ. When τ > 0, q̃φ(y|x; τ) is differentiable and can
be used for end-to-end optimization by allowing us to approximate the expectation with a relaxed
single-sample Monte Carlo estimate:

Eqφ(y|x)[log pθ(x|y)] ≈ log pθ(x|q̃φ(y|x; τ)) (11)
where we have modified log pθ(x|y) to accept the simplex representations of y1:N from q̃φ instead of
discrete elements, which has the effect of log pθ(x|y) computing a weighted combination of its input
vector representations for y ∈ Y similarly to an attention mechanism or the annotation function in
Kim et al. (2017) (see Equation 7.)

This can be thought of as a generalization of the Gumbel-softmax trick from Jang et al. (2016);
Maddison et al. (2016) to structured joint distributions.

The statements in (8-10) also imply something of practical interest: we can compute (1) the argmax
(Viterbi decoding) and its differentiable relaxation; (2) a sample and its differentiable relaxation;
(3) the partition function; and (4) the marginal tag distributions, all using the same sum-product
algorithm implementation, controlled by the temperature and the presence of noise. We have detailed
the algorithm in Appendix B.

B CRF ALGORITHMS

In Algorithm 1 we have detailed the stable, log-space implementation of the generalized forward-
backward algorithm for computing (1) the argmax (Viterbi decoding) and its differentiable relax-
ation; (2) a sample and its differentiable relaxation; (3) the partition function; and (4) the marginal
tag distributions below. While this algorithm does provide practical convenience, we note that real
implementations should have separate routines for computing the partition function (running only
the forward algorithm), and the discrete τ = 0 Viterbi algorithm, since it is more numerically stable
and efficient.

We also have included the dynamic program for computing the constrained KL divergence between
qφ and a factored p(y) in Algorithm 2.

C CRF AUTOENCODER

The idea of using a CRF to reconstruct tokens given tags for SSL has been explored before by
Ammar et al. (2014); Zhang et al. (2017), which we consider to be a strong baseline and restate
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Algorithm 1 Relaxed, Constrained, Perturbed Forward-Backward
Notation: LSE

x
:= log

∑
x exp

Input: Local potentials Ψy1:N , transition potentials Ψy,y′ , perturb boolean, temperature τ , the spe-
cial start symbol and end symbols ∗, �, and the set of allowable tags for each position Yi ⊆ Y
(allows for partially observed/constrained sequences.)
Procedure:

1: logα[0, y]← ψ∗,y/τ, log β[N + 1, y]← ψy,�/τ . Initialize recursions bases
2: if perturb then
3: ψyi ← ψyi + γyi , γyi

iid∼ G(0, 1) . Perturb local potentials
4: end if
5: for i = 1, . . . , N do . Compute forward lattice
6: for y ∈ Yi do
7: logα[i, y]← LSE

y′∈Yi−1

(ψy′,y + ψy)/τ + logα[i− 1, y′]

8: end for
9: end for

10: for i = N, . . . , 1 do . Compute backward lattice
11: for y ∈ Yi do
12: log β[i, y]← LSE

y′∈Yi+1

(ψy,y′ + ψy)/τ + log β[i+ 1, y′]

13: end for
14: end for
15: µyi ← σYi

(
LSE

yi+1∈Yi+1

logα[i, yi] + (ψyi + ψyi,yi+1
)/τ + log β[i+ 1, yi+1]

)
. Tag marginals

Output:
If perturb then

Relaxed sample q̃φ(y|x; τ)← µy1:N . Converges to sample at τ = 0
Else if τ = 1 then

Partition function Z(ψ)←
∑

y′∈YN
exp{ψy′,� + logα[N, y′]}

Tag marginals qφ(y|x)← µy1:N
Else

Relaxed argmax qφ(y|x; τ)← µy1:N . Converges to Viterbi at τ = 0

Algorithm 2 Constrained KL
Notation: LSE

x
:= log

∑
x exp

Input: Local potentials Ψy1:N , transition potentials Ψy,y′ , prior distribution p(y1:N ) =
∏
p(yi), the

special start symbol and end symbols ∗, �, and the set of allowable tags for each position Yi ⊆ Y
(allows for partially observed/constrained sequences.)
Procedure:

