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ABSTRACT

The inference of Gaussian Processes concerns the distribution of the underlying
function given observed data points. GP inference based on local ranges of data
points is able to capture fine-scale correlations and allow fine-grained decompo-
sition of the computation. Following this direction, we propose a new inference
model that considers the correlations and observations of the K nearest neigh-
bors for the inference at a data point. Compared with previous works, we also
eliminate the data ordering prerequisite to simplify the inference process. Addi-
tionally, the inference task is decomposed to small subtasks with several technique
innovations, making our model well suits the stochastic optimization. Since the
decomposed small subtasks have the same structure, we further speed up the infer-
ence procedure with amortized inference. Our model runs efficiently and achieves
good performances on several benchmark tasks.

1 INTRODUCTION

Gaussian processes (GP) (Rasmussen & Williams, 2006) are flexible non-parametric models with
a wide range of applications. GP poses a Gaussian prior over function values f and assumes ob-
servations y are generated independently given f . GP inference considers the calculation of the
posterior of these function values (Matthews et al., 2016) given observations, namely p(f |y). Direct
computation of the posterior is often intractable on large datasets, motivating people to consider its
approximations. Variational inference (Jordan et al., 1999; Blei et al., 2017) for GP (Rasmussen &
Williams, 2006) has achieved great successes recently. Variational inference constructs a variational
distribution, which is usually a multivariate Gaussian distribution, to approximate the posterior. The
approximation is done by minimizing the KL divergence from the posterior to the variational dis-
tribution (Blei et al., 2017). The variational distribution is often constructed with some special
structures to reduce the number of variational parameters and speed up the computation.

Inducing-point methods (Quiñonero-Candela & Rasmussen, 2005; Titsias, 2009; Hensman et al.,
2013; 2015) define variational distributions on a small numberM of inducing points and then derive
the distribution of non-inducing points conditioned on these inducing points. Inducing points sum-
marize the entire posterior distribution, and their number M balances the computational cost and
the quality of the approximation. Inducing-point methods are further improved in several directions,
such as generic inference for non-Gaussian likelihoods (Sheth et al., 2015; Dezfouli & Bonilla, 2015;
Krauth et al., 2016; Hensman et al., 2015), inter-domain and subspace inducing points (Hensman
et al., 2017; Panos et al., 2018), and decoupled approximation with two different sets of inducing
points (Cheng & Boots, 2017; Salimbeni et al., 2018). Burt et al. (2019) provide theoretical analysis
to show that a relatively small M is sufficient to produce a reliable variational approximation when
the input dimension is low.

While inducing-point methods capture global correlations among data points through inducing
points, inference methods based on local neighbors focus more on correlation structures at local
scales. These methods consider only local-range dependencies to save computation because local-
range correlations are often much stronger than distant ones. Nguyen-Tuong et al. (2009); Park &
Apley (2018) partition the input space into subregions, fit local models over subregions and then
stitch local models into one. Other works examine neighbors of each data point directly. Gramacy
& Apley (2015) investigate the properties of GP predictive equation and construct a local predictive
approximator. Covariance tapering (Furrer et al., 2006; Kaufman et al., 2008) gains computational
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efficiency by constructing a sparse correlation matrix with zero correlations between distant data
points. Methods based on Vecchia’s approximation (Vecchia, 1988; Datta et al., 2016; Liu & Liu,
2019; Finley et al., 2019) decompose the joint probability of data points into conditionals according
to a data ordering and then neglect far data points that are conditioned on.

Recently, Liu & Liu (2019) propose the AIGP method, which extends the idea of local inference to
GP models with non-Gaussian likelihoods. They use directed graphical models to approximate both
the prior and the posterior. With this construction, the inference task decomposes into local inference
subtasks, then they introduce amortized inference and use inference networks to identify solutions to
these subtasks (Kingma & Welling, 2013; Dai et al., 2015; Miao et al., 2016). Amortization reduces
the number of optimization parameters and greatly speeds up the inference procedure. However,
this method has two drawbacks. First, the inference at a data point considers a few of its nearest
neighbors but not all of them; therefore, it may lose some important correlations. Second, it depends
on a data ordering. A bad ordering often deteriorates the performance, but it is hard to guard against
such a bad situation. There are no easy fixes of the two issues, because all these designs in AIGP
serve the purpose of decomposition.

