
Approximating Real-Time Recurrent Learning with
Random Kronecker Factors

Asier Mujika ∗
Department of Computer Science

ETH Zürich, Switzerland
asierm@inf.ethz.ch

Florian Meier
Department of Computer Science

ETH Zürich, Switzerland
meierflo@inf.ethz.ch

Angelika Steger
Department of Computer Science

ETH Zürich, Switzerland
steger@inf.ethz.ch

Abstract

Despite all the impressive advances of recurrent neural networks, sequential data is
still in need of better modelling. Truncated backpropagation through time (TBPTT),
the learning algorithm most widely used in practice, suffers from the truncation bias,
which drastically limits its ability to learn long-term dependencies.The Real-Time
Recurrent Learning algorithm (RTRL) addresses this issue, but its high computa-
tional requirements make it infeasible in practice. The Unbiased Online Recurrent
Optimization algorithm (UORO) approximates RTRL with a smaller runtime and
memory cost, but with the disadvantage of obtaining noisy gradients that also limit
its practical applicability. In this paper we propose the Kronecker Factored RTRL
(KF-RTRL) algorithm that uses a Kronecker product decomposition to approximate
the gradients for a large class of RNNs. We show that KF-RTRL is an unbiased and
memory efficient online learning algorithm. Our theoretical analysis shows that,
under reasonable assumptions, the noise introduced by our algorithm is not only
stable over time but also asymptotically much smaller than the one of the UORO
algorithm. We also confirm these theoretical results experimentally. Further, we
show empirically that the KF-RTRL algorithm captures long-term dependencies
and almost matches the performance of TBPTT on real world tasks by training
Recurrent Highway Networks on a synthetic string memorization task and on
the Penn TreeBank task, respectively. These results indicate that RTRL based
approaches might be a promising future alternative to TBPTT.

1 Introduction

Processing sequential data is a central problem in the field of machine learning. In recent years,
Recurrent Neural Networks (RNN) have achieved great success, outperforming all other approaches in
many different sequential tasks like machine translation, language modeling, reinforcement learning
and more.

Despite this success, it remains unclear how to train such models. The standard algorithm, Truncated
Back Propagation Through Time (TBPTT) [19], considers the RNN as a feed-forward model over
time with shared parameters. While this approach works extremely well in the range of a few hundred
time-steps, it scales very poorly to longer time dependencies. As the time horizon is increased, the

∗Author was supported by grant no. CRSII5_173721 of the Swiss National Science Foundation.

Preprint. Work in progress.

ar
X

iv
:1

80
5.

10
84

2v
1

 [
cs

.L
G

]
 2

8
M

ay
 2

01
8

parameters are updated less frequently and more memory is required to store all past states. This
makes TBPTT ill-suited for learning long-term dependencies in sequential tasks.

An appealing alternative to TBPTT is Real-Time Recurrent Learning (RTRL) [20]. This algorithm
allows online updates of the parameters and learning arbitrarily long-term dependencies by exploiting
the recurrent structure of the network for forward propagation of the gradient. Despite its impressive
theoretical properties, RTRL is impractical for decently sized RNNs because run-time and memory
costs scale poorly with network size.

As a remedy to this issue, Tallec and Ollivier [17] proposed the Unbiased Online Recurrent Learning
algorithm (UORO). This algorithm unbiasedly approximates the gradients, which reduces the run-
time and memory costs such that they are similar to the costs required to run the RNN forward.
Unbiasedness is of central importance since it guarantees convergence to a local optimum. Still, the
variance of the gradients slows down learning.

Here we propose the Kronecker Factored RTRL (KF-RTRL) algorithm. This algorithm builds up on
the ideas of the UORO algorithm, but uses Kronecker factors for the RTRL approximation. We show
both theoretically and empirically that this drastically reduces the noise in the approximation and
greatly improves learning. However, this comes at the cost of requiring more computation and only
being applicable to a class of RNNs. Still, this class of RNNs is very general and includes Tanh-RNN
and Recurrent Highway Networks [21] among others.

The main contributions of this paper are:

• We propose the KF-RTRL online learning algorithm.
• We theoretically prove that our algorithm is unbiased and under reasonable assumptions the

noise is stable over time and asymptotically by a factor n smaller that the noise of UORO.
• We test KF-RTRL on a binary string memorization task where our networks can learn

dependencies of up to 36 steps.
• We evaluate on character-level Penn TreeBank, where the performance of KF-RTRL almost

matches the one of TBPTT for 25 steps.
• We empirically confirm that the variance of KF-RTRL is stable over time and that increasing

the number of units does not increase the noise significantly.

2 Related Work

Training Recurrent Neural Networks for finite length sequences is currently almost exclusively done
using BackPropagation Through Time [16] (BPTT). The network is "unrolled" over time and is
considered as a feed-forward model with shared parameters (the same parameters are used at each
time step). Like this, it is easy to do backpropagation and exactly calculate the gradients in order to
do gradient descent.

However, this approach does not scale well to very long sequences, as the whole sequence needs to
be processed before calculating the gradients, which makes training extremely slow and very memory
intensive. In fact, BPTT cannot be applied to an online stream of data. In order to circumvent this
issue, Truncated BackPropagation Through Time [19] (TBPTT) is used generally. The RNN is only
"unrolled" for a fixed number of steps (the truncation horizon) and gradients beyond these steps are
ignored. Therefore, if the truncation horizon is smaller than the length of the dependencies needed to
solve a task, the network cannot learn it.

