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Abstract. Breast cancer is one of the leading causes of death by can-
cer in women, and it often requires accurate detection of metastasis in
lymph nodes through Whole-slide Images (WSIs). At present, there are
many algorithms of cancer metastasis detection based on CNN, which are
generally patch-level models, aiming for increasing the sensitivity, speed,
and consistency of metastasis detection. However, most of these algo-
rithms use patch as an independent individual to train, which leads to
the neglect of much important spatial context information in WSI. In this
paper, we propose a multiple spatial context network (MSC-Net) which
considers the spatial correlations between neighboring patches through
fusing the spatial information probability maps obtained from the two
novel networks we propose, the self-surround spatial context stacked net-
work (SSC-Net) and the center-surround spatial context shared network
(CSC-Net). The SSC-Net is a deep mining of continuous information be-
tween patches, while CSC-Net strengthens the influence of the neighbor-
hood information to the central patch. Furthermore, for saving memory
overhead and reducing computational complexity, we propose a frame-
work which can quickly scan the WSI through the mechanism of the
patch feature sharing. We demonstrate evaluations on the camelyon16
dataset and compare with the state-of-the-art trackers. Our method pro-
vides a superior result.

Keywords: Deep Learning · Spatial Context Relation · Cancer Metas-
tasis Detection.

1 Introduction

Worldwide, there are about 2.1 million newly diagnosed female breast cancer
cases in 2018, accounting for almost 1 in 4 cancer cases among women [2]. Actu-
ally, more than 90% of women diagnosed with breast cancer at the early-stage
survive their disease for at least 5 years. Therefore, the early cancer diagnosis
and treatment play a crucial role in improving patients survival rate. Specifically,
during the diagnosis procedure, specialists evaluate both overall and local tis-
sue organization via Whole-slide Images (WSIs). However, manually detecting
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tumor cells within extremely large WSIs can be tedious and time-consuming.
Furthermore, it has been shown that there is limited inter-observer consensus
in interpreting breast biopsy specimens [8]. Because of this, the development of
automatic detection and diagnosis tools is challenging but also essential for the
field. And it is the hotspot to develop algorithms to detect cancer metastasis in
lymph node images using computer assisted detection.

For decades, with the advent of convolutional neural networks (CNNs) and
their excellent performance for natural image classification [5,9], there is a grow-
ing trend to adapt CNN in computer assisted detection of lymph node metastasis
in WSIs [4, 10]. Usually, because of the extremely large size of WSIs, most of
the studies first extracted small patches (e.g. 256 * 256 pixels) from WSIs, and
trained a deep CNN to classify these small patches into normal or tumor re-
gions [10, 13]. However, these algorithms train each patch independently, which
leads to a serious problem that the loss of spatial context information and depen-
dency in WSI. Therefore, during inference time, the predictions over neighboring
patches may be inconsistent, and the patch level probability map may contain
isolated outliers. Actually, according to diagnostic experience, when a patch is
in the tumor region, its neighboring patches also have a high probability to be
labeled as tumor, since they are co-located in neighboring regions [6].

In order to capture spatial neighborhood information, Bin Kong [6] pro-
posed Spatio-Net that uses 2D-LSTM layers. But the 2D-LSTM may causes
a heavy computational overhead burden and makes the training process ex-
tremely slow. And Yi Li [7] propose a neural conditional random field (NCRF)
deep learning framework. However, the spatial dependencies in NCRF which is a
post-processing method are always suboptimal because complex configurations
of patch.

In this work, we first propose SSC-Net that can capture continuous spatial
information more comprehensively on the internal structure of a single patch.
Then, we develop the CSC-Net to mine discrete spatial information with fixed
directions around one center patch, which is complementary to the SSC-Net.
Finally, we fuse the spatial information probability maps obtained from the above
two networks and use sliding windows to get the whole WSI prediction results.In
addition, for alleviating the memory consumption problem when sliding windows
on the whole WSI, we propose a fast scanning framework by asynchronous sample
pre-fetching and neighborhood feature sharing.

2 Methodology

2.1 Overview

The framework is divided into two parts as Fig.1. The first part is feature extrac-
tion using CNN. It’s noting that unlike previous deep neural network methods
that treat each small image patch independently, the proposed framework com-
bines each image patch and its neighbors together for consideration. The second
part uses two different components, SSC-Net and CSC-Net, to obtain contin-
uous and discrete spatial context dependent information separately, which can
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Fig. 1. The overall scheme of our proposed framework. First, the WSIs are divided
into many small patches. Second, Each patch and its eight neighbors are fed into CNN
feature extractor. Then the transform layer sends the features to the two components
in the multi-spatial layer. After a series of spatial feature extraction, we fuse the results
of the two components, resulting in a probability map, and finally further processed to
locate the metastases.

effectively improve the accuracy of patch level and the generalization ability of
the model. Then, The output of the above components is integrated for final
classification.