In this work, we propose a new GP inference method, Localized and Amortized Inference based
on Nearest neighbors (LAIN). LAIN considers K nearest neighbors for the inference at each data
point. Particularly, LAIN uses a variational distribution whose covariance is parameterized by a
sparse decomposition. The decomposition focuses on the correlations between every data point and
its K nearest neighbors 1. LAIN also eliminates the need for a data ordering. These nice properties
come after several technical innovations. First, the new distribution does not admit a decomposable
entropy calculation. We overcome this difficulty by using a decomposable lower bound of the en-
tropy (Ranganath et al., 2016; Louizos & Welling, 2017). Second, to decompose the logarithm of
the prior, AIGP and previous methods use a directed graphical model as an approximation of the
prior. We follow this idea, but we consider all possible orderings of data points and collapse them
to local combinations, making the computation manageable. With these techniques, LAIN still de-
composes the inference task into subtasks, so amortized inference can apply. It is worthing noting
that subtasks in LAIN are generated from the same mechanism while those in AIGP are not. We
argue that subtasks sharing the same “distribution” are more appropriate for amortization.

Our empirical evaluations show that the LAIN method outperforms baseline methods including
AIGP in several learning tasks. Our investigation also indicates that LAIN can achieve decent per-
formance even only a few neighbors are considered.

2 BACKGROUND

Gaussian Processes. Suppose we have a dataset containing a feature matrix X = (xi)
N
i=1 and

observations y = (yi)
N
i=1. We assume there is a latent function f that generates yi from xi for

each i. Particularly, each yi is generated by a likelihood model p(yi|fi) with fi = f(xi). Denote
f = (fi)

N
i=1, then p(y|f) =

∏N
i=1 p(yi|fi). The likelihood p(yi|fi) can be very general – here we

only assume that log p(yi|fi) is differentiable with respect to fi. This mild assumption allows a wide
range of data distributions. For example, if yi is binary, p(yi|fi) is a Bernoulli distribution with fi
as the logit.

We put a GP prior with a mean function ν(·) and a kernel function κ(·, ·) over the latent function
f . The kernel function encodes the prior knowledge of the smoothness of f . One commonly used
kernel function is the Radial Basis Function (RBF) kernel, κ(xi,xj) = r2 exp(−0.5‖xi−xj‖22/σ2),
with r and σ as parameters. With this prior, function values in f follow a multivariate Gaussian, f ∼
N (ν,Σ), with the mean ν = (ν(xi))

N
i=1 and the covariance matrix Σ with Σi,j = κ(xi,xj) ∀i, j.

GP inference concerns the calculation of the posterior p(f |y) (Matthews et al., 2016), from which we
can infer the function value f? for any new input x? with integral

∫
f
p(f?|f)p(f |y)df . The posterior

p(f |y) is generally not tractable, so we appeal to approximate inference.

Variational Inference for GP. Variational inference approximates the posterior p(f |y) with a vari-
ational distribution q(f), which is defined as a multivariate Gaussian distribution, q(f) ∼ N (µ,V).

1We use the term “nearest neighbors” for easy reference, but we actually considerK most correlated neigh-
bors in the prior. When the kernel is based on some distance metrics, then they are K nearest neighbors.

2



Under review as a conference paper at ICLR 2020

y1 ε1 L11 µ1 f1

y2 ε2 L21 µ2 f2

y3 ε3 L31
µ3 f3

L12

L22
+ =GCNs

L32

prior kernel observations white noise variational mean variational samples

Figure 1: The structure of the variational distribution. The left box shows the amortization, which fits µi-s and
Rij-s from their related prior kernel and observations. The right part shows the generation process of fi-s.

The inference is carried out by maximizing the Evidence Lower BOund (ELBO) with respect to q(f)
(Blei et al., 2017).

log p(y|X) ≥ max
q(f)

Eq [log p(y|f)]︸ ︷︷ ︸
Lell

+Eq [log p(f)]︸ ︷︷ ︸
Lcross

−Eq [log q(f)]︸ ︷︷ ︸
Lent

(1)

Here we name the three terms in the ELBO for easy reference later. Typically the ELBO is maxi-
mized by gradient-based optimization, preferably stochastic gradient optimization when N is large.
Direct optimization of the ELBO is challenging, since the kernel matrix Σ and the variational co-
variance V are both large and have size N ×N .