Several approaches have been proposed to deal with the truncation horizon. Anticipated Reweighted
Truncated Backpropagation [18] samples different truncation horizons and weights the calculated
gradients such that the expected gradient is that of the whole sequence. Jaderberg et al. [6] proposed
Decoupled Neural Interfaces, where the network learns to predict incoming gradients from the future.
Then, it uses these predictions for learning. The main assumption of this model is that all future
gradients can be computed as a function of the current hidden state.

A more extreme proposal is calculating the gradients forward and not doing any kind of BPTT. This is
known as Real-Time Recurrent Learning [20] (RTRL). RTRL allows updating the model parameters
online after observing each input/output pair; we explain it in detail in Section 3. However, its large
running time of order O(n4) and memory requirements of order O(n3), where n is the number of

2

units of a fully connected RNN, make it unpractical for large networks. To fix this, Tallec and Ollivier
[17] presented the Unbiased Online Recurrent Optimization (UORO) algorithm. This algorithm
approximates RTRL using a low rank matrix. This makes the run-time of the algorithm of the same
order as a single forward pass in an RNN, O(n2). However, the low rank approximation introduces a
lot of variance, which negatively affects learning as we show in Section 5.

Other alternatives are Reservoir computing approaches [9] like Echo State Networks [7] or Liquid
State Machines [10]. In these approaches, the recurrent weights are fixed and only the output
connections are learned. This allows online learning, as gradients do not need to be propagated back
in time. However, it prevents any kind of learning in the recurrent connections, which makes the
RNN computationally much less powerful.

3 Real-Time Recurrent Learning and UORO

RTRL [20] is an online learning algorithm for RNNs. Contrary to TBPPT, no previous inputs or
network states need to be stored. At any time-step t, RTRL only requires the hidden state ht, input
xt and dht−1

dθ in order to compute dht

dθ . With dht

dθ at hand, dLt

dθ = dLt

dht

dht

dθ is obtained by applying the
chain rule. Thus, the parameters can be updated online, that is, for each observed input/output pair
one parameter update can be performed.

In order to present the RTRL update precisely, let us first define an RNN formally. An RNN is a
differentiable function f , that maps an input xt, a hidden state ht−1 and parameters θ to the next
hidden state ht = f(xt, ht−1, θ). At any time-step t, RTRL computes dht

dθ by applying the chain rule:

dht
dθ

=
∂ht
∂ht−1

dht−1
dθ

+
∂ht
∂xt

dxt
dθ

+
∂ht
∂θ

(1)

=
∂ht
∂ht−1

dht−1
dθ

+
∂ht
∂θ

, (2)

where the middle term vanishes because we assume that the inputs do not depend on the parameters.
For notational simplicity, define Gt := dht

dθ , Ht := ∂ht

∂ht−1
and Ft := ∂ht

∂θ , which reduces the above
equation to

dht
dθ

= Gt = HtGt−1 + Ft . (3)

Both Ft and Ht are straight-forward to compute for RNNs. We assume h0 to be fixed, which implies
G0 = 0. With all this, RTRL obtains the exact gradient Gt for each time-step and enables online
updates of the parameters. However, updating the parameters means that Gt is only exact in the limit
were the learning rate is arbitrarily small. In practice learning rates are sufficiently small such that
this is not an issue.

The downside of RTRL is that for a fully connected RNN with n units the matrices Ht and Gt have
size n× n and n× n2, respectively. Therefore, computing Equation 3 takes O(n4) operations and
requires O(n3) storage, which makes RTRL impractical for large networks.

The UORO algorithm [17] addresses this issue and reduces run-time and memory requirements to
O(n2) at the cost of obtaining an unbiased but noisy estimate of Gt. More precisely, the UORO
algorithm keeps an unbiased rank-one estimate of Gt by approximating Gt as the outer product vwT
of two vectors of size n and size n2, respectively. At any time t, the UORO update consists of two
approximation steps. Assume that the unbiased approximation Ĝt−1 = vwT of Gt−1 is given. First,
Ft is approximated by a rank-one matrix. Second, the sum of two rank-one matrices HtĜt−1 + Ft
is approximated by a rank-one matrix yielding the estimate Ĝt of Gt. The estimate Ĝt is provably
unbiased and the UORO update requires the same run-time and memory as updating the RNN [17].

3

4 Kronecker Factored RTRL

Our proposed Kronecker Factored RTRL algorithm (KF-RTRL) is an online learning algorithm for
RNNs, which does not require storing any previous inputs or network states. KF-RTRL approximates
Gt, which is the derivative of the internal state with respect to the parameters, see Section 3, by a
Kronecker product. The following theorem shows that the KF-RTRL algorithm satisfies various
desireable properties.
Theorem 1. For the class of RNNs defined in Lemma 1, the estimate G′t obtained by the KF-RTRL
algorithm satisfies

1. G′t is an unbiased estimate of Gt, that is E[G′t] = Gt, and

2. assuming that the spectral norm of Ht is at most 1− ε for some arbitrary small ε > 0, then
at any time t, the mean of the variances of the entries of G′t is of order O(n−1).

Moreover, one time-step of the KF-RTRL algorithm requires O(n3) operations and O(n2) memory.

We remark that the class of RNNs defined in Lemma 1 contains many widely used RNN architectures
like Recurrent Highway Networks and Tanh-RNNs, but does not include GRUs [4] or LSTMs [5].
Further, the assumption that the spectral norm of Ht is at most 1 − ε is reasonable, as otherwise
gradients might grow exponentially as noted by Bengio et al. [2]. Lastly, the bottleneck of the
algorithm is a matrix multiplication and thus for sufficiently large matrices an algorithm with a better
run time than O(n3) may be be practical.

