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ABSTRACT

Recovering sparse conditional independence graphs from data is a fundamental
problem in machine learning with wide applications. A popular formulation of
the problem is an ¢; regularized maximum likelihood estimation. Many convex
optimization algorithms have been designed to solve this formulation to recover the
graph structure. Recently, there is a surge of interest to learn algorithms directly
based on data, and in this case, learn to map empirical covariance to the sparse
precision matrix. However, it is a challenging task in this case, since the symmetric
positive definiteness (SPD) and sparsity of the matrix are not easy to enforce in
learned algorithms, and a direct mapping from data to precision matrix may contain
many parameters. We propose a deep learning architecture, GLAD, which uses an
Alternating Minimization (AM) algorithm as our model inductive bias, and learns
the model parameters via supervised learning. We show that GLAD learns a very
compact and effective model for recovering sparse graphs from data.

1 INTRODUCTION

Recovering sparse conditional independence graphs from data is a fundamental problem in high
dimensional statistics and time series analysis, and it has found applications in diverse areas. In
computational biology, a sparse graph structure between gene expression data may be used to
understand gene regulatory networks; in finance, a sparse graph structure between financial time-
series may be used to understand the relationship between different financial assets. A popular
formulation of the problem is an ¢; regularization log-determinant estimation of the precision matrix.
Based on this convex formulation, many algorithms have been designed to solve this problem
efficiently, and one can formally prove that under a list of conditions, the solution of the optimization
problem is guaranteed to recover the graph structure with high probability.

However, convex optimization based approaches have their own limitations. The hyperparameters,
such as the regularization parameters and learning rate, may depend on unknown constants, and need
to be tuned carefully to achieve the recovery results. Furthermore, the formulation uses a single
regularization parameter for all entries in the precision matrix, which may not be optimal. It is
intuitive that one may obtain better recovery results by allowing the regularization parameters to vary
across the entries in the precision matrix. However, such flexibility will lead to a quadratic increase
in the number of hyperparameters, but it is hard for traditional approaches to search over a large
number of hyperparameters. Thus, a new paradigm may be needed for designing more effective
sparse recovery algorithms.

Recently, there has been a surge of interest in a new paradigm of algorithm design, where algorithms
are augmented with learning modules trained directly with data, rather than prescribing every step of
the algorithms. This is meaningful because very often a family of optimization problems needs to
be solved again and again, similar in structures but different in data. A data-driven algorithm may
be able to leverage this distribution of problem instances, and learn an algorithm which performs
better than traditional convex formulation. In our case, the sparse graph recovery problem may also
need to be solved again and again, where the underlying graphs are different but have similar degree
distribution, the magnitude of the precision matrix entries, etc. For instance, gene regulatory networks
may be rewiring depending on the time and conditions, and we want to estimate them from gene
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expression data. Company relations may evolve over time, and we want to estimate their graph from
stock data. Thus, we will also explore data-driven algorithm design in this paper.

Given a task (e.g. an optimization problem), an algorithm will solve it and provide a solution. Thus
we can view an algorithm as a function mapping, where the input is the task-specific information
(i.e. the sample covariance matrix in our case) and the output is the solution (i.e. the estimated
precision matrix in our case). However, it is very challenging to design a data-driven algorithm
for precision matrix estimation. First, the input and output of the problem may be large. A neural
network parameterization of direct mapping from the input covariance matrix to the output precision
matrix may require as many parameters as the square of the number of dimensions. Second, there are
many structure constraints in the output. The resulting precision matrix needs to be positive definite
and sparse, which is not easy to enforce by a simple deep learning architecture. Third, direct mapping
may result in a model with lots of parameters, and hence may require lots of data to learn. Thus a
data-driven algorithm needs to be designed carefully to achieve a better bias-variance trade-off and
satisfy the output constraints.

In this paper, we propose a deep learning model ‘GLAD’ with following attributes:

e Uses an unrolled Alternating Minimization (AM) algorithm as an inductive bias.

o The regularization and the square penalty terms are parameterized as entry-wise functions of
intermediate solutions, allowing GLAD to learn to perform entry-wise regularization update.

e Furthermore, this data-driven algorithm is trained with a collection of problem instances in a
supervised fashion, by directly comparing the algorithm outputs to the ground truth graphs.

In our experiments, we show that the AM architecture provides very good inductive bias, allowing
the model to learn very effective sparse graph recovery algorithm with a small amount of training
data. In all cases, the learned algorithm can recover sparse graph structures with much fewer data
points from a new problem, and it also works well in recovering gene regulatory networks based on
realistic gene expression data generators.

Related works. [Belilovsky et al.| (2017) considers CNN based architecture that directly maps
empirical covariance matrices to estimated graph structures. Previous works have parameterized
optimization algorithms as recurrent neural networks or policies in reinforcement learning. For
instance, |Andrychowicz et al.| (2016) considered directly parameterizing optimization algorithm
as an RNN based framework for learning to learn. |Li & Malik (2016)) approach the problem of
automating algorithm design from reinforcement learning perspective and represent any particular
optimization algorithm as a policy. [Khalil et al.|(2017) learn combinatorial optimzation over graph via
deep Q-learning. These works did not consider the structures of our sparse graph recovery problem.
Another interesting line of approach is to develop deep neural networks based on unfolding an iterative
algorithm |Gregor & LeCun|(2010); /Chen et al.|(2018); |Liu et al.| (2018)). Liu et al.|(2018)) developed
ALISTA which is based on unrolling the Iterative Shrinkage Thresholding Algorithm (ISTA). Sun
et al.|(2016) developed ‘ADMM-Net’, which is also developed for compressive sensing of MRI data.
Though these seminal works were primarily developed for compressive sensing applications, they
alluded to the general theme of using unrolled algorithms as inductive biases. We thus identify a
suitable unrolled algorithm and leverage its inductive bias to solve the sparse graph recovery problem.

2 SPARSE GRAPH RECOVERY PROBLEM AND CONVEX FORMULATION

Given m observations of a d-dimensional multivariate Gaussian random variable X = [X1,..., X,4]T,
the sparse graph recovery problem aims to estimate its covariance matrix >* and precision matrix
©* = (X*)~!. The ij-th component of ©* is zero if and only if X; and X; are conditionally inde-
pendent given the other variables { X}, } x; ;. Therefore, it is popular to impose an ¢; regularization
for the estimation of ©* to increase its sparsity and lead to easily interpretable models. Following
Banerjee et al.| (2008)), the problem is formulated as the ¢; -regularized maximum likelihood estimation

-~

6 = argmingess,  — log(det ©) + tr(£0) + p O] o (1)

where 3 is the empirical covariance matrix based on m samples, 8¢, is the space of d x d symmetric
positive definite matrices (SPD), and [[©]], . = 3=, ,; [©i;] is the off-diagonal ¢, regularizer with
regularization parameter p. This estimator is sensible even for non-Gaussian X, since it is minimizing
an /1 -penalized log-determinant Bregman divergence Ravikumar et al.|(2011). The sparse precision
matrix estimation problem in Eq. (T) is a convex optimization problem which can be solved by many
algorithms. We give a few canonical and advanced examples which are compared in our experiments:
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G-ISTA. G-ISTA is a proximal gradient method, and it updates the precision matrix iteratively
Ot 4 Neyp(O — & (S — O 1), where [n,(X)]i; == sign(Xi) (| Xi;] — p)+- 2

The step sizes & is determined by line search such that O, is SPD matrix Rolfs et al.|(2012).