During the training phase, we load a grid of patches, e.g.3x3, only the pre-
dicted probability of the center patch is retained for easy implementation. In
the testing phase, we perform inference over patches in a sliding window across
the slide, generating a tumor probability heatmap, but it is heavy computa-
tional overhead. Therefore, we propose a fast scanning framework to optimize
the conventional sliding window structure.

2.2 Feature Extractor With CNN

Unlike Hand-crafted features [14,15], CNN feature extractor preserve the inputs
neighborhood relations and spatial locality in their latent higher-level feature
representations.Therefore, using CNN as feature extractor can not only retain
the important spatial relevance of images, but also greatly reduce the dimension
of features, which makes it easier to capture spatial context information. In our
framework, we employ two ResNet architectures [5], ResNet-18 and ResNet-34
that have proven to be powerful in image classification task to extract compre-
hensive feature representation of pathological image. After the transform layer,
we will get a grid of patch feature.
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Fig. 2. The structure of SSC-Net and CSC-Net.(a)SSC-Net: The blue node is the
current neighborhood patch, the orange node is the current center patch, and the LSTM
follows the direction of the arrow from the center patch to bypass all the neighborhood
patches and finally return to the center patch.(b)CSC-Net: For the center patch, multi-
directional parallel LSTMs are used to perform discrete fixed-direction neighborhood
information mining based on the direction of the arrow.

2.3 Self-Surround Spatial Context Stacked Network

In order to capture the connectivity information of the space more comprehen-
sively in grid of patch feature, we designed a separate closed-loop LSTM for each
individual patch feature as represented by the circle in Fig.2(a). Through such a
closed-loop LSTM structure, continuous spatial context information around each
patch can be captured and the continuous dependence of neighborhood patch
is also preserved. Then, after obtaining N spatial neighborhood information, we
will get a new feature map which will be fed into the next same stacked layer
which can obtain spatial context information at a higher semantic level. The
SSC-Net formula referring to the standard LSTM [12] can be simplified as:
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short memory state; t is used to control the order of input blocks of LSTM. For
example, if the current center position is (i, j), then the sequence of t is a set
of rounds from the center around the center and finally returned to the center
position; d is the number of layers stacked.

This model can capture the surrounding context information of each patch
through the closed-loop LSTM connection, and then make the relationship be-
tween each patch more tight through the stacking of the same layer. In this
way, we can obtain a feature that incorporates neighborhood information that
is logically linked in a certain order.

2.4 Center-Surround Spatial Context Shared Network

The SSC-Net was a deep mining of continuous logical sequence of spatial context
information, while CSC-Net obtains discrete spatial context information in the
eight different fixed directions and strengthens the study of the neighborhood
information of the central patch, like Fig.2(b). Because of traditional 2D-LSTM
[3] can only take into account the neighborhood information on the left and
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the top of the center patch, it is very incomplete. So we have adopted a novel
network based on Multi-directional parallel LSTMs, which can process the full
spatial context of each patch in such a WSI through eight sweeps over all patch
by eight different LSTMs. The formula is denoted as follows:
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where Idt is the current input; Od
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short memory state; t is used to control the order of input blocks of LSTM. N
represents the number of adjacent patches(N= 8 in our case).

2.5 Multiple Spatial Context Information Integration Network

After passing through the above two components in parallel, the grid of patch
feature which contains spatial context information enters the fully connected
layer to classify, and outputs two grid of patches classification result. The grid of
patches classification result obtained by the SSC-Net emphasizes the continuous
spatial dependence of each patch and the patch around itself while the result
of SSC-Net further emphasizes the influence of the discrete fixed direction on
the spatial structure of the center patch. These two components form a certain
degree of spatial domain context information complementarity. Therefore, we
combine the spatial information probability maps obtained from the above two
networks to obtain the final prediction results.

2.6 A Fast WSI Scanning Framework

Asynchronous Sample Prefetching During the training phase, the heavy
I/O bottleneck always exists, i.e., the GPU is often idle while waiting for fetch-
ing batched training data. To resolve this problem, we adopt an asynchronous
sample prefetching mechanism by using multiple producer processes of CPU to
prepare the training samples while one consumer process for GPU to consume
the training data. This strategy can keep GPU running all the time and boostat
least 10 times acceleration in the training stage.