In the remainder of this section, we explain the main ideas behind the KF-RTRL algorithm (formal
proofs are given in the appendix). In the subsequent Section 5 we show that these theoretical
properties carry over into practical application. KF-RTRL is well suited for learning long-term
dependencies (see Section 5.1) and almost matches the performance of TBPTT on a complex real
world task, that is, character level language modeling (see Section 5.2). Moreover, we confirm
empirically that the variance of the KF-RTRL estimate is stable over time and scales well as the
network size increases (see Section 5.3).

Before giving the theoretical background and motivating the key ideas of KF-RTRL, we give a
brief overview of the KF-RTRL algorithm. At any time-step t, KF-RTRL maintains a vector ut
and a matrix At, such that G′t = ut ⊗ At satisfies E[G′t] = Gt. Both HtG

′
t−1 and Ft are factored

as a Kronecker product, and then the sum of these two Kronecker products is approximated by
one Kronecker product. This approximation step (see Lemma 2) works analogously to the second
approximation step of the UORO algorithm (see rank-one trick, Proposition 1 in [17]). The detailed
algorithmic steps of KF-RTRL are presented in Algorithm 1 and motivated below.

Theoretical motivation of the KF-RTRL algorithm

The key observation that motivates our algorithm is that for many popular RNN architectures F can
be exactly decomposed as the Kronecker product of a vector and a diagonal matrix, see Lemma 1.
Such a decomposition exists if every parameter affects exactly one element of ht assuming ht−1 is
fixed. This condition is satisfied by many popular RNN networks like Tanh-RNN and Recurrent
Highway Networks. The class of RNNs considered in the following lemma contains all these RNN
architectures.
Lemma 1. Assume the learnable parameters θ are a set of matrices W 1, . . . ,W r, let ĥt−1 be the
hidden state ht−1 concatenated with the input xt and let zk = ĥt−1W

k for k = 1, . . . , r. Assume
that ht is obtained by point-wise operations over the zk’s, that is, (ht)j = f(z1j , . . . , z

r
j), where

f is such that ∂f
∂zkj

is bounded by a constant. Let Dk ∈ Rn×n be the diagonal matrix defined by

Dk
jj =

∂(ht)j
∂zkj

, and let D =
(
D1| . . . |Dr

)
. Then, it holds ∂ht

∂θ = ĥt−1 ⊗D.

Further, we observe that the sum of two Kronecker products can be approximated by a single
Kronecker product. The following lemma, which is the analogue of Proposition 1 in [15] for
Kronecker products, states how this is achieved.
Lemma 2. Let C = A1 ⊗ B1 + A2 ⊗ B2, where the matrix A1 has the same size as the matrix
A2 and B1 has the same size as B2. Let c1 and c2 be chosen independently and uniformly at

4

Algorithm 1 — One step of KF-RTRL (from time t− 1 to t)

Inputs:
– input xt, target yt, previous recurrent state ht−1 and parameters θ
– ut−1 and At−1 such that E [ut−1 ⊗At−1] = Gt−1
– SGDopt and ηt+1: stochastic optimizer and its learning rate

Outputs:
– new recurrent state ht and updated parameters θ
– ut and At such that E [ut ⊗At] = Gt

/* Run one step of the RNN and compute the necessary matrices*/
ht ← Compute ht using xt, ht−1 and θ
ĥt−1 ← Concatenate ht−1 and xt
Dk
jj ←

∂(ht)j
∂zkj

H ← ∂ht

∂ht−1
H ′ ← H ·At−1

/* Compute variance minimization and random multipliers */

p1 ←
√
‖H ′‖/‖ut−1‖ p2 ←

√
‖D‖/‖ĥt−1‖

c1, c2 ← Independent random signs
/* Compute next approximation */
ut ← c1p1ut−1 + c2p2ĥt−1 At ← c1

1
p1
H ′ + c2

1
p2
D

/* Compute gradients and update parameters */
Lgrad ← ut ⊗

(
∂L(yt,ht)

∂ht
·At

)
SGDopt(Lgrad, ηt+1, θ)

random from {−1, 1} and let p1, p2 > 0 be positive reals. Define A′ = c1p1A1 + c2p2A2 and
B′ = c1

1
p1
B1 + c2

1
p2
B2. Then, A′⊗B′ is an unbiased approximation of C, that is E [A′ ⊗B′] = C.

Moreover, the variance of this approximation is minimized by setting the free parameters pi =√
||Bi||/||Ai||.

Lastly, we show by induction that random vectors ut and random matrices At exist, such that
G′t = ut ⊗ At satisfies E[G′t] = Gt. Assume that G′t−1 = ut−1 ⊗ At−1 satisfies E[G′t−1] = Gt−1.
Equation 3 and Lemma 1 imply that

Gt = HtE
[
G′t−1

]
+ Ft = HtE [ut−1 ⊗At−1] + ĥt ⊗Dt . (4)

Next, by linearity of expectation and since the first dimension of ut−1 is 1, it follows

Gt = E
[
Ht(ut−1 ⊗At−1) + ĥt ⊗Dt

]
= E

[
ut−1 ⊗ (HtAt−1) + ĥt ⊗Dt

]
. (5)

Finally, we obtain by Lemma 2 for any p1, p2 > 0

Gt = E
[
(c1p1ut−1 + c2p1ĥt)⊗ (c1

1

p1
(HtAt−1) + c2

1

p2
Dt)

]
, (6)

where the expectation is taken over the probability distribution of ut−1, At−1, c1 and c2.