ADMM. Alternating direction methods of multiplier (Boyd et al.,|2011) transform the problem into

an equivalent constrained form, decouple the log-determinant term and the ¢; regularization term,
and result in the following augmented Lagrangian form with a penalty parameter \:

—log(det ©) + tr(£0) + p||Z[|, + (8,0 — 2Z) + 3A|Z — O} (3)

Taking U := (/X as the scaled dual variable, the update rules for the ADMM algorithm are
Opt1 + (=Y +/YTY + (4/N)1)/2, where Y = S/ — Z;, + Uy, (4)
Zi1 < NpxOry1 +Ur), Ukg1 < Up +Opy1 — Zia (5

BCD. Block-coordinate decent methods [Friedman et al. (2008)) updates each column (and the
corresponding row) of the precision matrix iteratively by solving a sequence of lasso problems. The
algorithm is very efficient for large scale problems involving thousands of variables.

Apart from various algorithms, rigorous statistical analysis has also been provided for the optimal
solution of the convex formulation in Eq. (I)). Ravikumar et al|(2011) established consistency of

the estimator © in Eq. (1) in terms of both Frobenius and spectral norms, at rate scaling roughly as

16 — e = O(((d+ s)log d/m)l/2 ) with high probability, where s is the number of nonzero
entries in ©*. This statistical analysis also reveal certain limitations of the convex formulation:

The established consistency is based on a set of carefully chosen conditions, including the lower
bound of sample size, the sparsity level of ©*, the degree of the graph, the magnitude of the entries
in the covariance matrix, and the strength of interaction between edge and non-edge in the precision
matrix (or mutual incoherence on the Hessian I'* := ¥* @ ¥*) . In practice, it may be hard to a
problem to satisfy these recovery conditions.

Therefore, it seems that there is still room for improving the above convex optimization algorithms for
recovering the true graph structure. Prior to the data-driven paradigm for sparse recovery, since the
target parameter ©* is unknown, the best precision matrix recovery method is to resort to a surrogate
objective function (for instance, equation [I)). Optimally tuning the unknown parameter p is a very
challenging problem in practice. Instead, we can leverage the large amount of simulation or real data
and design a learning algorithm that directly optimizes the loss in equation 9]

Furthermore, since the log-determinant estimator in Eq. (] is NOT directly optimizing the recovery

objective ||(:) — ©*||%, there is also a mismatch in the optimization objective and the final evaluation
objective (refer to the first experiment in section[5.1). This increase the hope one may improve the
results by directly optimizing the recovery objective with the algorithms learned from data.

3 LEARNING DATA-DRIVEN ALGORITHM FOR GRAPH RECOVERY

In the remainder of the paper, we will present a data-driven method to learn an algorithm for precision
matrix estimation, and we call the resulting algorithm GLAD (stands for Graph recovery Learning
Algorithm using Data-driven training). We ask the question of

Given a family of precision matrices, is it possible to improve recovery results for
sparse graphs by learning a data-driven algorithm?

More formally, suppose we are given n precision matrices {©*(*) }7_, from a family G of graphs and
m samples {x("7) L, associated with each ©*(), These samples can be used to form 7 sample
covariance matrices {i(i)}?zl. We are interested in learning an algorithm for precision matrix
estimation by solving a supervised learning problem, miny £ 3°" | £(GLAD ;(£®), ©*()), where f
is a set of parameters in GLAD(-) and the output of GLAD ;(3(?)) is expected to be a good estimation
of ©*() in terms of an interested evaluation metric £. The benefit is that it can directly optimize
the final evaluation metric which is related to the desired structure or graph properties of a family
of problems. However, it is a challenging task to design a good parameterization of GLAD y for this
graph recovery problem. We will explain the challenges below and then present our solution.
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3.1 CHALLENGES IN DESIGNING LEARNING MODELS

In the literature on learning data-driven algorithms, most models are designed using
traditional deep learning architectures, such as fully connected DNN or recurrent
neural networks. But, for graph recovery problems, directly using these architectures
does not work well due to the following reasons.

First, using a fully connected neural network is not practical. Since both the input
and the output of graph recovery problems are matrices, the number of parameters
scales at least quadratically in d. Such a large number of parameters will need many
input-output training pairs to provide a decent estimation. Thus some structures need
to be imposed in the network to reduce the size of parameters and sample complexity.

Second, structured models such as convolution neural networks (CNNs) have been
applied to learn a mapping from X to ©* (Belilovsky et al.,[2017). Due to the struc-
ture of CNNs, the number of parameters can be much smaller than fully connected
networks. However, a recovered graph should be permutation invariant with respect
to the matrix rows/columns, and this constraint is very hard to be learned by CNN,
unless there are lots of samples. Also, the structure of CNN is a bias imposed on
the model, and there is no guarantee why this structure may work.

Thresholding
v

2 Zksl Oppq Mkrt
Third, the intermediate results produced by both fully connected networks and R
CNNs s are not interpretable, making it hard to diagnose the learned procedures and
progressively output increasingly improved precision matrix estimators. Graphs
Fourth, the SPD constraint is hard to impose in traditional deep learning architectures. Figure 13 A
recurrent unit
Although, the above limitations do suggest a list of desiderata when designing GLADcell.
learning models: Small model size; Minimalist learning; Interpretable architecture; Progressive
improvement; and SPD output. These desiderata will motivate the design of our deep architecture
using unrolled algorithms.

3.2 GLAD: DEEP LEARNING MODEL BASED ON UNROLLED ALGORITHM

To take into account the above desiderata, we will use an unrolled algorithm as the template for the
architecture design of GLAD. The unrolled algorithm already incorporates some problem structures,
such as permutation invariance and interpretable intermediate results; but this unrolled algorithm does
not traditionally have a learning component, and is typically not directly suitable for gradient-based
approaches. We will leverage this inductive bias in our architecture design and augment the unrolled
algorithm with suitable and flexible learning components, and then train these embedded models with
stochastic gradient descent.

GLAD model is based on a reformulation of the original optimization problem in Eq. (I) with a
squared penalty term, and an alternating minimization (AM) algorithm for it. More specifically, we
consider a modified optimization with a quadratic penalty parameter \:

61,2y = argming zesg, —log(det ©) +u(20) + | 2], + $A[1Z - ©|% (6)

and the alternating minimization (AM) method for solving it:

O« L(—Y +/YTY + 4I), where Y = 15 — ZM; 7)

ZpM i (0Y), ¥
where 7,/ (6) := sign(#) max(|6] — p/\, 0). The derivation of these steps are given in Appendix
We replace the penalty constants (p, A) by problem dependent neural networks, p,,,, and A,,,,. These
neural networks are minimalist in terms of the number of parameters as the input dimensions are
mere {3, 2} for {pn, An, } and outputs a single value. Algorithm [I]summarizes the update equations
for our unrolled AM based model, GLAD. Except for the parameters in p,,,, and A,,,, the constant ¢
for initialization is also a learnable scalar parameter. This unrolled algorithm with neural network
augmentation can be viewed as a highly structured recurrent architecture as illustrated in Figure[T}

There are many traditional algorithms for solving graph recovery problems. We choose AM as our
basis because: First, empirically, we tried models built upon other algorithms including G-ISTA,
ADMM, etc, but AM-based model gives consistently better performances. Appendix &
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discusses different parameterizations tried. Second, and more importantly, the AM-based architecture
has a nice property of maintaining ©y1 as a SPD matrix throughout the iterations as long as A\;, < oo.
Third, as we prove later in Sectiond] the AM algorithm has linear convergence rate, allowing us to
use a fixed small number of iterations and still achieve small error margins.

3.3 TRAINING ALGORITHM

To learn the parameters in GLAD architecture, we will di-
rectly optimize the recovery objective function rather than Algorithm 1: GLAD
using log-determinant objective. A nice property of our deep Function GLADcel1 (f] 0.7\
learning architecture is that each iteration of our model will o T
output a valid precision matrix estimation. This allows us to A Ann(ﬂz —O[F, )

add auxiliary losses to regularize the intermediate results of Y+ A\1E-Z

our GLAD architecture, gu1d¥ng itto learn parameters which 0 % ( v+ YTy + % 1)
can generate a smooth solution trajectory.