Inducing-point methods define q(f) =
∫
fI
q(fI)p(f |fI) dfI , where q(fI) is the distribution over

inducing points I , and p(f |fI) is derived from the prior. The computation is reduced mainly because
only the small distribution q(fI) is optimized, while the conditional p(f |fI) is fixed when the prior
is given.

AIGP parameterizes V by a Cholesky decomposition, V = LL>. Here L is a sparse lower trian-
gular matrix, and each row of L has at most K non-zero entries. AIGP uses a triangular L for easy
entropy computation. It also approximates log p(f) with a directed graphical model. Both the lower
triangular matrix L and the directed graph require an ordering of data points.

3 METHOD

3.1 THE VARIATIONAL DISTRIBUTION

Following previous works, we also define the variational distribution q(f) to be a multivariate Gaus-
sianN (µ,V). We parameterize V = RR>+δ2I with R being a sparse matrix and δ being a small
constant. Note that we do not require R to be triangular. The sparse pattern of R is decided by the
nearest neighbors: Rij 6= 0 only when j ∈ n(i). Here n(i) is the neighbor set containing data points
that have the largest covariance with i in the prior (by definition n(i) includes i). In this work, we
fix the size of n(i) to be K, though our derivation works for varied sizes of n(i). The row Ri can
be viewed as a representation of fi in the variational distribution: Ri informs fi’s correlation with
other function values, just like a word embedding informs its relation with other words (Mikolov
et al., 2013).

Efficient sampling from the marginal is critical for the decomposition of the ELBO later. Owing to
the sparse decomposition of the covariance matrix, we can cheaply draw marginal samples for an
fi from q(f) with a linear transformation of white noise. The sampling scheme is shown in (2) and
pictured in the right part of Figure 1.

fi = µi + Ri ε + δξ = µi + Ri,n(i) εn(i) + δξ, ε ∼ N (0, I), ξ ∼ N (0, 1). (2)

The constructed distribution q(f) well approximates the strong correlations in the prior. From (2),
fi and fj correlate in q(f) by sharing noise entries in n(i)∩n(j) when the intersection is not empty.
In this case, either fi neighbors fj , or fj neighbors fi, or fi, fj share common neighbors. When
the neighbor sets are large enough, most strong correlations will be approximated by some non-zero
entries in V.
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3.2 OPTIMIZATION OF THE ELBO

We optimize the ELBO in (1) to find a good q(f) to approximate the GP posterior. To apply stochas-
tic optimization, we will decompose the three terms in the ELBO. We mainly consider the decom-
position of Lcross and Lent, as the decomposition of Lell is easy.

We first decompose the cross entropy Lcross. By convention, the GP prior has a zero mean. Though
there is a closed-form calculation of Lcross with both q(f) and p(f) being multivariate Gaussian,
it involves expensive calculations of det(Σ) and Σ−1. Previous works approximate the prior with
Vecchia’s method for easy decomposition and good approximation (Vecchia, 1988; Stein et al., 2004;
Datta et al., 2016; Liu & Liu, 2019; Finley et al., 2019). The idea is to build a directed graphical
model and approximate p(f) ≈

∏N
i=1 p(fi|fα(i)) with α(i) being a small parent set of i. In the

original work, Vecchia (1988) first set an order to data points and then choose α(i) as the K nearest
parents of i. But it is not easy to guarantee a good ordering of data points (Banerjee et al., 2014;
Guinness, 2018). Here we consider all possible orderings and take the average of approximations to
address the data ordering concern.

We estimate Lcross as follows. First, we randomly sample a parent set n′(i) ⊂ n(i) with i /∈
n′(i) for each i. Then we approximate the log-prior by log p(f) ≈

∑N
i=1 log p(fi|fn′(i)), with the

conditional distribution p(fi|fn′(i)) derived from the joint Gaussian p(fi, fn′(i)) in the prior. Then
Lcross is estimated by a random batch of terms. The complete calculation is given as

Lcross ≈ L̃cross =
N

|S|
∑
i∈S

Eq(fi,fn′(i))
[

log p(fi|fn′(i))
]
, random set n′(i) ⊂ n(i). (3)

Here S is a random batch of data points.