With these observations at hand, we are ready to present the KF-RTRL algorithm. At any time-step t
we receive the estimates ut−1 and At−1 from the previous time-step. First, compute ht, Dt and Ht.
Then, choose c1 and c2 uniformly at random from {−1,+1} and compute

ut = c1p1ut−1 + c2p2ĥt (7)

At = c1
1

p1
(HtAt−1) + c2

1

p2
Dt , (8)

where p1 =
√
‖HtAt−1‖/‖ut−1‖ and p2 =

√
‖Dt‖/‖ĥt‖. Lastly, our algorithm computes dLt

dht
·G′t,

which is used for optimizing the parameters. For a detailed pseudo-code of the KF-RTRL algorithm
see Algorithm 1. In order to see that dLt

dht
·G′t is an unbiased estimate of dLt

dθ , we apply once more

linearity of expectation: E
[
dLt

dht
·G′t

]
= dLt

dht
· E [G′t] = dLt

dht
·Gt = dLt

dθ .

5

One KF-RTRL update has run-time O(n3) and requires O(n2) memory. In order to see the statement
for the memory requirement, note that all involved matrices and vectors have O(n2) elements,
except G′t. However, we do not need to explicitly compute G′t in order to obtain dLt

dθ , because
dLt

dht
·G′t = dLt

dht
·ut⊗At = ut⊗ (dLt

dht
At) can be evaluated in this order. In order to see the statement

for the run-time, note that Ht and At−1 have both size O(n)×O(n). Therefore, computing HtAt−1
requires O(n3) operations. All other arithmetic operations trivially require run-time O(n2).

The proofs of Lemmas 1 and 2 and of the second statement of Theorem 1 are given in the appendix.

Comparison of the KF-RTRL with the UORO algorithm

Since the variance of the gradient estimate is directly linked to convergence speed and performance,
let us first compare the variance of the two algorithms. Theorem 1 states that the mean of the variances
of the entries of G′t are of order O(n−1). In the appendix, we show a slightly stronger statement, that
is, if ‖Ft‖ ≤ C for all t, then the mean of the variances of the entries is of order O(C

2

n3), where n3 is
the number of elements of Gt. The bound O(n−1) is obtained by a trivial bound on the size of the
entries of ht and Dt and using ‖ht‖‖Dt‖ = ‖Ft‖. In the appendix, we show further that already the
first step of the UORO approximation, in which Ft is approximated by a rank-one matrix, introduces
noise of order (n− 1)‖Ft‖. Assuming that all further approximations would not add any noise, then
the same trivial bounds on ‖Ft‖ yield a mean variance of O(1). We conclude that the variance of
KF-RTRL is asymptotically by (at least) a factor n smaller than the variance of UORO.

Next, let us compare the generality of the algorithm when applying it to different network architectures.
The KF-RTRL algorithms requires that in one time-step each parameter only affects one element of
the next hidden state (see Lemma 1). Although many widely used RNN architectures satisfy this
requirement, seen from this angle, the UORO algorithm is favorable as it is applicable to arbitrary
RNN architectures.

Finally, let us compare memory requirements and runtime of KF-RTRL and UORO. In terms of
memory requirements, both algorithms require O(n2) storage and perform equally good. In terms of
run-time, KF-RTRL requires O(n3), while UORO requires O(n2) operations. However, the faster
run-time of UORO comes at the cost of worse variance and therefore worse performance. In order
to reduce the variance of UORO by a factor n, one would need n independent samples of G′t. This
could be achieved by reducing the learning rate by a factor of n, which would then require n times
more data, or by sampling G′t n times in parallel, which would require n times more memory. Still,
our empirical investigation shows, that KF-RTRL outperforms UORO, even when taking n UORO
samples of Gt to reduce the variance (see Figure 3). Moreover, for sufficiently large networks the
scaling of the KF-RTRL run-time improves by using fast matrix multiplication algorithms.

5 Experiments

In this section, we quantify the effect on learning that the reduced variance of KF-RTRL compared
to the one of UORO has. First, we evaluate the ability of learning long-term dependencies on a
deterministic binary string memorization task. Since most real world problems are more complex and
of stochastic nature, we secondly evaluate the performance of the learning algorithms on a character
level language modeling task, which is a more realistic benchmark. For these two tasks, we also
compare to learning with Truncated BPTT. Finally, we investigate the variance of KF-RTRL and
UORO by comparing to their exact counterpart, RTRL. For all experiments, we use a single-layer
Recurrent Highway Network [21]. 2

5.1 Copy Task

In the copy task experiment, a binary string is presented sequentially to an RNN. Once the full
string has been presented, it should reconstruct the original string with out any further information.
Figure 1(b) shows several input-output pairs. We refer to the length of the string as T . Figure 1(a)
summarizes the results. The smaller variance of KF-RTRL greatly helps learning faster and capturing

2For implementation simplicity, we use 2 ∗ sigmoid(x)− 1 instead of Tanh(x) as non-linearity function.
Both functions have very similar properties, and therefore, we do not believe this has any significant effect.

6

0 500000 1000000 1500000 2000000
data time

0

10

20

30

40

50

T

KF-RTRL
UORO
TBPTT-25

(a)

Input: #01101––––––
Output: ––––––#01101

Input: #11010––––––
Output: ––––––#11010

Input: #00100––––––
Output: ––––––#00100

(b)

Figure 1: Copy Task: Figure 1(a) shows the learning curves of UORO, KF-RTRL and TBPTT with truncation
horizon of 25 steps. We plot the mean an standard deviation (shaded area) over 5 trials. Figure 1(b) shows three
input and output examples with T = 5.

longer dependencies. KF-RTRL and UORO manage to solve the task on average up to T = 36
and T = 13, respectively. As expected, TBPTT cannot learn dependencies that are longer than the
truncation horizon.