Soecificall 1l use Frobeni ] ) For all i, j do
ecifically, we will use Frobenius norm in our experiments, S
P Y P L Pij = pnn(@ij, Yijs Zij)

and design an objective which has some resemblance to the

. ; L . Zii <=1, (04
discounted cumulative reward in reinforcement learning: i < o (O5)

n K | return O, 7, A
1 , 2 . ~
min lossy 1= — Z Z K=k H@g) —©*|| , (9 Function GLAD (X):
f [l F Oo — (S+tI)~1 N« 1

where (0", () Ay = gLaDce11 (5™, 0 |, Z{V AW ) For k=01 K —1do
is the output of the recurrent unit GLADcell at k-th iter- Okt15 Zi+1, )‘ktl
ation, K is number of unrolled iterations, and v < lisa <GLADcell (X,0k, Zi, )
discounting factor. | return O, 7

We will use stochastic gradient descent algorithm to train

the parameters f in the GLADcell. A key step in the gradient computation is to propagate gradient
through the matrix square root in the GLADce11. To do this efficiently, we make use of the property
of SPD matrix that X = X/2X'/2, and the product rule of derivatives to obtain

dX = d(XV?)XY? 4 X1V24(x1/?). (10)

The above equation is a Sylvester’s equation for d(X'/?). Since the derivative dX for X is easy to
obtain, then the derivative of d(X '/ %) can be obtained by solving the Sylvester’s equation in .

The objective function in equation [9should be understood in a similar way as in|Gregor & LeCun
(2010); Belilovsky et al.|(2017); [Liu et al.| (2018) where deep architectures are designed to directly
produce the sparse outputs.

For GLAD architecture, a collection of input covariance matrix and ground truth sparse precision
matrix pairs are available during training, either coming from simulated or real data. Thus the
objective function in equation[9]is formed to directly compare the output of GLAD with the ground
truth precision matrix. The goal is to train the deep architecture which can perform well for a
family/distribution of input covariance matrix and ground truth sparse precision matrix pairs. The
average in the objective function is over different input covariance and precision matrix pairs such
that the learned architecture is able to perform well over a family of problem instances.

Furthermore, each layer of our deep architecture outputs an intermediate prediction of the sparse
precision matrix. The objective function takes into account all these intermediate outputs, weights the
loss according to the layer of the deep architecture, and tries to progressively bring these intermediate
layer outputs closer and closer to the target ground truth.

3.4 A NOTE ON GLAD ARCHITECTURE’S EXPRESSIVE ABILITY

We note that the designed architecture, is more flexible than just learning the regularization parameters.
The component in GLAD architecture corresponding to the regularization parameters are entry-wise
and also adaptive to the input covariance matrix and the intermediate outputs. GLAD architecture
can adaptively choose a matrix of regularization parameters. This task will be very challenging if the
matrix of regularization parameters are tuned manually using cross-validation. A recent theoretical
work [Sun et al.| (2018)) also validates the choice of GLAD’s design.
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4 THEORETICAL ANALYSIS

Since GLAD architecture is obtained by augmenting an unrolled optimization algorithm by learnable
components, the question is what kind of guarantees can be provided for such learned algorithm, and
whether learning can bring benefits to the recovery of the precision matrix. In this section, we will
first analyze the statistical guarantee of running the AM algorithm in Eq. (7) and Eq. (8) for % steps
with a fixed quadratic penalty parameter A, and then interpret its implication for the learned algorithm.
First, we need some standard assumptions about the true model from the literature Rothman et al.
(2008):

Assumption 1. Let the set S = {(i, j) : ©]; # 0,7 # j}. Then card(S) < s.

Assumption 2. A, (X%) > €1 > 0 (or equivalently Ayax(0%) < 1/€1), Anax(X*) < €2 and an
upper bound on ||X||2 < cs.

The assumption 2] guarantees that ©* exists. Assumption [I]just upper bounds the sparsity of ©* and
does not stipulate anything in particular about s. These assumptions characterize the fundamental
limitation of the sparse graph recovery problem, beyond which recovery is not possible. Under these
assumptions, we prove the linear convergence of AM algorithm (proof is in Appendix [B)).

Theorem 1. Under the assumptions || & |2| if p =< loi d

dimension of problem and m is the number of samples, the Alternate Minimization algorithm has
linear convergence rate for optimization objective defined in (@ The k" iteration of the AM
algorithm satisfies,

~ logd
H@éM—@*HF<0AH®/,§M1—®AHF+OP( (Og)/m)> (1)

, where p is the 1y penalty, d is the

: TR
min( (drs) a2

where 0 < C < 1 is a constant depending on \.

From the theorem, one can see that by optimizing the quadratic penalty parameter A\, one can adjust
the C'y in the bound. We observe that at each stage k, an optimal penalty parameter Ay can be chosen
depending on the most updated value C. An adaptive sequence of penalty parameters (Aq, ..., Ax)
should achieve a better error bound compared to a fixed A. Since C), is a very complicated function
of A, the optimal )\, is hard to choose manually.

Besides, the linear convergence guarantee in this theorem is based on the sparse regularity parameter

p = %. However, choosing a good p value in practice is tedious task as shown in our experiments.

In summary, the implications of this theorem are:

e An adaptive sequence (A1, ..., Ax) should lead to an algorithm with better convergence than a
fixed A, but the sequence may not be easy to choose manually.

e Both p and the optimal )\, depend on the corresponding error ||©AM — O, || 7, which make these
parameters hard to prescribe manually.

e Since, the AM algorithm has a fast linear convergence rate, we can run it for a fixed number of
iterations K and still converge with a reasonable error margin.

Our learning augmented deep architecture, GLAD, can tune these sequence of A\ and p parameters
jointly using gradient descent. Moreover, we refer to a recent work by |Sun et al.|(2018)) where they
considered minimizing the graphical lasso objective with a general nonconvex penalty. They showed
that by iteratively solving a sequence of adaptive convex programs one can achieve even better
error margins (refer their Algorithm 1 & Theorem 3.5). In every iteration they chose an adaptive
regularization matrix based on the most recent solution and the choice of nonconvex penalty. We
thus hypothesize that we can further improve our error margin if we make the penalty parameter p
nonconvex and problem dependent function. We choose p as a function depending on the most up-to-
date solution (O, f], Z1,), and allow different regularizations for different entries of the precision
matrix. Such flexibility potentially improves the ability of GLAD model to recover the sparse graph.

6
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5 EXPERIMENTS

In this section, we report several experiments to compare GLAD with traditional algorithms and
other data-driven algorithms. The results validate the list of desiderata mentioned previously. Es-
pecially, it shows the potential of pushing the boundary of traditional graph recovery algorithms
by utilizing data. Python implementation (tested on P100 GPU) is available{ﬂ Exact experimental
settings details are covered in Appendix |[C| Evaluation metric. We use normalized mean square
error (NMSE) and probability of success (PS) to evaluate the algorithm performance. NMSE is
10logo(E |[©P — OF H2F JE||©* ||37) and PS is the probability of correct signed edge-set recovery,
i.e., P [sign(©7F;) = sign(0};),V(i, ) € E(©*)], where E(©*) is the true edge set. Notation. In
all reported results, D stands for dimension d of the random variable, M stands for sample size and N
stands for the number of graphs (precision matrices) that is used for training.

5.1 BENEFIT OF DATA-DRIVEN GRADIENT-BASED ALGORITHM
ADMM: D=100, M=100

. s s . ADMM: D=100, M=100
Inconsistent optimization objective. Tradi- 2] 20
. . . . 1754
tional algorithms are typically designed to op- ] w150
.. . . . . . =44 =2
timize the ¢ -penalized log likelihood. Since it , _/ g 1251
. . . . . (%] @ 1004
is a convex optimization, convergence to opti- = -° 2 s
. . -7
mal solution is usually guaranteed. However, o 5 %
. . . . . . . . 2541
this optimization objective is different from the -9 o
true error. Taklng ADMM as an example, it B R T T 0 10 20 30 40 50
Iterations Iterations

is revealed in Figure 2] that, although the opti-
mization objective always converges, errors of Figure 2: Convergence of ADMM in terms of NMSE
recovering true precision matrices measured by and optimization objective. (Refer to Appendix @
NMSE have very different behaviors given different regularity parameter p, which indicates the
necessity of directly optimizing NMSE and hyperparameter tuning.