Now we justify that this is an average over all data orderings. Suppose there is a data order π(·),
such that we can define a directed graphical model over p(f) by assigning every i a parent set
n′π(i) = {j : j ∈ n(i), π(j) < π(i)}. Denote Π as all permutations of N data points, with each
permutation inducing a graphical model. The average of the log densities of all graphical models
can be collapsed to the average computed from local neighborhoods. Denote Πn(i) as permutations
of indices in the set n(i), then we have

1

N !

∑
π∈Π

N∑
i=1

Eq(fi,fn′π(i))

[
log p(fi|fn′π(i))

]
=

N∑
i=1

1

K!

∑
π∈Πn(i)

Eq(fi,fn′π(i))

[
log p(fi|fn′π(i))

]
. (4)

Here we only need to consider permutations of data points within n(i) for each i. Then we obtain (3)
by estimating the inner summation by a single random permutation of n(i) and the outer summation
by a random batch S.

We then decompose the entropy Lent. The entropy of q(f) requires the expensive computation of
det(V). To circumvent this difficulty, we find a decomposable lower bound of the entropy by using
an auxiliary distribution (Ranganath et al., 2016; Louizos & Welling, 2017). Note that we always
prefer a lower bound of the objective in this maximization problem. With an arbitrary distribution
r(ε|f), a lower bound of Lent is

Lent = −Eq [log q(f)] ≥ −Eq(f ,ε) [log q(f |ε) + log q(ε)− log r(ε|f)] . (5)
The bound is tight when r(ε|f) matches q(ε|f). In this work, we try to let r(ε|f) match q(ε|f).
Particularly, we set r(ε|f) =

∏
i q(εi|fn(i)), where the conditional q(εi|fn(i)) is derived from the

joint Gaussian distribution q(εi, fn(i)). Then all terms in the lower bound in (5) are Gaussian log-
likelihoods and are decomposable over data points. We can then reach the estimation of the entropy
lower bound with a batch of data points.

Lent ≥ L̃ent = −1

2

N

|S|
∑
i∈S

log
(

1−R>n(i),i

(
Rn(i),:R

>
n(i),:

)−1

Rn(i),i

)
+ const. (6)

We finally decompose the likelihood Lell. The likelihood term log p(y|f) naturally decomposes
because yi-s are conditionally independent given fi-s.

Lell =

N∑
i=1

Eq(fi) [log p(yi|fi)] , L̃ell =
N

|S|
∑
i∈S

log p(yi|f̂i). (7)
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Here for each term i in the summation, the expectation is estimated by a Monte Carlo sample f̂i from
q(fi). The gradients of variational parameters are propagated through f̂i via reparameterization
(Kingma & Welling, 2013).

Finally, the ELBO has a decomposable approximation L̃ell + L̃cross + L̃ent to enable efficient
stochastic optimization. From the derivations above, we see the objective can be decomposed by data
points. The computation for a data point only involves itself and its K nearest neighbors. Therefore,
each stochastic gradient calculation takes time only O(K3). There are N(K + 1) parameters in µ
and R to optimize, so the optimization takes at least O(N) time. We further reduce the number of
parameters by amortizing the cost through a shared inference model, taking advantage of the fact
that the inference for each data point i only needs its K nearest neighbors.

3.3 AMORTIZED INFERENCE

Following AIGP, we also apply amortized inference to GP inference. Particularly, we train an infer-
ence network to identify variational parameters (µi and Ri,n(i)) for each data point i. Since node
correlations at a neighborhood can be easily treated as a weighted graph, we use Graph Convolu-
tional Networks (GCNs) (Kipf & Welling, 2017) as our inference network.

A GCN takes an adjacency matrix A ∈ Rk×k of graph and the node features H(0) ∈ Rk×d0 as the
input and then makes predictions for all graph nodes. Let Ā be the normalized adjacency matrix,
Ā = D−

1
2 AD−

1
2 , with D being the diagonal degree matrix. A GCN layer ` with the input H(`−1)

is defined by H(`) = g`(H
(`−1),A) := σ

(
ĀH(`−1)W(`)

)
. Here W(l) ∈ Rd`−1×d` is the weight

matrix of the layer `. σ(·) is the activation function. An L-layer GCN computes its output by
H = gcn(H0,A) := gL(. . . g1(H0,A) . . . ,A). We use two GCNs for the inference task, gcn1 for
the calculation of µi and gcn2 for Ri,n(i):