In this experiment, we start with T = 1 and when the RNN error drops below 0.15 bits/char, we
increase T by one. After each sequence, the hidden state is reset to all zeros. To improve performance,
the length of each sample is picked uniformly at random from T to T − 5. This forces the network to
learn a general algorithm for the task, rather than just learning to solve sequences of length T . We
use a RHN with 256 units and a batch size of 256. We optimize the log-likelihood using the Adam
optimizer [8] with default Tensorflow [1] parameters, β1 = 0.9 and β2 = 0.999. For each model
we pick the optimal learning rate from {10−2.5, 10−3, 10−3.5, 10−4}. We repeat each experiment 5
times.

5.2 Character level language modeling on the Penn Treebank dataset

A standard test for RNNs is character level language modeling. The network receives a text sequen-
tially, character by character, and at each time-step it must predict the next character. This task is very
challenging, as it requires both long and short term dependencies. Additionally, it is highly stochastic,
i.e. for the same input sequence there are many possible continuations, but only one is observed
at each training step. Figure 2 and Table 1 summarize the results. Truncated BPTT outperforms
both online learning algorithms, but KF-RTRL almost reaches its performance and considerably
outperforms UORO. For this task, the noise introduced in the approximation is more harmful than the
truncation bias. This is probably the case because the short term dependencies dominate the loss, as
indicated by the small difference between TBPTT with truncation horizon 5 and 25.

For this experiment we use the Penn TreeBank [11] dataset, which is a collection of Wall Street
Journal articles. The text is lower cased and the vocabulary is restricted to 10K words. Out of
vocabulary words are replaced by "<unk>" and numbers by "N". We split the data following Mikolov
et al. [14]. The experimental setup is the same as in the Copy task, and we pick the optimal learning
rate from the same range. Apart from that, we reset the hidden state to the all zeros state with
probability 0.01 at each time step. This technique was introduced by Melis et al. [12] to improve
the performance on the validation set, as the initial state for the validation is the all zeros state.
Additionally, this helps the online learning algorithms, as it resets the gradient approximation, getting
rid of stale gradients. Similar techniques have been shown [3] to also improve RTRL.

5.3 Variance Analysis

With our final set of experiments, we empirically measure how the noise evolves over time and how it
is affected by the number of units n. Here, we also compare to taking n samples of UORO, we refer
to this as UORO-AVG. This brings the computation cost on par with that of KF-RTRL, O(n3). For
each experiment, we compute the angle φ between the gradient estimate and the exact gradient of the
loss with respect to the parameters. Intuitively, φ measures how aligned the gradients are, even if the
magnitude is different. Figure 3(a) shows that φ is stable over time and the noise does not accumulate

7

200000 400000 600000 800000 1000000
data time

1.5

2.0

2.5

3.0

3.5

BP
C

KF-RTRL
UORO
TBPTT-25
TBPTT-5

Figure 2: Validation performance on Penn
TreeBank in bits per character (BPC). The
small variance of the KF-RTRL approxima-
tion considerably improves the performance
compared to UORO.

Table 1: Results on Penn TreeBank. Merity et al. [13] is
currently the state of the art (trained with TBPTT). For
simplicity we do not report standard deviations, as all of
them are smaller than 0.03.

Name Validation Test #params

KF-RTRL 1.77 1.72 133K
UORO 2.63 2.61 133K

TBPTT-5 1.64 1.58 133K
TBPTT-25 1.61 1.56 133K

Merity et al. [13] - 1.18 13.8M

0 2000 4000 6000 8000 10000
timesteps

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

co
s(

)

(a)

KF-RTRL
UORO
UORO-AVG

100 200 300 400 500
units

0.0

0.2

0.4

0.6

0.8

1.0

co
s(

)
(b)

Figure 3: Variance analysis: We compare the cosine of the angle between the approximated and the true value
of dL

dθ
. A cosine of 1 implies that the approximation and the true value are exactly aligned, while a random

vector gets a cosine of 0 in expectation. Figure 3(a) shows that the variance is stable over time for the three
algorithms. Figure 3(b) shows that the variance of KF-RTRL is almost unaffected by the number of units, while
UORO and UORO-AVG degrade more quickly as the network size increases.

for any of the three algorithms. Figure 3(b) shows that KF-RTRL scales better with the number of
units than both UORO-AVG and UORO.

In the first experiment, we run several untrained RHNs with 256 units over the first 10000 characters
of Penn TreeBank. In the second experiment, we compute φ after running RHNs with different
number of units for 100 steps on Penn TreeBank. We perform 100 repetitions per experiment and
plot the mean and standard deviation.

6 Conclusion

In this paper, we have presented the KF-RTRL online learning algorithm. We have proven that it
approximates RTRL in an unbiased way, and that under reasonable assumptions the noise is stable
over time and much smaller than the one of UORO, the only other previously known unbiased RTRL
approximation algorithm. Additionally, we have empirically verified that the reduced variance of
our algorithm greatly improves learning for the two tested tasks. In the first task, an RHN trained
with KF-RTRL effectively captures long-term dependencies (it learns to memorize binary strings of
length up to 36). In the second task, it almost matches the performance of TBPTT in a standard RNN
benchmark, character level language modeling on Penn TreeBank.

More importantly, our work opens up interesting directions for future work, as even minor reductions
of the noise could make the approach a viable alternative to TBPTT, especially for tasks with inherent
long-term dependencies. For example constraining the weights, constraining the activations or using
some form of regularization could reduce the noise. Further, it may be possible to design architectures
that make the approximation less noisy. Moreover, one might attempt to improve the run-time of
KF-RTRL by using approximate matrix multiplication algorithms or inducing properties on the Ht

matrix that allow for fast matrix multiplications, like sparsity or low-rank.