Neighborhood Feature Sharing In the testing phase, we perform inference
over patches in a sliding window across the slide, generating a tumor probability
heatmap, but it is heavy computational overhead. Therefor, we adopt feature
sharing method to avoid repetitive computation and improve scanning efficiency,
as shown in the Fig.3. The merit of using neighborhood feature sharing architec-
ture. It can speed up the inference by sharing computations in the overlapping
regions (blue patch).
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Fig. 3. A Fast WSI Scanning Framework. When predicting the center block, the feature
maps of the eight neighborhoods need to be calculated simultaneously. Then, when
predicting the next adjacent center block (right side or bottom side), it is possible to
calculate only the feature map of the newly read patch (gray block), and the block that
has been used last time (blue block) can be used without calculation.

3 Experments

In this section, extensive experiments were conducted on the CAMELYON16 [1]
dataset to evaluate the proposed model for cancer metastasis detection in WSIs.
This dataset includes 160normal and 110 tumor WSIs for training, 81 normal
and 49 tumor WSIs for testing. We conducted all the experiments on 40× mag-
nification.First, We employ the simple OTSU algorithm [11] to determine the
adaptive threshold and filter out most of the white background. Then, We ran-
domly sampled 200,000 768 × 768 patches from the non-tumor non-background
regions of the tumor slides and the non-background regions of the normal slides
as negative samples. In order to probe the efficacy of our method, we first eval-
uate our model under different configurations. We tried to use different CNN
feature extractors. And Experiments show that using a ResNet18 network is
enough to extract the appropriate features while saving memory. Our baseline is
directly using the ResNet18 network. We also compared our method with several
state-of-the-art methods using accuracy as evaluation indicator.

As shown in Table 1, on the full datasetall of the model proposed in this
paper SSC-Net,CSC-Net and Multi-Net have a higher accuracy. And as expected,
Multi-Net has the highest accuracy, which is 6.72% higher than baseline, in the
case of guaranteeing high FROC. At the same time, it is worth noting that our
model works better on a small number of data sets than other models because of
the combination of domain information. For most of the depth models, with the
increase of the complexity of the model, it may make the model over-fitting in
a small number of data sets serious, so that the performance on a small number
of data sets is not as good as the simple model.

Fig.4 is the curves of the training process on 10% of dataset. As analyzed
above, show that our model still has smooth training curves with small amount
of data, contrast the fluctuation of baseline. Therefore, our model has a natural
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Table 1. Quantitative comparisons

Model ACC(10%Data) ACC(100%Data) Ave.FROC STD

Baseline 88.52% 92.42% 0.4301 0.026
ResNet34 88.62% 92.76% 0.5241 0.023
ResNet50 88.68% 93.57% 0.5249 0.019
NCRF 91.15% 92.96% 0.8138 0.010
SSC-Net 92.07% 92.59% 0.7825 0.011
CSC-Net 94.13% 97.54% 0.7526 0.012
MSC-Net 95.24% 98.43% 0.8078 0.010

Fig. 4. Accuracy on 10% of dataset Fig. 5. Accuracy on full dataset

strong generalization ability when the amount of data is small, due to the use
of stack LSTM. Therefore, the training efficiency of the model can be greatly
improved.

4 Conclusion

In this paper, we propose a novel multiple spatial context network, which is
composed of SSC-Net and CSC-Net, and through integrate neighborhood and
background features improve the detection of metastasis in WSIs. The SSC-
Net and CSC-Net which are based on the LSTM. A standard LSTM allows to
easily memorize the context information for long periods of time in sequence
data. In images, this temporal dependency learning is converted to the spatial
domain which is significance for us to obtain continuous spatial dependencies.
Therefor, the SSC-Net and CSC-Net generalize standard LSTM by providing
recurrent connections along with all spatial dependence present in the data.
Moreover, we propose a fast scanning framework by asynchronous sample pre-
fetching and neighborhood feature sharing to alleviate the memory consumption
problem when sliding windows on the whole WSI. We demonstrate that the
proposed method achieved superior performance compared to other state-of-the-
art methods on the Camelyon 2016 Grand Challenge dataset and even surpassed
human performance. Furthermore, the proposed fast WSI scanning framework
matched the speed requirements of clinical practice, where the framework can
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process whole-slide image within a very short time. We expect that our multiple
spatial context network is useful to boost performance in a variety of medical
image analytical challenges.
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