µi = a>gcn1

(
[yn(i), ei],Σn(i),n(i)

)
,Ri,n(i) = gcn2

(
[yn(i), ei],Σn(i),n(i)

)
. (8)

Here we use Σn(i),n(i) as the adjacency matrix and stack the observation yn(i) and the one-hot vector
ei as the input feature. The vector ei indicates the element i for which the inference is running for.
We choose the activation σ(·) to be ReLU for intermediate layers and identity for the last layer. The
last layer of each GCN has size 1 to output a K × 1 vector. a is an averaging vector with all K
elements as 1

K . The dashed box in Figure 1 shows the amortization.

LAIN defines an inference subtask on a data point and its nearest neighbors, while AIGP defines
a subtask on a data point and its parents. Due to this difference, LAIN has two advantages. First,
the inference network of LAIN uses the observations from all the K nearest neighbors, while the
inference network of AIGP uses observations from parents only but not children. Second, inference
subtasks of LAIN are generated with the same mechanism because the nearest-neighbor relationship
is homogeneous across all data points. However, the parent-child relationship in AIGP depends on
the ordering of data points (e.g. the first one in the order does not have parents). As a learning
model, the inference network prefers subtasks from the same “distribution”.

The computational cost of GCN is O(K2) by treating the network size as constant. The complex-
ity of one gradient calculation is O(K3). The optimization procedure converges fast since it only
optimizes a constant number of variational parameters. In practice, we often observe that the op-
timization procedure converges in less than one epoch, which is not possible for methods without
amortization. Finding nearest neighbors is the only step with running time bounds to the data size,
but it only needs one run and is often fast on medium to large data sizes. If the data has a very large
size, we can use k-d trees for low-dimensional data and approximate algorithms (Arya et al., 1998;
Datar et al., 2004) for high dimensional data.

3.4 PREDICTION

For a new data point x? with its K nearest neighbors n(?) in the prior, the predictive distribution is

p(y?|x?,X,y) ≈
∫
f?

p(y?|f?)q(f?|x?,Xn(?),yn(?))df? ≈
1

|F |
∑
f̂?∈F

p(y?|f̂?). (9)
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Figure 2: The first two plots compare predictive distributions of full GP and LAIN with K = 10. The right
three plots show how SVGP, AIGP, and LAIN perform with a very small number of inducing points/neighbors.
Data points in blue circles are not well fitted.

Here q(f?|x?,Xn(?),yn(?)) =
∫
fn(?)

p(f?|fn(?))q(fn(?))dfn(?) is a Gaussian with parameters,

µ? = b?µn(?), σ2
? = Σ?,? −Σ?,n(?)b

>
? + b?(Rn(?)R

T
n(?))b

>
? , (10)

with b? = Σ?,n(?)Σ
−1
n(?),n(?). F is a set of Monte Carlo samples from q(f?|x?,Xn(?),yn(?)) . The

Monte Carlo estimation is accurate since the integral is one-dimensional.

4 EXPERIMENT

We compare our method with five state-of-the-art methods: SVGP (Hensman et al., 2015), SAVIGP
(Dezfouli & Bonilla, 2015), DGP (Cheng & Boots, 2017), VFF (Hensman et al., 2017), and AIGP
(Liu & Liu, 2019). The first three methods are based on inducing points, VFF uses inter-domain
inducing points, and AIGP uses local neighbors. Through all experiments, we use RBF as the
default kernel, except for VFF we use Mat́ern- 3

2 kernel (the code does not provide RBF kernel). We
use the implementation of SVGP from GPFlow (Matthews et al., 2017), the implementation of DGP
from Faust (2018), and implementations of all other algorithms from their authors.

For SVGP, SAVIGP, and VFF, we vary the number of inducing points, M ∈ {200, 1000, 2000},
to check their performances. DGP has separate inducing points for mean approximation and those
for variance approximation. We use 256 inducing points for variance approximation and vary the
number of inducing points for mean approximation from 200 to 2000. We vary the number of
neighbors, K ∈ {10, 20, 40}, for AIGP and LAIN. GCNs used in these two methods have three
hidden layers with dimensions [20, 10, 1]. We randomly split each dataset into training (75%) and
testing (25%) and report both the predictive performance on the test set and the inference running
time. To save the space, we report results from two settings for each competing method: one setting
isM = 200 orK = 10, with which all methods have their fastest speed (marked byE), and another
setting giving the best predictive performance (marked by X).