Expensive hypgljparametel.' tuning. Although hyperpa- Al 1 05 01 001
rameters of trad1t10nal algorl.thms can be t}]neq if the true |2 SO0T 35T 5 06 S0k 360
precision matrices are provided as a validation dataset, 003 | -559 905 948 -9.61 -9.41
we want to emphasize that hyperparamter tuning by grid 0.07 |-953 -758 -742 -738 -7.46
search is a tedious and hard task. Table [Ilshows that the 0.1 ) -938 -651 -643 -641 -650

0.2 -6.76  -4.68 -4.55 -447 -4.80

NMSE values are very sensitive to both p and the quadratic
penalty A of ADMM method. For instance, the optimal Table 1: NMSE results for ADMM.
NMSE in this table is —9.61 when A = 0.1 and p = 0.03. However, it will increase by a large
amount to —2.06 if p is only changed slightly to 0.01. There are many other similar observations in
this table, where slight changes in parameters can lead to significant NMSE differences, which in
turns makes grid-search very expensive. G-ISTA and BCD follow similar trends.

For a fair comparison against GLAD which is data-driven, in all following experiments, all hyper-
parameters in traditional algorithms are fine-tuned using validation datasets, for which we spent
extensive efforts (See more details in Appendix|[C.3] [C.6). In contrast, the gradient-based training of
GLAD turns out to be much easier.

5.2 CONVERGENCE A An(1Z = O)%,N) Pis = Pun(©ij, i, Zij)

We follow the experimental setting in
(Rolfs et al.,2012; Mazumder & Agar;

Non-Linearity:

Num of layers = 4

Num of layers = 2 : _ )
wal, 2011} Lu} 2010) to generate data | Higden unit size = 3 || Hidden layers =‘tanh™ |z o0 nit size = 3

Final layer = ‘sigmoid’

and perform synthetic experiments i

on multivariate Gaussians. Each off- —— —
diagonal entry of the precision matrix Figure 3: Minimalist neural network architectures designed

is drawn from a uniform distribution, for GLAD experiments in sections(5.2} B.5). Refer Ap-
ie. @zj ~ U(—1,1), and then set to pendlx@]for further details about the architecture parameters.

zero with probability p = 1 — s, where s means the sparsity level. Finally, an appropriate multiple
of the identity matrix was added to the current matrix, so that the resulting matrix had the smallest
eigenvalue as 1 (refer to Appendix [C.I). We use 30 unrolled steps for GLAD (Figure[3) and compare

!code: https://drive.google.com/open?id=16POE4TMp7UUieLcLgRzS TqzkVHm2stIM
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it to G-ISTA, ADMM and BCD. All algorithms are trained/finetuned using 10 randomly generated
graphs and tested over 100 graphs.

Convergence results and average runtime of different algorithms on | Time/itr | D=25 | D=100
Nvidia’s P100 GPUs are shown in Figure ] and Table 2] respectively. ADMM | 145 | 1645
GLAD consistently converges faster and gives lower NMSE. Although G-ISTA | 37.51 | 41.47
the fine-tuned G-ISTA also has decent performance, the computation GLAD | 2381 | 2023
time in each iteration is much longer than GLAD because it requires Table 2: ms per iteration.
line search steps. Besides, we could also see a progressive improvement of GLAD across its iterations.

D=100;M=20 D=100;M=100 D =100, M=500,D=100;M=20 D=100;M=100p =100; M =500
¢ BCD ¢ BCD ¢ BCD 4 BCD ¢ BCD ¢ BCD
o =f= ADMM | o == ADMM | o =f= ADMM | o == ADMM | =f= ADMM | ¢ ==f= ADMM

G-ISTA G-ISTA G-ISTA G-ISTA G-ISTA G-ISTA
. \ == GLAD | _g \-’- GLAD | _g == GLAD | _g == GLAD | _g == GLAD | _g = GLAD
s vy 'y

=z \_ﬂ; ‘f_ Lﬂi

-10 ‘ -10 -10 -10 ‘

0

5

0 0 0 0 0

20 40 20 40 20 40 20 40 20 40 20 40
Iterations Iterations Iterations Iterations Iterations Iterations
Figure 4: GLAD vs traditional methods. Left 3 plots: Sparsity level is fixed as s = 0.1. Right 3 plots: Sparsity
level of each graph is randomly sampled as s ~ ¢/(0.05, 0.15). Results are averaged over 100 test graphs where
each graph is estimated 10 times using 10 different sample batches of size M. Standard error is plotted but not
visible. Intermediate steps of BCD are not evaluated because we use sklearn packagePedregosa et al.|(2011) and

can only access the final output. Appendix[C.4}[C.5|explains the experiment setup and GLAD architecture.

5.3 RECOVERY PROBABILITY

As analyzed by [Ravikumar et al.
(2011])), the recovery guarantee (such
as in terms of Frobenius norm) of the
¢y regularized log-determinant opti-
mization significantly depends on the

sample size and ot'helT conditions. Our 0555 oS ST E S 200 s S SIS
GLAD directly optimizes the recovery FOTATRT G AR A P FOTATR ST AR A P

objective based on data and it has the Number of samples (log scale) Number of samples (log scale)
potential of pushing the sample com-
plexity limit. We experimented with ~ §,,
this and found the results positive. Bo6

We follow [Ravikumar et al.| (2011) to ~ £°¢

1.0 D = 100; Graph = random
¢ | == ADMM

g G-ISTA

20.6] = GLAD

> —+ BCD

conduct experiments on GRID graphs, ~ £°2 g0z
. . PRy . ag, a0,
Wthh S.atl sfy the conditions required «Qg S L S & /\Qg S L S S & 9
in (Ravikumar et al.| [2011)). Further- R S T AAETOS
Number of samples (log scale) Number of samples (log scale)

more, we conduct a more challenging ]
task of recovering restricted but ran- Figure 5: Sample complexity for model selection consistency.
domly constructed graphs (see Appendix [C.7]for more details). The probability of success (PS) is
non-zero only if the algorithm recovers all the edges with correct signs, plotted in Figure[5} GLAD
consistently outperforms traditional methods in terms of sample complexity as it recovers the true
edges with considerably fewer number of samples.

5.4 DATA EFFICIENCY

Having a good inductive bias makes GLAD’s architecture quite data-efficient compared to other deep
learning models. For instance, the state-of-the-art ‘DeepGraph’ by Belilovsky et al.| (2017)) is based
on CNNs. It contains orders of magnitude more parameters than GLAD. Furthermore, it takes roughly
100, 000 samples, and several hours for training their DG-39 model. In contrast, GLAD learns well
with less than 25 parameters, within 100 training samples, and notably less training time. Table 3]
also shows that GLAD significantly outperforms DG-39 model in terms of AUC (Area under the ROC
curve) by just using 100 training graphs, typically the case for real world settings. Fully connected
DL models are unable to learn from such small data and hence are skipped in the comparison.
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Table 3: AUC on 100 test graphs for
D=39: For experiment settings, refer Ta- | Methods M=15 M=35 M=100

: BCD | 0.578£0.006 | 0.63920.007 | 0.70420.006
ble 1 of [Belilovsky et al] 2077). Gaus DG-39 | 0.66410.008 | 0.738£0.006 | 0.7590.006

sian Random graphs with sparsity p = 0.05 553955 [0.67220.008 | 0.740£0.007 | 0.77120.006
were chosen and edge values sampled from GLAD | 0.788£0.003 | 0.811£0.003 | 0.87820.003

~U(—1,1). (Refer appendix(C.8))
5.5 GENE REGULATION DATA

The SynTReN (Van den Bulcke et al., 2006) is a synthetic gene expression data generator specifically
designed for analyzing the sparse graph recovery algorithms. It models different types of biological
interactions and produces biologically plausible synthetic gene expression data. Figure [6] shows
that GLAD performs favourably for structure recovery in terms of NMSE on the gene expression
data. As the governing equations of the underlying distribution of the SynTReN are unknown, these
experiments also emphasize the ability of GLAD to handle non-Gaussian data.