8

This work advances the understanding of how unbiased gradients can be computed, which is of
central importance as unbiasedness is essential for theoretical convergence guarantees. Since RTRL
based approaches satisfy this key assumption, it is of interest to further progress them.

References
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,

M. Isard, et al. Tensorflow: A system for large-scale machine learning. In OSDI, volume 16,
pages 265–283, 2016.

[2] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent
is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

[3] T. Catfolis. A method for improving the real-time recurrent learning algorithm. Neural Networks,
6(6):807–821, 1993.

[4] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural
networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

[5] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

[6] M. Jaderberg, W. M. Czarnecki, S. Osindero, O. Vinyals, A. Graves, D. Silver, and
K. Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. arXiv preprint
arXiv:1608.05343, 2016.

[7] H. Jaeger. The “echo state” approach to analysing and training recurrent neural networks-with an
erratum note. Bonn, Germany: German National Research Center for Information Technology
GMD Technical Report, 148(34):13, 2001.

[8] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[9] M. Lukoševičius and H. Jaeger. Reservoir computing approaches to recurrent neural network
training. Computer Science Review, 3(3):127–149, 2009.

[10] W. Maass, T. Natschläger, and H. Markram. Real-time computing without stable states: A
new framework for neural computation based on perturbations. Neural computation, 14(11):
2531–2560, 2002.

[11] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a large annotated corpus of
english: The penn treebank. Computational linguistics, 19(2):313–330, 1993.

[12] G. Melis, C. Dyer, and P. Blunsom. On the state of the art of evaluation in neural language
models. arXiv preprint arXiv:1707.05589, 2017.

[13] S. Merity, N. S. Keskar, and R. Socher. An analysis of neural language modeling at multiple
scales. arXiv preprint arXiv:1803.08240, 2018.

[14] T. Mikolov, I. Sutskever, A. Deoras, H.-S. Le, S. Kombrink, and J. Cernocky. Subword language
modeling with neural networks. preprint (http://www. fit. vutbr. cz/imikolov/rnnlm/char. pdf),
2012.

[15] Y. Ollivier, C. Tallec, and G. Charpiat. Training recurrent networks online without backtracking.
arXiv preprint arXiv:1507.07680, 2015.

[16] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating
errors. nature, 323(6088):533, 1986.

[17] C. Tallec and Y. Ollivier. Unbiased online recurrent optimization. arXiv preprint
arXiv:1702.05043, 2017.

[18] C. Tallec and Y. Ollivier. Unbiasing truncated backpropagation through time. arXiv preprint
arXiv:1705.08209, 2017.

[19] R. J. Williams and J. Peng. An efficient gradient-based algorithm for on-line training of recurrent
network trajectories. Neural Computation, 2:490–501, 1990.

[20] R. J. Williams and D. Zipser. A learning algorithm for continually running fully recurrent neural
networks. Neural computation, 1(2):270–280, 1989.

[21] J. G. Zilly, R. K. Srivastava, J. Koutník, and J. Schmidhuber. Recurrent highway networks.
arXiv preprint arXiv:1607.03474, 2016.

9

A Appendix

In this appendix, we prove all the lemmas and theorems whose proofs has been omitted in the main
paper. For the ease of readability we restate the statement object for proving in the beginning of each
section.

A.1 Basic Notation

The Hilbert-Schmid norm of a matrix A is defined as ‖A‖HS :=
∑
i,j a

2
ij and the Hilbert-Schmid

inner product of two matrices A,B of the same size is defined as 〈A,B〉HS =
∑
ij aijbij . When

regarding an n × m matrix as a point in Rmn, then the standard euclidian norm of this point
is the same as the Hilbert-Schmid norm of the matrix. Therefore, for notational simplicity, we
omit the HS subscript and write ‖A‖ and 〈A,B〉. Note that the Hilbert-Schmid norm satisfies
‖A ⊗ B‖ = ‖A‖‖B‖. Further, we measure the variance of a random matrix A by the sum of the
variances of its entries:

Var[A] =
∑
ij

Var[aij] =
∑
ij

E[a2ij]− E[aij]
2 = E[‖A‖2]− ‖E[A]‖2 (9)

A.2 Proof of Lemma 1

Lemma. Assume the learnable parameters θ are a set of matrices W 1, . . . ,W r, let ĥt−1 be the
hidden state ht−1 concatenated with the input xt and let zk = ĥt−1W

k for k = 1, . . . , r. Assume
that ht is obtained by point-wise operations over the zk’s, that is, (ht)j = f(z1j , . . . , z

r
j), where

f is such that ∂f
∂zkj

is bounded by a constant. Let Dk ∈ Rn×n be the diagonal matrix defined by

Dk
jj =

∂(ht)j
∂zkj

, and let D =
(
D1| . . . |Dr

)
. Then, it holds ∂ht

∂θ = ĥt−1 ⊗D.

Proof. Note that zba =
∑
i w

b
ia(ĥt−1)i only depends on wkij if j = a and k = b, that

∂zkj
∂wk

ij

= (ĥt−1)i,

and that ∂(ht)`
∂zij

= 0 if j 6= `. Therefore

∂(ht)`
∂wkij

=
∑
a,b

∂(ht)`
∂zba

∂zba
∂wkij

=
∂(ht)`
∂zk`

∂zk`
∂wkij

=
∂(ht)`
∂zk`

· δ`,j(ĥt−1)i , (10)

where δ`,j is the Kronecker delta, which is 1 if ` = j and 0 if ` 6= j. If we assume that the parameters
wkij are ordered lexicographically in i, k, j, then Dk

`,j = δ`,j
∂(ht)j
∂zkj

.