1: logα[0, y]← ψ∗,y, KLα[0, y]← 0 ∀y ∈ Y1 . Initialize recursions bases
2: for i = 1, . . . , N do
3: for yi ∈ Yi do . Same as forward algorithm
4: logα[i, yi]← LSE

yi−1∈Yi−1

(ψyi−1,yi + ψyi) + logα[i− 1, yi−1]

5: end for
6: for yi+1 ∈ Yi+1 do . Compute KL lattice
7: q(yi|yi+1)← σYi(logα[i, yi] + ψyi,yi+1

+ ψyi+1
)

8: KLα[i, yi+1]←
∑
yi∈Yi

q(yi|yi+1)
[

log q(yi|yi+1)− log p(yi) + KLα[i− 1, yi]
]

9: end for
10: end for
Output: KL(q||p)← KLα[N, �]
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here for clarity. Termed the CRF Autoencoder, the model treats the the tags as intermediate latent
variables in a conditional model and optimizes the marginal conditional likelihood of reconstructing
the input.

log p(x̂|x) = log
∑
y1:N

pθ(x̂|y1:N )qφ(y1:N |x)

By judiciously choosing pθ(x̂|y) to be factored among positions i, we can compute the marginal
reconstruction likelihood exactly:

logp(x̂|x) = log
∑
y1:N

qφ(y1:N |x)

N∏
i=1

pθ(x̂i|yi)

= log
∑
y1:N

exp{
N∑
i=0

ψyi,yi+1 + log pθ(x̂i|yi)} − logZ(ψ)

= logZ(ψ + log pθ)− logZ(ψ) (12)

where logZ(ψ + log pθ) is a slight abuse of notation intended to illustrate that the first term in
Equation 12 is the same computation as the partition function, but with the generative log-likelihoods
added to the CRF potentials.

We note that instead of using the Mixed-EM procedure from Zhang et al. (2017), we model pθ(x̂i|yi)
using free logit parameters θx,y for each token-tag pair and normalize using a softmax, which allows
for end-to-end optimization via backpropagation and SGD.

D EXPERIMENT HYPERPARAMETER AND OPTIMIZATION SETTINGS

We train each model to convergence using early-stopping on the F1 score of the validation data, with
a patience of 10 epochs. For all models that do not have trainable transformers, we train using the
Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.001, and a batch size of 128. For
those with transformers (MT*), we train using Adam, a batch size of 32, and the Noam learning
rate schedule from Vaswani et al. (2017) with a model size of dyp = 300 and 16, 000 warm-up steps
(Popel & Bojar, 2018).

Additionally, we use gradient clipping of 5 for all models and a temperature of τ = .66 for all
relaxed sampling models. We implemented our models in PyTorch (Paszke et al., 2017) using the
AllenNLP framework (Gardner et al., 2018) and the Hugging Face (2019) implementation of the
pretrained GPT2 and RoBERTa.

We have made all code, data, and experiments available online at github.com/
<anonymizedforsubmission> for reproducibility and reuse. All experimental settings can
be reproduced using the configuration files in the repo.

E GATHERING ADDITIONAL UNLABELED DATA

For the experiments in §3.2, we gather an additional training corpus of out-of-domain encyclopedic
sentences from Wikipedia. To try to get a sample that better aligns with the Ontonotes5 data, these
sentences were gathered with an informed process, which was performed as follows:

1. Using the repository <anonymized for submission>, we extract English Wikipedia and
align it with Wikidata.

2. We then look up the entity classes from the Ontonotes5 specification (Hovy et al., 2006)
in Wikidata and, for each NER class, find all Wikidata classes that are below this class in
ontology (all subclasses).

3. We then find all items which are instances of these classes and also have Wikipedia pages.
These are the Wikipedia entities which are likely to be instances of the NER classes.
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4. Finally, we scan Wikipedia, mapping any available links to these NER classes, and keep
the top 100K sentences according to the number of found annotations/token – the most
”densely” annotated sentences.
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