Figure [7] visualizes the edge-recovery performance of GLAD models trained on a sub-network of
true Ecoli bacteria data. We denote, TPR: True Positive Rate, FPR: False Positive Rate, FDR: False
Discovery Rate. The number of simulated training/validation graphs were set to 20/20. One batch of
M samples were taken per graph (details in Appendix[C.9). Although, GLAD was trained on graphs
with D = 25, it was able to robustly recover a higher dimensional graph D = 43 structure.

Appendix [C-12] contains details of the experiments done on real E.Coli data. The GLAD model was
trained using the SynTReN simulator.

Appendix [C.13]explains our proposed approach to scale for larger problem sizes.

D=25and M =10 D=25and M =25 D=25and M =100
1 15

Figure 6: Performance 5

5
wefp= ADMM s ADMM wff= ADMM
on the SynTReN gener- 10 G-ISTA 10 G-ISTA 10 G-ISTA
weff= GLAD 5 wefp= GLAD 5 s GLAD

ated gene expression data s
with graph as Erdos-renyi
having sparsity p = 0.05.

Refer appendix(C:9) for LS__— - \F— . \ —_—

NMSE
NMSE
NMSE

experiment detalls. 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Iterations Iterations Iterations

Figure 7: Recovered graph
structures for a sub-network
of the E. coli consisting of
43 genes and 30 interactions
with increasing samples. In-
creasing the samples reduces
the fdr by discovering more
true edges. (a) True graph (b) M=10, fdr=0.613, (c) M=100, fdr=0.236,
tpr=0.913, fpr=0.114 tpr=0.986, fpr=0.024

6 CONCLUSION & FUTURE WORK

We presented a novel neural network, GLAD, for the sparse graph recovery problem based on an
unrolled Alternating Minimization algorithm. We theoretically prove the linear convergence of AM
algorithm as well as empirically show that learning can further improve the sparse graph recovery.
The learned GLAD model is able to push the sample complexity limits thereby highlighting the
potential of using algorithms as inductive biases for deep learning architectures. Further development
of theory is needed to fully understand and realize the potential of this new direction.
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APPENDIX

A DERIVATION OF ALTERNATING MINIMIZATION STEPS

Given the optimization problem
61,2y = argming zesg, —log(det ©) +u(£0) +pl|Z]l, + A [Z - ©[%,  (12)

Alternating Minimization is performing

oY, « argmin — log(det ©) + tr(£0) + 1A Z}™ - 0|7, (13)
0es{,
2 argminte(SOR) + p | 21|, + 52| 2 — O[5 (14)
zest,
Taking the gradient of the objective function with respect to © to be zero, we have
—O '+ S 4 AO—2)=0. (15)
Taking the gradient of the objective function with respect to Z to be zero, we have
p0l(Z)+ NZ - 0©) =0, (16)
where
1 Zij >0,
001(Z;5) = ¢ —1 Zi; <0, 17)
[-1,1] Z;; =0.

Solving the above two equations, we obtain:

1 4 P 1
“(=Y +4/YTY + —I) =argmin — log(det ©) + tr(X0) + ~A[|Z — @||?;, (18)
2 )\ @esi+ 2

1~
where Y = XZ_Z’ (19)
. S 1
Np/2(0) =arg minte(£0) + p | 2], + 51 (12 ~ O[5 (20)
zest,

B LINEAR CONVERGENCE RATE ANALYSIS

Proof of Theorem

\/@ , where p is the 1y penalty, d is the

Theorem 1. Under the assumptions |I| & 2| if p =<

dimension of problem and m is the number of samples, the Alternate Minimization algorithm has
linear convergence rate for optimization objective defined in @ The k" iteration of the AM
algorithm satisfies,

I _ (logd)/m__
|F§C’,\H@k—1—@,\HF+OJP’< min((dis)7d%) 7 "

where 0 < C\ < 1is a constant depending on \.

12
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We will reuse the following notations in the appendix:

s sample covariance matrix based on m samples, 2D

G(O: p) := — log(det ©) + tr(E™O) + p 1O off » (22)

@g ‘=arg rnin@esi+ G(©;p), (23)

1(8,7:p, ) =~ log(det ©) +u(S0) + p | 2], + 5117 - O} @)

(:)A,ZA :=argmin (0, Z; p, A), (25)
NA

f(p ) =, min, f(6,7:p) = F(©x.Zxip. N, (26)

1p/A(0) :=sign(6) max(|0] — p/A,0). 27

The update rules for Alternating Minimization are:

O, « (=Y +/YTY +41), where Y = 15 — ZM; (28)
ZY < noa(O31h), (29)
Assumptions: With reference to the theory developed in Rothman et al.| (2008), we make the
following assumptions about the true model. (Op(-) is used to denote bounded in probability.)
Assumption 1. Let the set S = {(i, j) : ©]; # 0,7 # j}. Then card(S) < s
Assumption 2. A, (X*%) > €1 > 0 (or equivalently Ayax(0%) < 1/€1), Amax(X*) < €2 and an
upper bound on ||X||z < cg.

We now proceed towards the proof:
Lemma 2. Forany z,y,k € R, k >0,z # y,

_ 2
(\/x2+(k_\/)g2/2+k) <1- : 1 : . 30)
ey (22 +1)(% +1)
Proof.
(Va2 + k=2 +k)? _ @+ k) + @ +k) - 2Va? 1 k2t k a1
(z—y)? (z —y)?
_ (—y)? —2(Va? + kY2 4k — (ay + k)
- Gy 2
WA R Ak - aw+kxwﬁif v +k+ (zy + k)
(z —y)?(Va? + k+ (zy +k))
(33)
k(z —y)?
=1-2 34
(z —y)? (Va2 + kv/y2 + k+ (zy + k)) G4
2k
=1- 35
\/m y2+k+ (xy+ k) 53
<1- (36)
(22 +1)(% +1)
[
Lemma 3. Forany X,Y € S, A >0, A(Y)=,/YTY + %I satisfies the following inequality,
[AX) = AY)[[p € x| X =Yg, (37

where 0 < oy =1 — %(%AMM(X)2 +1)” 1/2( Anaz (V)2 +1)7Y2 < 1, Appao(X) is the largest
eigenvalue of X in absolute value.