A.3 Proof of Lemma 2

As mentioned in the paper Lemma 2 is essentially borrowed from [15]. We state the lemma slightly
more general as in the paper, that is, for arbitrary many summands.
Lemma 3. Let C =

∑m
i=1Ai ⊗ Bi, where the Ai’s are of the same size and the B′is are of the

same size. Let the c1, . . . , cm be chosen independently and uniformly at random from {−1,+1}
and let p1, . . . , pm > 0 be positive reals. Define A′ =

∑m
i=1 cipiAi and B′ =

∑m
i=1 ci

1
pi
Bi. Then,

C ′ = A′ ⊗B′ is an unbiased approximation of C, that is E [C ′] = C. The free parameters pi can be
chosen to minimize the variance of A′. For the optimal choice pi =

√
‖Bi‖/‖vi‖ it holds

Var[C ′] =
∑
i

∑
i 6=j

‖Ai‖‖Aj‖‖Bi‖‖Bj‖+ 〈Ai, Aj〉〈Bi, Bj〉 . (11)

Proof. The independence of the ci implies that E[cicj] = 1 if i = j and E[cicj] = 0 if i 6= j.
Therefore, the first claim follows easily by linearity of expectation:

E[C ′] = E[(
∑
i

cipiAi)⊗ (
∑
j

cj
1
pj
Bj)] =

∑
i

∑
j

E[cicj]
pi
pj
Ai ⊗Bj =

∑
i

Ai ⊗Bi .

10

For the proof of the second claim we use Proposition 1 from [15]. Let D =
∑
i
~Ai ~B

T
i ,

where ~A denotes the vector obtained by concatenating the columns of a matrix A, and let
D′ = (

∑
i cipi

~Ai)(
∑
j cj

1
pj
~Bj)

T . C ′ and D′ have same entries for the same choice of ci’s. It
follows that ‖E[C ′]‖ = ‖E[D′]‖, E[‖C ′‖2] = E[‖D′‖2], and therefore Var[C ′] = Var[D′]. By
Proposition 1 from [15], choosing pi =

√
‖Bi‖/‖Ai‖ minimizes Var[D′] resulting in Var[D′] =∑

i

∑
i6=j ‖ ~Ai‖‖ ~Aj‖‖ ~Bi‖‖ ~Bj‖+ 〈 ~Ai, ~Aj〉〈 ~Bi, ~Bj〉. This implies the Lemma because ‖A‖ = ‖ ~Ai‖

and 〈A,B〉 = 〈 ~A, ~B〉 for any matrices A and B.

A.4 Proof of Theorem 1

The spectral norm for matrix A is defined as σ(A) := maxv:‖v‖=1 ‖Av‖. Note that ‖AB‖ ≤
σ(A)‖B‖ holds for any matrix B.

Theorem 2. Let ε > 0 be arbitrary small. Assume for all t that the spectral norm of Ht is at most
1− ε, ‖ĥt‖ ≤ C1 and ‖Dt‖ ≤ C2. Then for the class of RNNs defined in Lemma 1, the estimate G′t
obtained by the KF-RTRL algorithm satisfies at any time t that Var[G′t] ≤ 16

ε3(2−ε)C
2
1C

2
2 .

Before proving this theorem let us show how it implies Theorem 1. Note that the hidden state ht
and the inputs xt take values between −1 and 1. Therefore, ‖ĥt‖2 = O(n). By Lemma 1 the rn
non-zero entries of D are of the form ∂(ht)j

∂zkj
= ∂f

∂zkj
. By the assumptions on f the entries of Dt are

bounded and ‖Dt‖2 = O(n) follows. Theorem 2 implies that Var[G′t] = O(n2). Since the number
of entries in G′t is of order Θ(n3), the mean of the variances of the entries of G′t is of order O(n−1).

Proof of Theorem 2. The proof idea goes as follows. Write G′t = Gt + Ĝt as the sum of the
true (deterministic) value Gt = dht

dθ of the gradient and the random noise Ĝt induced by the
approximations until time t. Note that Var[G′t] = Var[Ĝt]. Then, write Var[Ĝt] as the sum of the
variance induced by the t-th time step and the variance induced by previous steps. The bound on the
spectral norm ofHt ensures that the latter summand can be bounded by (1−ε)2Var[Ĝt−1]. Therefore
the variance stays of the same order of magnitude as the one induced in each time-step and this
magnitude can be bounded as well.

Now let us prove the statement formally. Define

B :=
p1
p2
ut−1 ⊗Dt +

p2
p1
ĥt ⊗HtAt−1 (12)

By equation Equation 7 and 8

G′t = (p1c1ut−1 + p2c2ĥt)⊗ (c1p1HtAt−1 + c2
p2
Dt) (13)

= ut−1 ⊗HtAt−1 + ĥt ⊗Dt + c1c2B (14)

Observe that

ut−1 ⊗HtAt−1 = Ht(ut−1 ⊗At−1) = HtG
′
t−1 = HtGt−1 +HtĜt−1 , (15)

which implies together with Equation 3 that

Gt + Ĝt = G′t = HtGt−1 +HtĜt−1 + ĥt ⊗Dt + c1c2B = Gt +HtĜt−1 + c1c2B . (16)

It follows that Ĝt = HtĜt−1 + c1c2B.

Claim 1. For two random matrices A and B and c chosen uniformly at random in {−1,+1}
independent from A and B, it holds Var[A+ cB] = Var[A] + E[‖B‖2].