4.1 A TOY EXAMPLE

In this section, we test different methods on a one-dimensional toy example studied in (Snelson &
Ghahramani, 2006). The dataset contains 200 data points, shown as black dots in figure 2. We
assume Gaussian likelihood in this experiment and run exact inference as the baseline. A smaller
GCN (hidden dimensions [10, 5, 1]) is used in this task.

The predictive mean and variance from the exact inference and LAIN with K = 10 are shown in
the first two plots of Figure 2. The result of LAIN is very similar to that of exact inference, except
that the mean curve of LAIN is less smooth, which does not really hurt the predictive performance.

We test different methods with very small M and K and observe how they behave. We are likely
to face this situation when we work on large datasets in high-dimensional spaces. The last three
plots of Figure 2 exhibit predictive distributions of SVGP with M = 2 inducing points, AIGP with
K = 2 parents, and LAIN with K = 2 nearest neighbors. When there are not enough inducing
points, SVGP over-smooths the prediction and performs poorly for a good fraction of data points.
AIGP does not have a good predictive mean either, because under a random ordering the directed
graph constructed by AIGP cannot well capture neighboring relations. The predictive mean of LAIN
does not deviate far from the ground-truth in the area with training instances, though the curve is
rugged due to local variations.
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Table 1: Comparison on the eBird dataset.

Method Config Pred NLL Time

SVGP M=200 E 1.90±.03 107s
M=1000 X 1.88±.02 4.5ks

SAVIGP M=200 E 2.04±.03 167s
M=2000 X 1.99±.03 50ks

VFF M=200 E 1.91±.02 1.3ks
M=2000 X 1.91±.02 13ks

DGP M=200 E 1.82±.02 96s
M=2000 X 1.80±.02 213s

AIGP K=10 E 1.79±.05 45s
K=20 X 1.71±.05 125s

LAIN
K=10 1.69±.03 55s
K=20 1.65±.03 384s
K=40 1.60±.02 1.3ks

Table 2: Comparison on the precipitation dataset.

Method Config Pred NLL Time

SVGP M=200 E 1.57±.03 2.5ks
M=2000 X 1.28±.03 42ks

SAVIGP M=200 E 1.70±.02 2.8ks
M=2000 X 1.58±.02 50ks

VFF M=200 E 1.54±.03 9.1ks
M=2000 X 1.53±.03 32ks

DGP M=200 E 1.07±.05 402s
M=2000 X 1.00±.05 889s

AIGP K=10 E 0.96±.03 155s
K=10 X 0.96±.03 155s

LAIN
K=10 0.74±.05 129s
K=20 0.72±.05 903s
K=40 0.69±.04 2.3ks
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Figure 3: ELBO trajectories of LAIN with
and without inference networks.

Table 3: Comparison on the MNIST dataset.

Method Config Pred NLL Accuracy Time

SVGP M=200 E 0.053±.004 98.4 623s
M=1000 X 0.051±.004 98.5 23ks

SAVIGP M=200 E 0.339±.008 51.7 6.5ks
M=200 X 0.339±.008 51.7 6.5ks

DGP M=200 E 0.059±.005 98.1 292s
M=2000 X 0.052±.005 98.3 2.1ks

AIGP K=10 E 0.293±.002 98.0 3.9ks
K=40 X 0.215±.003 98.2 24ks

LAIN
K=10 0.053±.003 98.9 128s
K=20 0.050±.003 99.0 632s
K=40 0.051±.003 99.1 2.9ks

KNN
K=9 N.A. 98.6 24s

K=19 N.A. 98.3 26s
K=39 N.A. 97.6 28s

4.2 BIRD ABUNDANCE ESTIMATION

In this experiment, we estimate the spatial abundance of a bird species (Savannah Sparrow) using
eBird dataset (Munson et al., 2015). The dataset has 14,393 observations, each of which is a reported
bird count at a GPS location. We model the observed counts with GPS locations as the input. We
set the likelihood to be a Poisson distribution, with rate given by λi = exp(fi).