13
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Proof. First we factorize X using eigen decomposition, X = Q% DxQx, where Qx and Dx are
orthogonal matrix and diagonal matrix, respectively. Then we have,

4 4 / 4
= \/Q)T(D%(QX‘F)\I: \/Q;((Dgg‘f‘)\I)QX :Q; D§(+XIQX~ (38)

Similarly, the above equation holds for Y. Therefore,

IA(X) = AVl = || QX /DX + IQX—Q \/ D3 + IQY (39)
- QX@}\/D%(+§1QX—Q$\/D§+XIQY>Q; 0)

F
= |1/ D% +;1\I QXQY\/ IQYQX 4D

=|[1/D% + I Q"\/D? H (42)

where we define () := QYQ)T(. Similarly, we have,

X =Y = HQ)T(DXQX - Q;T/DYQYHF (43)
= ||Dx - QxQy Dy QyQX||, (44)
= |px - @ Dval . )

Then the i-th entry on the diagonal of Q " Dy Q is 2?21 Dy ; Q?Z Using the fact that Dx and Dy
are diagonal, we have,

IX -Y|% = |Dx — QTDYQHi (46)
d d
= Q" DyQlr - S Dyj;@%)% + Z (Dxii — ZDYMQﬂ @7)
i=1 j=1 i=1 j=1
d d
= | Dy|3 + Z Dxii(Dxii — 2 Z Dy ;;Q3%) (48)
i=1 J=1
d
= (DX +D3;) —2> > DxiiDy;;Q (49)
i—1 i=1 j—1
d d
= Z Z i(Dxii — Dy j;)*. (50)
The last step makes use of Zf 1 =1and Z = 1. Similarly, using , we have,

4 4
||A(X)—A(Y)||2F=’ D?erf—QT Dy +51Q (51

4 4
_ZZQ \/ng+ \/D;A’,jjjuA)2 (52)

=1 j5=1

Assuming | X — Y| > 0 (otherwise (37) trivially holds), using (52) and (50}, we have,
d —d
JAX) — A2 Lz 25=1 Qi \/Dx“ +3 \/Dy“

2 = d (53)
HX*Y”F 21:1 Zj:l jS(DXii _Dij)
\/DXM + )\ \/DY]]
< max (54)
3,j=1,--,d, Dxii#Dyjj (DXzz DY]J)

14
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Using lemma (2)), we have,

jac) Aot~ WDkt A DY (55)
HX _ Y”% ~ 4,j=1,-,d, Dx;i#Dyjj (DXzz - DY]])
1
S et S LT 0
J=1,a, Dxisg Y3jj \/(DX” + 1)( YJ] 4 1)
A A
1
(57)
\/ max; D%, + 1)( max; D%J] +1)
=1 EA LXY—%U—”%EAmmAYP—Fn—“? (58)
Therefore,
[AX) — AY)|l g \/ A A
<A1 = (S A mae (X)2 + 1)~ Y2(Z A ae (V)2 +1)-1/2 (59)
X =Yl 4 4
<1 LA (X7 4 )2 AV D)2 (60)
O

Lemma 4. Under assumption (EI) the output of the k-th and (k + 1)-th AM step ZiM, Z;:H and
oM 1 satisfy the following inequality,

I e e A

where 0 < C\ < 1 is a constant depending on \.

Proof. The first part is easy to show, if we observe that in the second update step of AM (@), Tp/A 18
a contraction under metric d(X,Y’) = || X — Y'|| . Therefore we have,

HZk+1 ZAHF = an/k(@}?ﬂ\i{l) - Up/A(@/\)H H@k+1 @AHF- (62)

Next we will prove the second part. To simplify notation, we let A(X) = /X TX + %I . Using the
first update step of AM (7), we have,

~ 1 4 1 4
e - G)AHF = 3 (=Yerr [V Ve + 1) = S (- [TV + 20)|| - (63)
F
1 4 - 4
=3 ~(Yir1 = Ya) + (\/ Y, Ve + XI —\ Y+ XI) (64)
1
= 5 =1 = Y2) + (A(Yer1) = ANl (65)
1 1
< 5 ¥kt = Yallp + 5 1A +1) = AN 5 (66)
where Y41 = E ZMM and Yy = %i 2 The last derivation step makes use of the triangle
inequality. Us1ng lemma (3], we have,
1
|08 83| < 5 I¥irs = Yallp + 50r Wisn = Vil (67)
Therefore
|t -8y < arl¥in - Wil = || 22 - 2. (68)
where
_ LA 2 “1/2,A 2 —1/2
C 2 + 2@)\ =1- 4(4Amaz(Yk+1) + 1) (4Amam(Y)\) + 1) (69)

— Mgz (Yer 1) +4) 720 A e (V)2 +4) 712 <1, (70)

15
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Amaz(X) is the largest eigenvalue of X in absolute value. The rest is to show that both A4, (Y))
and Ayuaz(Yi41) are bounded using assumption . For Aoz (Yit1), we have,

1~
Auas () = Wil = |18 - 22 an
2
1~
<HA2H Tz, )
2
1 ~ ~
<see+|a -2, + 2], 3
Combining (62) and (68), we have,
], < ool <z, o
Therefore,
-, < oo a, <o a0
Continuing with (73), we have,
1 ~ ~
i e - 24, ],
1 ~ ~
< XC§+"Z€M—Z)\"F+“ZA“F a7
1 ~
< ses + 1284+ 2] %) - (78)

Since Z » 1s the minimizer of a strongly convex function, its norm is bounded. And we also have
| Z6M| » bounded in Algorithm (1), s0 Apaz(Ye41) is bounded above whenever A < co. For
Amaz(Y)), we have,

Amaz Y)\ H Z Z)\ (79)
< H n HZAH (30)
< xcwHZAHQ- @)

Therefore both A4 (Ya) and Asyae (Vi 1) are bounded in (70), i.e. 0 < C < 1is a constant only
depending on .

O

%, where p is the 1y penalty, d is the

dimension of problem and m is the number of samples, the Alternate Minimization algorithm has
linear convergence rate for optimization objective defined in (@ The k" iteration of the AM
algorithm satisfies,

Theorem 1. Under the assumptions |I| & |2} if p <

o~

N log d
<Oy — O +0s .(Og—)/m , (11)
F 1 A
F mln(m,dj)

where 0 < C\ < 1 is a constant depending on \.

Proof. (1) Error between @A and @g

Combining the following two equations:
F(Ox, Zxip, ) = min £(6,7;p,\) < min f(0,Z = ©;p,\) = minG(6; p) = G(Og; p),

£(0.2:p.3) = (01 p) + p(1 21, ~ [O]) + 5717 ~ O3
we have:

0< G(Ox;p) —G(Og;p) < p(Hé*Hl - HZAHJ

16
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Note that by the optimality condition, V , f ((:) A Z X, P, A) = 0, we have the fixed point equation
Z\A = np/A(é/\)'

-~ ~ 2
Therefore, @,\H — HZ,\H < % and we have:
1 1

R R 2d2
0<G(0y;p) —G(Og;p) < ”T (82)

Since G is og-strongly convex, where o¢ is independent of the sample covariance matrix ¥* as the
hessian of G is independent of ¥*.

~ 12 R R N R R
%g HGA - GQHF +(VG(Og;p),0x — Og) < G(Ox;p) — G(Og; p). (83)
Therefore,
6, -0 2p°d? 2 \/T
[0r -], < =55 =0 o
O

Proof. (2) Error between @g and ©*

Corollary 5 (Theorem 1. of Rothman et al|(2008)). Let O be the minimizer for the optimization
objective G(O; p). Under Assumptions & ifp= \/@

m ’

H(:)g_@* F20P< (d“)k’gd> (85)

m

(3) Error between O} and ©*

Under the conditions in Corollary [5] we use triangle inequality to combine the above results with
Corollary [5|and Lemmaf]

R R X I R
<Cillop, -6, +o <pd\fi> + 05 ( W) (87)
<Ox o —8y| +0e <\/m(1j1141;(i)1(0‘%d)”\)> (88)
<0AH@’2¥1@AHF+OP< m> (89)

dis)’ a2

C EXPERIMENTAL DETAILS

This section contains the detailed settings used in the experimental evaluation section.

C.1 SYNTHETIC DATASET GENERATION

For sections [5.1]and [5.2] the synthetic data was generated based on the procedure described in [Rolfs
et al.[(2012). A d dimensional precision matrix © was generated by initializing a d X d matrix with its
off-diagonal entries sampled i.i.d. from a uniform distribution ©,; ~ ¢/(—1, 1). These entries were
then set to zero based on the sparsity pattern of the corresponding Erdos-Renyi random graph with a
certain probability p. Finally, an appropriate multiple of the identity matrix was added to the current
matrix, so that the resulting matrix had the smallest eigenvalue as 1. In this way, © was ensured to be
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D =100and M = 20 D =100 and M = 100 D =100 and M = 500
—H= conv_loss L10 =4 conv_loss_L10 == conv_loss_L10
-5.0 conv_loss_L20 -5.0 conv_loss_L20 -5.0 conv_loss_L20

== conv_loss_L30 ’ == conv_loss_L30 : =4 conv_loss_L30

w -7.5 }! —H convloss 150 w -75 == conv_loss_L50 " _75 —4— conv_loss_L50
z-10.0 2-100 2-10.0
-12.5 -12.5 -12.5

-15.05 20 40 —15.0% 20 40 —15.0% 20 40
Iterations Iterations Iterations

Figure 8: Varying the number of unrolled iterations. The results are averaged over 1000 test graphs.
The L variable is the number of unrolled iterations. We observe that the higher number of unrolled
iterations better is the performance.

a well-conditioned, sparse and positive definite matrix. This matrix was then used in the multivariate
Gaussian distribution A'(0, ©~1), to obtain M i.i.d samples.