We postpone the proof and first show the theorem. Claim 1 implies that

Var[Ĝt] = Var[HtĜt−1] + E[‖B‖2] . (17)

11

Let us first bound the first term. Since G′t is unbiased, it holds E[Ĝt−1] = 0, Var[Ĝt−1] =

E[‖Ĝt−1‖2], and therefore

Var[HtĜt−1] = E[‖HtĜt−1‖2]− ‖E[HtĜt−1]‖2

≤ (1− ε)2E[‖Ĝt−1‖2]

= (1− ε)2Var[Ĝt−1] .

A bound for the second term can be obtained by the triangle inequality:

‖B‖ ≤ ‖p1
p2
ut−1 ⊗Dt‖+ ‖p2

p1
ĥt ⊗HtAt−1‖ (18)

= 2
(
‖ut‖‖ĥt‖‖Dt‖‖HtAt−1‖

)1/2
(19)

≤ 4
εC1C2 , (20)

where the last inequality follows the following claim.

Claim 2. ‖ut‖‖At‖ ≤ 4C1C2

ε2 holds for all time-step t.

Let us postpone the proof and show by induction that Var[Ĝt] ≤ 16
ε3(2−ε)C

2
1C

2
2 . Assume this is true

for t− 1, then

Var[Ĝt] = Var[HtĜt−1] + E[‖B‖2] (21)

≤ (1− ε)2Var[Ĝt−1] + (4
εC1C2)2 (22)

≤ (1− ε)2 16
ε3(2−ε)C

2
1C

2
2 + (4

εC1C2)2 (23)

= 16
ε3(2−ε)C

2
1C

2
2 , (24)

which implies the theorem. Let us first prove Claim 1. Note that E[cX] = 0 holds for any random
variable X , and therefore

Var[A+ cB] =
∑
ij

Var[Aij + cBij] (25)

=
∑
ij

E[(Aij + cBij)
2]− E[Aij + cBij]

2 (26)

=
∑
ij

E[A2
ij]− E[Aij]

2 + E[c2B2
ij] (27)

= Var[A] + E[‖B‖2] . (28)

It remains to prove Claim 2.

We show this claim by induction over t. For t = 0 this is true since G0 is the all zero matrix. For the
induction step let us assume that ‖ut−1‖‖At−1‖ ≤ 4C1C2

ε2 . Using our update rules for ut and At (see

Equation 7 and 8) and the triangle inequality we obtain ‖ut‖ ≤
√
‖HtAt−1‖‖ut−1‖+

√
‖ĥt‖‖Dt‖

12

and ‖At‖ ≤
√
‖HtAt−1‖‖ut−1‖+

√
‖ĥt‖‖Dt‖. It follows that

‖ut‖‖At‖ ≤
(√
‖HtAt−1‖‖ut−1‖+

√
‖ĥt‖‖Dt‖

)2

(29)

≤
(√

(1− ε)‖At−1‖‖ut−1‖+

√
‖ĥt‖‖Dt‖

)2

(30)

≤

(√
(1− ε)4C1C2

ε2
+
√
C1C2

)2

(31)

=
(√

(1− ε) · 2ε + 1
)2
C1C2 (32)

≤
(√

(1− ε+ ε2

4) · 2ε + 1

)2

C1C2 (33)

=
(
(1− ε

2) 2
ε + 1

)2
C1C2 (34)

=
4C1C2

ε2
. (35)

A.5 Computation of Variance of UORO Approach

In the first approximation step of the UORO algorithm Ft is approximated by a rank one matrix vvTFt,
where v is chosen uniformly at random from {−1,+1}n. For the RNN architectures considered in
this paper, Ft is a concatenation of diagonal matrices, cf. Lemma 1. Intuitively, all the non-diagonal
elements of the UORO approximation are far off the true value 0. Therefore, the variance per entry
introduced in this step will be of order of the diagonal entries of Ft . More precisely, it holds that

Var[vvTFt] =
∑
i,j

E[(vivj(Ft)jj)
2]− E[vivj(Ft)jj]

2 =
∑
i6=j

(Ft)
2
jj = (n− 1)‖Ft‖2 , (36)

where we used that Ft is diagonal, E[vivj] = 0 if i 6= j and E[vivj] = 1 if i = j.

Recall that for ht andDt of the KF-RTRL algorithm, it holds ‖ht‖‖Dt‖ = ‖Ft‖ and that we bounded
the variance of the gradient estimate essentially by ‖ht‖2‖Dt‖2 = ‖Ft‖2 (actually, we bounded it
by using an upper bound C1C2 of ‖h‖‖D‖). Therefore, the first approximation step of one UORO
update introduces a variance that is by a factor n larger than the total variance of the KF-RTRL
approximation. Assuming that the entries of Ft are of constant size (as assumed for obtaining the
O(n−1) bound per entry for KF-RTRL), implies this first UORO approximation step has constant
variance per entry. The second UORO approximation step can only increase the variance. We remark
that with the same assumption on the spectral norm as in Theorem 2, one could similarly derive a
bound of O(1) on the mean variance per entry of the UORO algorithm.

13

	1 Introduction
	2 Related Work
	3 Real-Time Recurrent Learning and UORO
	4 Kronecker Factored RTRL
	5 Experiments
	5.1 Copy Task
	5.2 Character level language modeling on the Penn Treebank dataset
	5.3 Variance Analysis

	6 Conclusion
	A Appendix
	A.1 Basic Notation
	A.2 Proof of Lemma ??
	A.3 Proof of Lemma ??
	A.4 Proof of Theorem ??
	A.5 Computation of Variance of UORO Approach