We compare different inference methods in terms of Negative predictive Log-Likelihood (NLL,
the smaller the better predictive performance). Table 1 shows the results. We can see that LAIN
achieves the best predictive performance at K = 40. Methods based on inducing points generally
perform worse. In this dataset, observations have strong correlations in local areas, but inducing
points are not efficient to capture the posterior at such a fine scale. In terms of running speed, LAIN
is comparable to AIGP and DGP but faster than other methods. In our experiment, we have also
tried to increase inducing points for DGP, but it does not improve its performance.

In this experiment, we also investigate whether inference networks work correctly. We run LAIN
without inference networks and optimize µ and L for the variational distribution directly. Then
we compare LAIN models with and without inference networks by checking their optimization
procedure. In this task, we fix hyperparameters, so the two methods solve a pure inference problem.
Figure 3 is the trace plot of the negative ELBO versus training epochs. The figure shows the ELBO
of the two LAIN models eventually converge to very similar values, though the ELBO without
inference networks is slightly better after 50 epochs (likely due to the amortization gap). LAIN with
inference networks significantly reduces the number of optimization epochs – the inference networks
are well trained after only 0.01 epoch (about 100 iterations). In summary, the result indicates that
inference networks can effectively identify the variational parameters using local information.
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4.3 PRECIPITATION LEVEL ESTIMATION

In this task, we evaluate LAIN on a rainfall dataset. We process the precipitation dataset (Climate
Data Online) and obtain the average precipitation level in May at 8,832 stations that are spatially
distributed in the US. The GP inputs are GPS locations of these stations, and the observations are
the average precipitation levels. We use the log-normal distribution as the likelihood, with its mean
as function value f from GP and variance as a hyperparameter learned from the data.

Table 2 summaries the experimental results. LAIN has better predictive performance, and its running
speed is comparable to or faster than other methods.

We also analyze the goodness of our prior approximation since we can compute the exact Lcross
on this dataset. We compute Lcross with the optimized q(f) distribution as well as L̃cross. The
true value Lcross and the approximation L̃cross are: 5,465 versus 5,396 when K = 10, 9,905
versus 8,490 when K = 20, and 10,086 versus 9,009 when K = 40. This result indicates that the
approximation L̃cross is relatively accurate. Furthermore, L̃cross tends to be smaller than the true
value and can be considered as a lower bound in such cases.

4.4 HAND-WRITTEN DIGIT CLASSIFICATION

In this experiment, we explore a high-dimensional inference problem, GP classification of MNIST
digits (LeCun & Cortes, 2010). We consider a binary classification on handwritten images of 5 and 8.
To make performance values of different methods more differentiable, we randomly choose a subset
of size 7,858 from the original dataset. Pixel values are normalized to [0,1] in the preprocessing
step. In the results, we also report the accuracy obtained by different methods.

The results are shown in Table 3. We see that LAIN performs the best in terms of classification
accuracy. Its predictive NLL and running speed also overperform competing methods, though not
very significant. We also observe that AIGP makes less confident predictions than other methods,
which accounts for its worse predictive NLL but high accuracy. We do not report results from VFF
due to memory issues.

We also examine KNN in this experiment. From the results, we notice that a small number of
neighbors are often sufficient for KNN and LAIN models to perform well. By checking the running
time of KNN, we also see that the time of finding nearest neighbors is only a small fraction of the
total inference time on this dataset. There are slight differences regarding the test accuracy between
KNN and LAIN, presumably due to different weighting schemes: LAIN weights different nearest
neighbors according to their correlations, while KNN treats all nearest neighbors uniformly.

5 CONCLUSION

In this work, we propose a novel approach for GP inference. We construct a variational distribution
that has a sparse decomposition on its covariance matrix. With this distribution, function value at
a data point is inferred from its nearest neighbors, encouraging the inference efficiently focuses on
approximating strong correlations posed by the prior. The proposed variational distribution is ex-
pressive to approximate the GP posterior and also provides a decent structure for efficient ELBO
optimization. We further decompose the ELBO into homogeneous subtasks and therefore enable
stochastic optimization. Finally, we devise inference networks to perform these subtasks and signif-
icantly reduce the number of variational parameters. Our proposed method performs well in terms
of predictive performance and running speed on a series of benchmark tasks.
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