C.2 EXPERIMENT DETAILS: BENEFIT OF DATA-DRIVEN GRADIENT-BASED ALGORITHM

Figure(2): The plots are for the ADMM method on the Erdos-Renyi graphs (fixed sparsity p = 0.1)
with dimension D = 100 and number of samples M = 100. The results are averaged over 100 test
graphs with 10 sample batches per graph. The std-err = 0 /+/1000 is shown. Refer appendix for
more details on data generation process.

C.3 EXPERIMENT DETAILS: EXPENSIVE HYPERPARAMETERS TUNING

Table(T) shows the final NMSE values for the ADMM method on the random graph (fixed sparsity
p = 0.1) with dimension D = 100 and number of samples M = 100. We fixed the initialization
parameter of Oy as t = 0.1 and chose appropriate update rate o for \ . It is important to note that
the NMSE values are very sensitive to the choice of ¢ as well. These parameter values changed
substantially for a new problem setting. Refer appendix(C.I)) for more details on data generation
process.

C.4 EXPERIMENT DETAILS: CONVERGENCE ON SYNTHETIC DATASETS

Figure(@) experiment details: Figure(@) shows the NMSE comparison plots for fixed sparsity and
mixed sparsity synthetic Erdos-renyi graphs. The dimension was fixed to D = 100 and the number
of samples vary as M = [20, 100, 500]. The top row has the sparsity probability p = 0.5 for the
Erdos-Renyi random graph, whereas for the bottom row plots, the sparsity probabilities are uniformly
sampled from ~ 1/(0.05,0.15). For finetuning the traditional algorithms, a validation dataset of 10
graphs was used. For the GLAD algorithm, 10 training graphs were randomly chosen and the same
validation set was used.

C.5 GLAD: ARCHITECTURE DETAILS FOR SECTION(5.2)

GLAD parameter settings: p,, was a 4 layer neural network and A,,,, was a 2 layer neural network.
Both used 3 hidden units in each layer. The non-linearity used for hidden layers was tanh, while the
final layer had sigmoid (o) as the non-linearity for both, p,, and A, (refer Figure[3). The learnable
offset parameter of initial O was set to t = 1. It was unrolled for L = 30 iterations. The learning
rates were chosen to be around [0.01, 0.1] and multi-step LR scheduler was used. The optimizer used
was ‘adam’. The best nmse model was selected based on the validation data performance. Figure(8)
explores the performance of GLAD on using varying number of unrolled iterations L.

C.6 ADDITIONAL NOTE OF HYPER-PARAMETER FINETUNING FOR TRADITIONAL METHODS

Figure(T) shows the average NMSE values over 100 test graphs obtained by the ADMM algorithm
on the synthetic data for dimension D = 100 and M = 100 samples as we vary the values of penalty
parameter p and lagrangian parameter \. The offset parameter for Oy was set to ¢ = 0.1. The NMSE
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Figure 9: We attempt to illustrate how the traditional methods are very sensitive to the hyperparameters
and it is a tedious exercise to finetune them. The problem setting is same as described in section(3.3).
For all the 3 methods shown above, we have already tuned the algorithm specific parameters to
a reasonable setting. Now, we vary the L penalty term p and can observe that how sensitive the
probability of success is with even slight change of p values.

values are very sensitive to the choice of ¢ as well. These parameter values changes substantially for
a new problem setting. G-ISTA and BCD follow similar trends.

Additional plots highlighting the hyperparameter sensitivity of the traditional methods for model
selection consistency experiments. Refer figure(D).

C.7 TOLERANCE OF NOISE: EXPERIMENT DETAILS

Details for experiments in figure(3). Two different graph types were chosen for this experiment
which were inspired from [Ravikumar et al.[(2011)). In the ‘grid’ graph setting, the edge weight for
different precision matrices were uniformly sampled from w ~ /(0.12,0.25). The edges within a
graph carried equal weights. The other setting was more general, where the graph was a random
Erdos-Renyi graph with probability of an edge was p = 0.05. The off-diagonal entries of the precision
matrix were sampled uniformly from ~ /[0.1,0.4]. The parameter settings for GLAD were the same
as described in Appendix [C.3] The model with the best PS performance on the validation dataset was
selected. train/valid/test=10/10/100 graphs were used with 10 sample batches per graph.

C.8 GLAD: COMPARISON WITH OTHER DEEP LEARNING BASED METHODS

Table(3) shows AUC (with std-err) comparisons with the DeepGraph model. For experiment settings,
refer Table 1 of Belilovsky et al.| (2017). Gaussian Random graphs with sparsity p = 0.05 were
chosen and edge values sampled from ~ U (—1,1). GLAD was trained on only 10 graphs with 5
sample batches per graph. The dimension of the problem is D = 39. The architecture parameter
choices of GLAD were the same as described in Appendix [C.5]and it performs consistently better
along all the settings by a significant AUC margin.

C.9 SYNTREN GENE EXPRESSION SIMULATOR DETAILS

The SynTReN Van den Bulcke et al.| (2006) is a synthetic gene expression data generator specifically
designed for analyzing the structure learning algorithms. The topological characteristics of the
synthetically generated networks closely resemble the characteristics of real transcriptional networks.
The generator models different types of biological interactions and produces biologically plausible
synthetic gene expression data enabling the development of data-driven approaches to recover the
underlying network.

The SynTReN simulator details for section(3.3). For performance evaluation, a connected Erdos-
Renyi graph was generated with probability as p = 0.05. The precision matrix entries were sampled
from ©;; ~ 1/(0.1,0.2) and the minimum eigenvalue was adjusted to 1 by adding an appropriate
multiple of identity matrix. The SynTReN simulator then generated samples from these graphs by
incorporating biological noises, correlation noises and other input noises. All these noise levels
were sampled uniformly from ~ ¢/(0.01,0.1). The ﬁgure@ shows the NMSE comparisons for
a fixed dimension D = 25 and varying number of samples M = [10,25,100]. The number of
training/validation graphs were set to 20/20 and the results are reported on 100 test graphs. In these
experiments, only 1 batch of M samples were taken per graph to better mimic the real world setting.

19



Published as a conference paper at ICLR 2020

Figure(7) visualizes the edge-recovery performance of the above trained GLAD models on a subnet-
work of true Ecoli bacteria data.which contains 30 edges and D = 43 nodes. The Ecoli subnetwork
graph was fed to the SynTReN simulator and M samples were obtained. SynTReN’s noise levels
were set to 0.05 and the precision matrix edge values were set to w = 0.15. For the GLAD models,
the training was done on the same settings as the gene-data NMSE plots with D = 25 and on
corresponding number of samples M.

C.10 COMPARISON WITH ADMM OPTIMIZATION BASED UNROLLED ALGORITHM

In order to find the best unrolled architecture for sparse graph recovery, we considered many different
optimization techniques and came up with their equivalent unrolled neural network based deep model.
In this section, we compare with the closest unrolled deep model based on ADMM optimization,
(ADMMu), and analyze how it compares to GLAD. Appendix [C.T1]lists down further such techniques
for future exploration.

Unrolled model for ADMM: Algorithm 2] describes the unrolled model ADMMu updates. py,,, was
a 4 layer neural network and A,,,, was a 2 layer neural network. Both used 3 hidden units in each
layer. The non-linearity used for hidden layers was tanh, while the final layer had sigmoid (o) as the
non-linearity for both ,p,,,, and A,,,,. The learnable offset parameter of initial O was setto ¢t = 1.
It was unrolled for L = 30 iterations. The learning rates were chosen to be around [0.01,0.1] and
multi-step LR scheduler was used. The optimizer used was ‘adam’.

Figure [I0]compares GLAD with ADMMu on the conver-
gence performance with respect to synthetically gen- Algorithm 2: ADMMu
~erate‘d data. The set@ings were kept same as described Function ADMMu—cel1 (i, 0.7.U,\
in Figure 4] As evident from the plots, we see that 5
GLAD consistently performs better than ADMMu. We A= Ann (JZ =6,
had similar observations for other set of experiments as Y+ \X'X-Z4U
well. Hence, we chose AM based unrolled algorithm 1 T 4
over ADMM’s as it works better empirically 4ind has O 5(-Y+ m)
less parameters. For alli,j do N
L pij = prn(©ij; Xij, Zij, A)
Zij <= 1pi; (©ij + Uij)

Although, we are not entirely confident but we hypothe-
size the reason for above observations as follows. In the
ADMM update equations @ & [3), both the Lagrangian U«U+0-Z

term and the penalty term are intuitively working to- L return ©,7,U, A

gether as a ‘function’ to update the entries ©;;, Zi;. Function ADMMu (3) :
Observe that U can be absorbed into Zj and/.0r O 0y (i + tI)—l’ No 1
and we expect our neural networks to capture this rela- Fork — 0f0 K — 1do
tion. We thus expect GLAD to work at least as good as
ADMMu. In our formulation of unrolled ADMMu (Algo-
rithm [2)) the update step of U is not controlled by neural
networks (as the number of parameters needed will be
substantially larger) which might be the reason of itnot | return O, Zx
performing as well as GLAD. Our empirical evaluations
corroborate this logic that just by using the penalty term we can maintain all the desired properties
and learn the problem dependent ‘functions’ with a small neural network.

Okt1, Ziy1, Ung1, Mgt
+ADMMu-cell (X, 0
) Zk?a Ulm )\k)

C.11 DIFFERENT DESIGNS TRIED FOR DATA-DRIVEN ALGORITHM

We tried multiple unrolled parameterizations of the optimization techniques used for solving the
graphical lasso problem which worked to varying levels of success. We list here a few, in interest
for helping researchers to further pursue this recent and novel approach of data-driven algorithm
designing.

1. ADMM + ALISTA parameterization: The threshold update for Z{** can be replaced by ALISTA
network [Liu et al.| (2018)). The stage I of ALISTA is determining W, which is trivial in our case
as D = I. So, we get W = I. Thus, combining ALISTA updates along with AM’s we get an
interesting unrolled algorithm for our optimization problem.
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Figure 10: Convergence on Erdos-random graphs with fixed sparsity (p = 0.1). All the settings are
same as the fixed sparsity case described in Figure[d] We see that the AM based parameterization
‘GLAD’ consistently performs better than the ADMM based unrolled architecture ‘ADMMu’.

2. G-ISTA parameterization: We parameterized the line search hyperparameter c as well as replaced
the next step size determination step by a problem dependent neural network of Algorithm(1) in
Rolfs et al.[(2012)). The main challenge with this parameterization is to main the PSD property
of the intermediate matrices obtained. Learning appropriate parameterization of line search
hyperparameter such that PSD condition is maintained remains an interesting aspect to investigate.

3. Mirror Descent Net: We get a similar set of update equations for the graphical lasso optimization.
We identify some learnable parameters, use neural networks to make them problem dependent and
train them end-to-end.

4. For all these methods we also tried unrolling the neural network as well. In our experience we
found that the performance does not improve much but the convergence becomes unstable.

C.12 RESULTS ON REAL DATA

We use the real data from the ‘DREAM 5 Network Inference challenge’ (Marbach et al., [2012).
This dataset contains 3 compendia that were obtained from microorganisms, some of which are
pathogens of clinical relevance. Each compendium consists of hundreds of microarray experiments,
which include a wide range of genetic, drug, and environmental perturbations. We test our method
for recovering the true E.coli network from the gene expression values recorded by doing actual
microarray experiments.

The E.coli dataset contains 4511 genes and 805 associated microarray experiments. The true underly-
ing network has 2066 discovered edges and 150214 pairs of nodes do not have an edge between them.
There is no data about the remaining edges. For our experiments, we only consider the discovered
edges as the ground truth, following the challenge data settings. We remove the genes that have zero
degree and then we get a subset of 1081 genes. For our predictions, we ignore the direction of the
edges and only consider retrieving the connections between genes.

We train the GLAD model using the SynTReN simulator on the similar settings as described in
Appendix [C.9] Briefly, GLAD model was trained on D=50 node graphs sampled from Erdos-Renyi
graph with sparsity probability ~ U(0.01,0.1), noise levels of SynTReN simulator sampled from
~ U(0.01,0.1) and ©;; ~ U(0.1,0.2)). The model was unrolled for 15 iterations. This experiment
also evaluates GLAD’s ability to generalize to different distribution from training as well as scaling
ability to more number of nodes.

We report the AUC scores for E.coli network in Tabled]. We can see that GLAD improves over the
other competing methods in terms of Area Under the ROC curve (AUC). We understand that it is
challenging to model real datasets due to the presence of many unknown latent extrinsic factors, but
we do observe an advantage of using data-driven parameterized algorithm approaches.

C.13 SCALING FOR LARGE MATRICES Methods | BCD | GISTA | GLAD
AUC 0.548 | 0.541 | 0.572
We have shown in our experiments that we can train  Typle 4: GLAD vs other methods for the
GLAD on smaller number of nodes and get reasonable DREAM network inference challenge real
results for recovering graph structure with considerably E.Coli data.

larger nodes (AppendixC.12). Thus, in this section, we focus on scaling up on the inference/test part.
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With the current GPU implementation, we can can handle around 10,000 nodes for inference. For
problem sizes with more than 100,000 nodes, we propose to use the randomized algorithm techniques
given in|Kannan & Vempala|(2017). Kindly note that scaling up GLAD is our ongoing work and we
just present here one of the directions that we are exploring. The approach presented below is to give
some rough idea and may contain loose ends.

Randomized algorithms techniques are explained elaborately in [Kannan & Vempala| (2017). Specifi-
cally, we will use some of their key results

e P1. (Theorem 2.1) We will use the length-squared sampling technique to come up with low-rank
approximations

e P2. (Theorem 2.5) For any large matrix A € R™*"™, we can use approximate it as A ~ CUR ,
where C € R™*" U € R®*",R € R"™™.

e P3. (Section 2.3) For any large matrix A € R™*™, we can get its approximate SVD by using the
property E(RT R) = AT A where R is a matrix obtained by length-squared sampling of the rows
of matrix A.

The steps for doing approximate AM updates, i.e. of equations(7} [8). Using property P3, we can
approximate Y'Y ~ RTR.

JYTY + 41~ \JRTR+ 4T~ v, /(52 + H)VT (90)

where V is the right singular vectors of R. Thus, we can combine this approximation with the sketch
matrix approximation of Y &~ CUR to calculate the update in equation(7). Equation(8) is just a
thresholding operation and can be done efficiently with careful implementation. We are looking in to
the experimental as well as theoretical aspects of this approach.

We are also exploring an efficient distributed algorithm for GLAD. We are investigating into parallel
MPI based algorithms for this task (https://stanford.edu/~boyd/admm.html|is a good
reference point). We leverage the fact that the size of learned neural networks are very small, so that
we can duplicate them over all the processors. This is also an interesting future research direction.
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